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Abstract— In this review paper various crack modeling and 

crack detection methods have been discussed which could be 

utilized for crack identification in beam. After studying various 

techniques it is found that roational massless spring for crack 

modeling and genetic algorithm for crack detection are most 

suitable. The differential equations for the free bending 

vibrations are established and then solved individually for each 

segment with the corresponding boundary conditions and the 

appropriated compatibility conditions at the cracked section. To 

solve the inverse problem, genetic algorithm is used to search 

optimal solution for detection of multiple cracks locations and 

their intensities in Timoshenko beam. 
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1. INTRODUCTION 

The presence and propagation of crack damage in 

mechanical and civil structures can cause catastrophic 

failure. So crack damage identification is of important 

concern to the structural engineering community. 

Traditional methods also called as conventional NDT 

methods like ultrasonic methods, magnetic field methods, 

x-ray methods and radiography need the vicinity of the 

damage, and the portion of the structure being inspected 

should be readily accessible. These methods basically have 

local nature over damage that is it requires particular area 

of damage to determine crack. Though these methods are 

accurate, reliable and effective they require full 

accessibility and thorough scanning of entire component. 

Also it becomes more time consuming, laborious and 

expensive for large slender beams, pipes, rails etc, which 

are widely encountered in power plants, chemical plants, 

off shore oil installations. This has motivated development 

of alternate methods. 

Many researchers have presented various 

methodologies for model a cracks having different degree 

of accuracies. Several approaches are also adopted for 

detection of single or multiple cracks in thick or thin 

beams, rotors, pipes etc. here few crack modeling methods 

and crack detection strategies adopted by various 

researchers are reviewed and presented their summaries 

 

2. CRACK MODELING METHOD 

Large amount of work have been done in crack 

modelling because it plays a vital role in crack detection. 

The modelling of crack is complex due to many reasons: 

Physical discontinuity at the crack location 

Large stress concentration near the crack tip 

The   crack    leads    to    significant    localization    of 
deformation which leads to increase in flexibility, decrease in 

stiffness and change in damping. Damping is quite sensitive 

to material compositions, manufacturing processes and 

environmental conditions; hence it is difficult to propose a 

model to reflect the change in damping. The crack may be 

considered either open or breathing. In case of open crack, 

crack remains open during the entire cycle of vibration. 

While in breathing crack, crack remains open only during 

part of the cycle of vibration. Most cracks, that either 

develops or propagates in a component in-service due to 

fatigue, creep, manufacturing defects, corrosion, etc., behave 

more like breathing (closing) crack. However, the breathing 

crack model includes non-linearity in the formulation 

 

2.1 Reduced section method 

Bovsunovsky and Matveev [2000] have    odelin crack 

by considering short sections with a reduced cross- 

sectional moment of inertia. The reduction of the cross- 

sectional moment of inertia causes the change in strain 

energy. This is made basis to determine crack parameters. 

The section depth is reduced over a span near the crack 

location. At the same time, the cross-section area of the 

beam was supposed to be constant. 
 

 
Figure 2.1: Three segment beam representation[Bovsunovsky and 

Matveev(2000)] 

 

As shown in above fig the section depth is reduced near the 

crack. The length of segment is calculated considering 

strain energy. Addition of segment leads to conversion into 

three segment beam. The span size, d for this reduced 

section is given by 



Dogo Rangsang Research Journal                                                           UGC Care Journal 

ISSN : 2347-7180                                                       Vol-10 Issue-12 No. 01 December 2020 

Page | 872                                                                                       Copyright @ 2020 Authors 

 

 
(1) 

Where a is crack depth, h is height of beam, b is width of 

beam. 

The limitation of the above-mentioned approach is that 

the stress distribution is assumed independent of the crack 

size. It means shallow and deep crack does not make any 

variation in the stress field. This may lead to larger 

inaccuracies in the detection of crack. Murigendrappa [2004] 

improved the approach by odeling the crack into five 

segments. It improves the results up to a certain extend 

compared to three segments. To improve this the beam wih 

crack is modeled into five segments due to which better 

results are obtained compared to three segments. 

 

Figure 2.2: Five segment beam representation [Murigendrappa (2004)] 

 

2.2 One dimensional method 

The presence of the crack affects stress and strain 

distributions in the vicinity of cracked section. There are 

large stress concentrations around the crack tip and also 

stress distribution, at the cracked section, is not linear. This 

stress field around the crack tip decreases with the distance, 

away from the crack region. The modification of the stress 

field induced by crack was incorporated using the local 

empirical function by Christides and Barr. 

This local empirical function assumed exponential decay 

of stress field with the distance from the crack and also 

included one dimensionless parameter which could be 

evaluated experimentally. They have developed a cracked 

Euler-Bernoulli beam theory by deriving the differential 

equation for uniform beam containing one or more pairs of 

symmetric cracks. By choosing stress, strain, displacement 

and momentum fields, this derivation has been reduced to 

one spatial dimension using integrations over the cross- 

section. They have solved the governing equation using 

two-term Rayleigh-Ritz solution to evaluate the 

fundamental natural frequency of cracked beam. They have 

treated the crack as a notch. 

It has been found that the two-term solution proposed by 

Christides and Barr‘s is not fully convergence, and the 

convergence of the Galerkin‘s procedure is also very slow. 

To improve fast convergence, they have modified 

Galerkin‘s approach which combines Fourier series 

expansion with an additional function satisfying the 

continuity characteristics of exact solutions. This leads to 

increased computational work. 

2.3 One dimensional method 

Various finite element models were employed to model 

cracks in a beam. Papadopoulos and Dimarogonas [1987a, 

b] have used flexibility matrix method using two parts. 

First part only considers original flexibility matrix of crack- 

free beam. The second part incorporates an additional 

matrix due to the crack. This additional matrix accounts for 

additional deformation and energy release due to crack in 

the structure. Gounaris et al; Gounaris and Dimarogonas 

have generated cracked beam element and used this 

element in conjunction with stiffness formulation. 

Special elements have also been developed to model 

crack and incorporate additional flexibility. Ostachowicz 

and Krawczuk have introduced point finite elements (PFE) 

to incorporate additional local flexibility due to crack. 

Krawczuk and Ostachowicz [1993] proposed an algorithm 

of a linear and a geometrical stiffness matrix calculation for 

an element modelled instead of crack in a cantilever beam. 

They have also studied transverse vibrations of a beam 

with crack subjected to a constant axial force. 

For small cracks the crack flexibilities are very small 

and the elements of the stiffness matrix [K] are 

correspondingly larger. This might lead to numerical 

problems during solution. To overcome this, this stiffness 

matrix for a cracked beam element should be developed. 

2.4 Rotational spring model method 

In case of transverse vibration of beams, it is generally 

assumed that there is an extra angular rotation at the crack 

location proportional to the bending moment at the section. 

Hence it can be modeled as a massless rotational spring of 

infinitesimal length inserted at the location. This method 

separates the beam into two segments having different 

deflection pattern. The infinite stiffness value of the spring 

represents no crack whereas zero stiffness shows complete 

separation of the member. The magnitude between zero to 

infinite define presence of crack with certain severity, 

inverse function of spring stiffness. Hence decreasing the 

stiffness value indicates increasing the crack severity. To 

deal with the effects of the crack on the vibration 

characteristics of the Timoshenko beam, based on fracture 

mechanics, the crack of a beam is modeled as a simplified 

rotational spring model, and it is assumed that the crack is 

open and has a uniform depth in width. 
 

 
Figure 2.3: (a) Cantilever beam with crack 

(b) Representation of crack by Rotational spring 
[Ostachowicz and Krawczuk(1993)] 
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The crack of the beam is assumed to be open, and with 

a uniform depth and width. The length, height and width of 

the beam are L, h and b, respectively. And there is a crack 

at a distance Lc from the left end of the beam, as shown in 

Fig.1.In the analysis, a steel beam is considered, thus, the 

influence of material damping on the resonant frequencies 

is ignored, and only bending vibrations are considered. 
 

Figure 2.4: Cantilever beam having multiple cracks 

[Dimarogonas and Paipetis (1983)] 

 
 

Figure 2.5: Modelling multiple cracked cantilever beam with rotational 

spring [Dimarogonas and Paipetis (1983)] 

 

From the crack strain energy function, 

rotational/torsional spring constant near the vicinity of the 

transverse cracked section of the beam have been 

correlated [Dimarogonas, 1976; Dimarogonas and Paipetis, 

1983]. The correlations are given as follows 

 

 
(2) 

  is local compliance function, which is computed 

from strain energy density function. It is defined as 

 
 

 
The Rotational spring stiffness corresponding to a given 

crack can be determined experimentally through deflection 

method or inverse vibration analysis. It can also be 

determined by finite element method. 

3. CRACK DETECTION METHOD 

Development of crack in a beam or any component leads 

to change its vibration parameters such as stiffness, mass, 

natural frequency, mode shapes etc. These methods make use 

of one of these parameters 

3.1 Natural frequency method 

The natural frequency of component decreases because 

of crack. In these method crack can be detected by 

measuring the natural frequencies. These include forward 

problem of determination of natural frequencies knowing the 

crack details and inverse problem of determination of crack 

details from natural frequencies. For a beam having uniform 

cross section they have obtained a relationship between the 

crack location, stiffness and natural frequency. For the first 

three modes of vibration they have plotted the variation of 

right hand side of equation with crack position. The common 

intersection of these curves is taken as crack location. 

  (3) 

Where E is Young’s Modulus, A is cross sectional area, K is 

spring stiffness, is frequency parameter and 𝛽 is crack 

position. 

The natural frequency is not suitable for locating the 

defects of structures because of their inherent global 

property, especially symmetrical structures, and the mode 

shape data are often difficult to measure with sufficient 

accuracy for damage detection in practice. These 

disadvantages of crack detection methods based on modal 

parameters seriously restrict their development in the field of 

structural engineering. 

In the case of small measured frequency errors, the 

predicted crack parameters are in good agreement with the 

measured crack parameters. However, in the case of large 

measured frequency errors, the predicted crack parameters 

only give roughly estimated results. However this method 

cannot predict crack size. 

3.2 Impedence Analysis Method 

This method shows that the location of a single moderate 

crack of beam can be identified by monitoring the change in 

the first anti-resonance as a function of the measuring 

location along the beam length. The mechanical impedances 

of the cracked Timoshenko beam are calculated in this part. 

The driving-point impedance at an arbitrary position x along 

the beam length can be derived according to the expression 

  (4) 

Where j is the unit of an imaginary number, w(x) is the 

corresponding displacement and f is the frequency. 

In this method cracked beam is excited by a harmonic 

force with wide scanning frequencies, and the driving force 

is moved from the left end to the right end of the beam. At 

the same time, the mechanical impedance at each driving 

point location is measured, which can be computed 

numerically by using impedance equation Subsequently, the 

first anti-resonant frequencies are extracted from the graphs, 

and a figure correlating the first anti-resonant frequency with 

the driving point location along the beam is plotted 

It is quite difficult to predict and read the impedance 

versus anti resonance frequency graph for crack detection. 

Also the numerical results show that when a crack occurs in 
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the beam, the curve of the first anti-resonant frequency 

versus driving-point location will not be smooth but show 

discontinuity at the crack position, and the degree of the 

discontinuity depends on the depth of the crack 

3.3 Mode Shape Method 

This method is useful for detection of both location and 

size and is demonstrated for cantilever beam with normal 

edge crack. Curvature at a point v is given in Structural and 

Health Monitoring 5 (2014) which is presented as 

  (5) 

Where M is bending moment, E is modulus of elasticity and 

I is second moment of inertia of cross section. Since the 

presence of crack reduces EI locally, the curvature will 

increase. This local increase in curvature can be used to 

detect crack. 

Curvature mode shape can be useful for detection of 

crack location,   it suffers from drawback that large volume 

of data is to be obtained experimentally. Mode shape method 

could have problems due to inaccuracy of the model, 

environmental and other non stationary effects on 

measurements, and lack of data in suitable frequency ranges. 

In fact, it is difficult to construct models of most existing 

structures with high accuracy. MSs are not sensitive to 

damage of small extent, curvatures of MS, or curvature 

mode shapes (CMSs), are used to locate damage. These 

disadvantages of crack detection method based on modal 

parameters seriously restrict their development in the field of 

structural engineering 

3.4 Wavelet Based Method 

The wavelet transform is useful mathematical tool to 

detect changes in the mode shapes of a structure and 

therefore to detect damage. This technique is based on the 

wavelet analysis of the difference of mode shapes 

corresponding to a reference state and a potentially damaged 

state. The wavelet coefficients of each mode shape 

difference are added up to obtain an overall graphical result 

along the structure. 

The limitation of this method is that the mathematical 

analysis is not always clear a priori and in most applications 

these parameters are chosen depending on previous results 

or on trial and error. 

3.5 Artificial Neural Network 

In this method, study intends to train a neural network 

using antiresonant frequencies and determine its feasibility 

to assess experimental damage. Hence, it was decided to 

work with the simplest neural network that has been able to 

detect, locate and quantify structural damage. This is a 

multilayer perceptron (MLP) with three layers (input, hidden 

and output). 

Disadvantage of ANN is the need of large training sets. 

It is extremely difficult and time-consuming to produce large 

enough training data sets from experiments. An alternative 

to generate training samples is to use a numerical model of 

the structure. Castelli and Revel showed that it is possible to 

produce correct damage predictions in an experimental 

structure using a neural network that was trained with 

samples generated by a finite element model. Nevertheless, 

this approach is highly dependent on the accuracy of the 

numerical model. 

3.6 Genetic Algorithm 

Genetic algorithms are based on the theory of natural 

selection and work on generating a set of random solutions 

and making them compete in an arena where only the fittest 

survive. Each solution in the set is equivalent to a 

chromosome. A set of such solutions forms a population. 

The algorithm then uses three basic genetic operators: (i) 

Reproduction (ii) cross over (iii) Mutation together with a 

fitness function to evolve a new population or the next 

generation. 

Starting from a random set of solutions the algorithm 

uses these operators and the fitness function to guide its 

search for the optimal solution. It is thus based on a guided 

random search mechanism. The fitness function gauges how 

good the solution in question is and provides a measure to its 

adaptability or survivability. The genetic operators copy the 

mechanisms based on the principles of human evolution. 

The best and quickest way of explaining the working of 

algorithm is to describe how they can be used to solve 

problems 

The solution of inverse problems, such as crack 

identification in beams, may be basically considered as an 

optimization problem. The GA is an optimization method 

that simulates the natural evolution phenomena based on 

Darwin’s theory. The GA operates on an initial population 

of randomly generated candidate solutions, encoded as 

chromosomes. Applying the principle of survival of the 

fittest to hopefully produce better and better approximations, 

the GA may gradually find the best individual, achieved 

through the evolution, as the solution of the inverse problem. 

4. DETECTION OF MULTIPLE CRACKS 

For a cantilever beam with two cracks, size of 

characteristic determinant becomes 12 x 12. For every single 

additional crack the size of determinant increases by 4. The 

crack is represented by massless rotational spring. This 

method leads to a characteristic equation of size (n+2) in 

case of n cracks. 

Khiem and Lien have developed dynamic stiffness 

matrix(DSM) method based on equivalent rotational spring 

and transfer matrix for forced vibration of multiple cracked 

beam. They have successfully employed DSM model to 

detect numerous cracks in beams by using data on natural 

frequencies. Patil and Maiti have proposed a method for 

detecting multiple cracks in a slender Euler Bernoulli beam 

based on frequency measurement. In this method, the 

transverse vibration has been modeled through Tansfer 

Matrix Method (TMM) and the crack is represented by a 

rotational spring. “Liang et al” has virtually divided beam 

into number of segments and each segment is considered to 

be associated with a damage parameter. This procedure 

gives a linear relationship explicitly between the changes in 

natural frequencies of the beam and damage parameters. 
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5. TRANSFER MATRIX METHOD (TMM) 

A transfer matrix relates state vectors at two points on a 

component/structure. The transfer matrix method (TMM) is 

applicable to beams with a large number of geometric 

segments, intermediate supports etc. This method offers 

definite advantage over the approaches based on modal 

analysis. Ostachowitcz and Krawczuk have shown that for n 

cracks, size of characteristic determinant becomes 4n+4. So 

it becomes mathematically expensive for greater number of 

cracks, while TMM gives only 2 x 2 determinant for natural 

frequency calculation for any number of cracks. Thus, size 

of characteristic determinant reduces considerably. For 

intermediate rigid supports the size can be reduced to (n+2), 

where n is the number of supports, irrespective of the 

number of beam segments. 

To illustrate TMM, consider a segment j of a beam of which 

state vectors include displacement w, slope 𝜃 bending 

moment M and shear force V, in case of bending. 
 

Figure 2.6: Segment of a beam 

 
 

 

Hence Tij is a transfer matrix and it relates the state vectors 

of the two ends of the segment. At crack location, there is 

continuity in displacement, bending moment, shear force and 

only a jump in slope 𝜃. 

By using above two equations, transfer matrix for whole 

structure containing cracks can be easily written. After 

inserting the boundary conditions, size of this matrix reduces 

to 2 x 2, whose determinant gives natural frequency of the 

structure. 

6. SUMMARY 

The review of different crack detection methodologies 

given by various researchers clearly shows that several 

approaches have been developed to locate crack in slender 

beams. Different geometries, crack locations etc have also 

been addressed. 

Define abbreviations and acronyms the first time they are 

used in the text, even after they have been defined in the 

abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 

and rms do not have to be defined. Do not use abbreviations in 

the title or heads unless they are unavoidable. 
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