
Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 196 Copyright @ 2020 Authors

LGR: A Genetic Based Approach for Grid

Computing Systems

PRAVAT KUMAR RAUTRAY
Assistant Professor, Dept. of Computer Science & Engineering, Aryan Institute of Engineering & Technology, Bhubaneswar

DEEPAK PANDEY

Department of Computer science and Engineering, Raajdhani Engineering College, Bhubaneswar, Odisha

Dr.PRAKASH KUMAR SARANGI

Department of Computer science and Engineering, NM Institute of Engineering and Technology,Bhubaneswar , Odisha

Abstract—The computational grid provides a promising

platform for the deployment of various high-performance

computing applications. In computational grid, an efficient

scheduling of task onto the processors that minimizes the entire

execution time is vital for achieving a high performance.

Solving this problem is very hard and many attempts have

been made to solve the problem. Using classical algorithms,

With regard to the complexity of this problem, is not the good

way; so the indefinite method acts better than classical method.

Evolutionary algorithms are the best choice for solving this

hard problem. In this paper, contrary to prior ways, the new

string representation has been used, communication costs has

not been ignored and presents as a major factor for reaching to

optimum solution

Index Terms—Grid Computing Systems, LGR, Genetic

Algorithm, Scheduler

I. INTRODUCTION

The popularity of the Internet and the availability of

powerful computers and high-speed networks as low-cost

commodity components are changing the way we use

computers today [1]. These technical opportunities have led

to the possibility of using geographically distributed and

multi-owner resources to solve large-scale problems in

science, engineering, and commerce [1].Recent research on

these topics has led to the emergence of a new paradigm

known as grid computing [2].These powerful paradigm has

been used in various sciences such as spaceship process

imaging and medical science [3], [4]. To achieve the

promising potentials of tremendous distributed resources,

effective and efficient scheduling algorithms are

fundamentally important [1].

Simply, grid scheduling is allocating a set of tasks to the

processor such that the scheduling time minimized. It is

known to be NP-complete for the general case and even for

many restricted cases [5].Because of, the classical algorithms

are not dynamic, they can not achieve the optimal scheduling

for all situations, and therefore these algorithms cannot adapt

themselves with all situations. Genetic algorithm has been

widely used to solve this problem. In most cases the methods

are quite effective but not efficient enough, and some

important aspects such as the time of transferring data

between processes are ignored [5].

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 197 Copyright @ 2020 Authors

We assume that the multiprocessor system didn't have

much different in their powerfully. They are preemptive.

They have not priority among task. The communication

cost exists. We use the Genetic Algorithm (GA) to solving

this complete problem that is a randomly method for

solving the problem, GA inspired from natural

evolutionary process. However, this way has not guarantee

the optimum response but always find solution close to

optimum or optimum.

Simply, Scheduler assigns task to resources to achieve

specified time requirements. The goal of grid scheduling is

to find an optimization algorithm to minimize the overall

execution time for a collection of tasks. One grid

computing system consists of m processor with different

communication cost and during the processing, each

processor could be in contact with several linking line [6],

[7], [8], [9] .simply, we want to decide what processor, at

when time can schedule the supposed task.

In grid scheduling problem, representation of priority of

tasks is very important so we want to take precedence

relations among the tasks in addition; their communication

cost, number of task, execution time of each task and

number of processor. The relationship between tasks can be

represented via a DAG, G = (V, E) where G is a graph with

V as nodes representing tasks and E as edges representing

prerequisite constraints and communication links. Figure 1

illustrates one sample for DAG.

Figure 1. Example of one DAG

Figure 1 show that the T3 can't execute until the

executing of T1 finished, the communication cost between

T1 and T3 is 3 time unit and T3 need 2 time unit for

executing.

This paper aims to present the new approach and it is

organized as follows: The next subsection presents related

work. The following one recalls the genetic algorithms.

The fourth section presents Linear Genetic Representation

(LGR) method. Finally, experimental results and

conclusion to this work are proposed.

II. RELATED WORK

The previous solutions [10], [11], [12], [9], [13], [14], [15],

[16], [17], [5], [4] have some lack, that we listed them:

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 198 Copyright @ 2020 Authors

1. The chromosomes representation isn't linear, that means if

we have m processor the representation will have m rows.

This representation has difficulties such as: The crossover

and mutation operators will be difficult to work with relations

among tasks [18].Figure 2 illustrates one chromosome for

DAG of Figure 1 with this method.

Figure 2. Traditional string representation

2. The communication cost almost is ignored, so on real

machine the solution doesn't work.

3. The probability of producing the better child with

crossover and mutation operators almost is very low and so

destroys the best solutions.

III. GENETIC ALGORITHM

GA is an efficient searching tool that was invented by John

Holland [19].The genetic algorithm has great application for

optimization of complicated problems particularly in where

isn't adequate information about search space. Although,

considering that, genetic algorithm isn't guarantee best

possible solution, but normally, would provide optimum or

partly optimum solution by suitable approximate at short

time. For solving any problem by genetic algorithm, eight

components must be defined [20]:

 Representation (definition of individual):

represents each chromosome in the real world. A

chromosome is a set of parameters which define a

proposed solution to the problem that the genetic

algorithm is trying to solve.

 Fitness function: These function shows the fitness

of each chromosome. It is used to evaluate the

chromosome and also controls the genetic operators.

 Population: The role of the population is to hold

possible solution.

 Parent selection mechanism: The role of parent

selection is to distinguish among individuals based

on their quality, in particular, to allow the better

individuals to become parents of the next generation.

 Reproduction: The reproduction operator is based

on the Darwinian notion of "survival of the fittest".

Individuals taking part in successive generations are

obtained through a reproduction process or evolution

operation. Individual strings are copied into a mating

pool according to their respective fitness values. The

higher the fitness values of the strings, the higher the

probability of contributing one or more offspring in

the next generation.

 Crossover operators: Recombination operator

selects two or more chromosomes and then produces

two new children from them. It aims at mixing up

genetic information coming from different

chromosomes to make a new individual.

 Mutation operators: Mutation operator selects one

chromosome and then produces one new child from

it by a slight change over the parent.

 Survivor selection mechanism: The role of survivor

selection is to distinguish among individuals based

on their quality. This mechanism survives the

individual among the passing from one generation to

the next generation.

 Termination Condition: The condition to ending

the running of genetic algorithm.

IV. THE LINEAR GENETIC REPRESENTATION (LGR)

METHOD

As mentioned before, the main drawback of previous

genetic algorithms is their representation and crossover

operations. Hence, we present the LGR method, which have

different representation and consequently different crossover

operations, at the below we discuss the LGR components:

A. Representation

For representation of individual we use modular arithmetic.

As we know, Modular arithmetic can be handled

mathematically by introducing a congruence relation on the

integers that is compatible with the operations of the ring of

integers: addition, subtraction, and multiplication. For a fixed

modulus n, it is defined as follows: Two integers are said to

be congruent modulo n, if their difference a − b is an integer

multiple of n. If this is the case, it is expressed as: a ≡ b (mod

n) [21].

In LGR we use this arithmetic principle for defining

individuals, for example Figure 3 is the one random string

that produced for DAG of Figure 1, and two processors

system.

Figure 3. One random LGR representation with two processors

Then in our method zero value location can be ignored. For

example in Figure 3, P1 execute following tasks: T4, T3, T5

and T8 and P2 execute: T2, T1, T6 and T7. It can be more

than one representation for only one task order. We discard

the representation that did not observe the task order rule that

yielded by DAG. Figure 4 shows another example of Figure

1's DAG with three processors.

Figure 4. One random LGR representation with three processors

As we see the processor P1 execute T6, T3 and T5, the

processor P2 execute T1, T4 and T8 and the processor P3

execute T2 and T7.In this method the deadlock does not exist,

all the tasks are present and the precedence relations among

the tasks regards. If we want to know the special place like S

with P processor in one chromosome, we only find this

relation: S ≡ b (mod P) that b is the digit of processor in those

places. For example, if we want to know that, which

processor executes the 8th location with three processors

system, we use this relation: 7≡b (mod3) and b=1 so the task

would be executes in P1 (7≡b (mod3)).

So our LGR solves the traditional representation's problem,

and does not have their crossover difficulty.

B. Fitness Function

For evaluating fitness of each chromosome, we first

evaluate the finishing time of each chromosome. Figure 5

shows the Gantt chart of the Figure 3's chromosome.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 199 Copyright @ 2020 Authors

Figure 5. The Gantt chart of Figure 3's chromosome

At Figure 5, W shows waiting time and T shows transfer

time. For example for starting the execution of the P1, this

processor must be waiting 5 time unit (ET (2) + ET (1))

because it need for the T1 and T2 output data, 2 time unit for

transferring data from T1 to T4 and considering that

transferring data from T1 to T4 has been done during the

executing of the T1.As you see the finishing time of

executing is 22. If we use the finishing time for presenting the

fitness of the chromosome, we most minimized the fitness of

each chromosome. But basically the genetic algorithms have

maximized fitness, so we reverse the finishing time for

achieving fitness of them, the fitness of this chromosome be

1/22.

C. Population

In our method we consider the population size about 50

chromosomes. For initial the population, we produce the

random number that is between the 1 and 16, and then if this

location be empty, filled it by the loop number and allele (is

the value of each gene) of remaining gene be zero. After that

each producing checks the accuracy of the chromosome and

if they are not accurate chromosome, discard it and produce

new chromosome.

D. Parent selection mechanism

The LGR method for selecting the parent, evaluates the

fitness of each chromosome. Then selects 10 chromosomes

randomly, next for mutation operating this method selects the

5 best chromosomes, then selects one chromosome randomly.

For crossover operating, this method select one chromosome

from 5 best chromosomes randomly and another

chromosome selecting from 9 remaining chromosome

randomly.

E. Recombination operators

The LGR method uses the order crossover for

recombination operator. After crossover the simulator check

the priority relation among the tasks, if didn't observe the

produced chromosome must be discarded and do the

crossover again. LGR uses one point crossover and as we

know, permutation-based representations present particular

difficulties for the design of recombination operators [20].In

LGR method we use order crossover that work in this way:

[20]

1. Choose two crossover points at random, and copy the

segment between them from the first parent (P1) into the

first offspring.

2. Starting from the second crossover point in the second

parent, copy the remaining unused numbers into the first

child in the order that they appear in the second parent,

wrapping around at the end of the list and if the gene is zero,

this method copy the gene directly. At the end if the

chromosome fuelled (there are no empty genes) and the

entire task doesn't appear in the child for copying the gene,

our method copy remaining method at the first gene that

their allele is zero.

3. Create the second offspring in an analogous manner, with

the parent roles reserved.

Suppose that the chromosome of the Figure 3 and Figure 6

are selected for recombination.

Figure 6. One random chromosome that selected for crossover

And suppose that the crossover point is after the ninth gene

so after the crossover one child will be the chromosome of

Figure 7.

Figure 7. The produced chromosome by crossover operation

After each crossover operation, the LGR checks the

accuracy of the offspring, and then it discards the illegal child

and do the crossover again, supposes, the recombination

probability is 75%.

F. Mutation operators

In the LGR method we use the swap mutation that is the

permutated based mutation operator. This operator works by

randomly picking two positions (genes) in the string and

swapping their allele values [20]. Obviously after each

mutation, the LGR checks the accuracy of the child and didn't

pick the gene that their allele is zero. For example after the

mutation on the Figure 3's chromosome, with the random 6

and 3 genes, we have the Figure 8's chromosome.

Figure 8. The produced chromosome by mutation operation

The mutation probability is 1/n, that n is the length of

chromosome.

G. Survivor selection mechanism

After that the middle population size (mating pool size) is

the 75% of the population size, the 25% of the best

chromosome of the old population directly copped to the new

population. The remaining chromosome, 75% of population

size, replaced with the new chromosome from the middle

population.

H. Termination condition

In this method, our algorithm running until no

improvement in the fitness of the best member of the

population has been observed for 20 generation.

I. Summary of LGR

In the previous sections, we described the LGR method's

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 200 Copyright @ 2020 Authors

summarized in Table 1.
Table1. Summary of the LGR

Representation Permutations (The

numbers are between

1 and t, that, t is

number of task.)

Recombination "Order one" crossover

Recombination

probability

75%

Mutation Swap mutation

Mutation probability 1/n (n=m*t)

Parent selection First, selects 10

chromosomes

randomly, and then

selects 2 from 5 best

chromosomes

randomly.

Survival selection Replace worse

Population size 50

Initialization Random

Termination

condition

No improvement in

Last 20 generations.

In this table the 'm' stands for number of machine (processor),'t' stands for number of tasks and n is length of chromosome.

V. EXPERIMENTAL RESULT

After simulating Figure 1's DAG and considering the preference between tasks with two processors, the LGR method gives

the Figure 9 chromosome for response.

Figure 9. The produced chromosome for response

Then the P1 executes task in order to: T1, T3, T6 and T7 and P2 executes: T2, T4, T5, and T8. The fitness of this

chromosome is 0.0769 so the finishing time is 1/0.0769 = 13 time unit. This chromosome's fitness is almost good. Figure 10 is

the Gantt chart of this chromosome, as we see the finishing time is 13 then the fitness is about 0.0769.

Figure 10. The Gantt chart of result chromosome

As we see in the figure 10, the time that each processor did not execute the task, minimized and the finishing time become

better.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 201 Copyright @ 2020 Authors

VI. CONCLUSION

In grid computing properly assigning the tasks among processors are important factors. In this paper, we described the

computational grid scheduling problem, genetic algorithm and LGR method for solving this hard problem and our method

contrary to previous method considers the communication costs. Our method causes that the crossover be very simple.

REFERENCES

[1] Fangpeng Dong and Selim G. Akl, "Scheduling Algorithms for Grid Computing": State of the Art and Open Problems, School of Computing, Queen's

University Kingston, Ontario January 2006.

[2] R. Buyya and D. Abramson and J. Giddy and H. Stockinger, "Economic Models for Resource Management and Scheduling in Grid Computing", in J.

of Concurrency and Computation: Practice and Experience, Volume 14, Issue.13-15, pp. 1507-1542,Wiley Press, December 2002.

[3] F. Berman, High-Performance Schedulers, chapter in The Grid: Blueprint for a Future Computing Infrastructure, edited by I. Foster and

C. Kesselman, Morgan Kaufmann Publishers, 1998.

[4] Imtiaz Ahmad , Muhammad K. Dhodhi, "Short Communication Multiprocessor Scheduling in a Genetic Paradigm", Elsevier , pp 395-706, 1996.

[5] Mohammad Hassan Shenassa, Mahdi Mahmoodi , "A novel intelligent method for task scheduling in multiprocessor systems using genetic algorithm",

Science Direct , Journal of the Franklin Institute 343 (2006) 361–371 , 2006.

[6] Yi-Wen Zhongiz, Jian-Gang Yang', “A Genetic Algorithm For Tasks Scheduling In Parallel Multiprocessor Systems”, Proceedings Of The Second

International Conference On Machine Learning And Cybernetics, Xi'an, 2-5 November 2003.

[7] Pai-Chou Wang, Willard Korfhage, “Process Scheduling Using Genetic Algorithms”, IEEE, 1995.

[8] E. S. H. Hou, R. Hong, And N. Ansari, “Efficient Multiprocessor Scheduling Based On Genetic Algorithms”, IEEE, 1990.

[9] Ricardo C. CorreA, Afonso Ferreira and Pascal Rebreyend, “Scheduling Multiprocessor Tasks with Genetic Algorithms”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 10, No.8, August 1999.

[10] Adam TL, Chandy KM, Dicksoni JR. "A comparison of list schedules for parallel processing systems". Communications of the ACM

1974;17(12):685–90.

[11] Wu MY, Gajski DD. Hypertool:"a programming aid for message-passing systems". IEEE Transactions on Parallel and Distributed Systems

1990;1(3):330–43.

[12] Yang T, Gerasoulis A. DSC: "scheduling parallel tasks on an unbounded number of processors". IEEE Transactions on Parallel and Distributed

Systems 1994;5(9).

[13] Thanalapati T, Dandamudi S. "An efficient adaptive scheduling scheme for distributed memory multicomputers". IEEE Transactions on Parallel and

Distributed Systems 2001;12(7):758–68,2001.

[14] Nissanke N, Leulseged A, Chillara S. "Probabilistic performance analysis in multiprocessor scheduling". Journal of Computing and Control

Engineering 2002;13(4):171–9.

[15] Corbalan J, Martorell X, Labarta J. "Performance-driven processor allocation". IEEE Transactions on Parallel and Distributed Systems

2005;16(7):599–611.

[16] Marin Golub , Suad Kasapovic , "Scheduling Multiprocessor Tasks With Genetic Algorithms", Zagreb, Croatia , 2001.

[17] Hou ESH, Ansari N, Hong R. "A genetic algorithm for multiprocessor scheduling". IEEE Transactions on Parallel and Distributed Systems

1994;5(2):113–20.

[18] Reakook Hwang, Mitsuo Gen, Hiroshi Katayama," A comparison of multiprocessor task scheduling algorithms with communication costs",

ScineceDirect , Computers & Operations Research 35 (2008) 976 – 993,2008.

[19] Holland, J. H. (1975) "Adaption in Natural and Artificial Systems". The University of Michigan Press, Ann Arbor, MI, 1975.

[20] A.E.Eiben, J.E.Smith, "Introduction to Evolutionary Computing", Springer, 2004.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein." Introduction to Algorithms", Second Edition. MIT Press and

McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 31.3: Modular arithmetic, pp.862–868, 2001.

