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Abstract—The United States National Institute of Standards 

and Technology (NIST) created an open competition to find a 

new standard for cryptographic hashing in 2007. The 

competition was composed of a number of rounds that ended 

with 5 finalists (BLAKE, Grostl, JH, Keccak, Skein) in 

December of 2010. This research paper will examine the power 

consumption of the 5 finalists on the Xilinx Spartan3E FPGA. 

The results in this paper will allow developers examining 

including a hash function in a hardware design to have a full 

understanding of the power requirements and aid the developer 

in making an inform decision. The results show that the Keccak 

algorithm has the best tradeoff of power to speed and the 

BLAKE algorithm is the best choice for low power design. 

 
Index Terms—FPGA, hashing, power analysis, SHA-3. 

consumption of all the finalists on the Xilinx FPGA platform. 

The Xilinx FPGA chip Spartan3E was used in this research 

project. 

This paper is meant to be a guide for researchers and 

developers in understanding the power consumption of the 

five hashing algorithms with a comparison to power also 

provided. Developers in the field will be able to use this 

information to aid in the planning stage of devices that 

require hashing algorithm. Developers will be able to use our 

information to determine which algorithms would work with 

their power budget for a design. The work will allow 

researchers to have a baseline for power consumption and 

examine new ways to reduce power in future designs. 

 

 
I. INTRODUCTION 

The United States National Institute of Standards and 

 

 
A. BLAKE 

II. SHA-3 FINALIST 

Technology (NIST) has standardized security algorithms for 

the United States. Examples of algorithms the NIST has 

standardized include DES, Skipjack, AES, SHA-1, SHA-2, 

DSA, and RSA. These algorithms are not only used by 

contractor conducting business with the United States 

government but are the de facto standard in the technology 

field. 

The state of the art cryptographic hashing function SHA-2 

created in 2001 was reaching the end of its approved lifecycle 

and the NIST set forth to create a new standard for adoption 

in 2012. The new standard would be known as SHA-3. In 

order for SHA-3 to be the most cryptographic secure hashing 

algorithm available the NIST created a NIST hash function 

competition [1]. The competition started in 2007 and was 

narrowed down to five finalist (BLAKE, Grostl, JH, Keccak, 

and Skein) in December 2010. The competition ended in 

October of 2012 with the selection of Keccak as the winner of 

the competition. While Keccak was selected as the SHA-3 

algorithm all five finalist will continue to be used in many 

application. 

The NIST competition chose the winner based on the 

following important factors: performance, security, analysis, 

and diversity. This paper focuses on examining the 

performance of all five finalists. Performance is no longer a 

measurement of only execution time. Power has become as 

important or more important than speed in many computer 

domains, especially mobile and embedded systems. This paper 

examines the performance in terms of power 
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The BLAKE algorithm is created by the team of Jean-

Philippe Aumasson, Luca Henzen, Willi Meire and 

Raphael Phan [2]. The BLAKE algorithm is an 

adaptation of the ChaCha stream cipher and can produce 

message digests of 224-bits, 256-bits, 384-bit, and 512-

bits. The BLAKE algorithm is composed of a ChaCha 

function that performs transformations on 4 words. The 

transformation involved an XOR and bit rotation leading 

to a fast implementation. A total of 10 to 14 rounds of 

ChaCha functions are used depending on the size of the 

message digests required. 

B. Grostel 

The Grostl algorithm is created by the team from 

Technical University of Denmark and TU Graz [3]. The 

Grostel algorithm borrows elements from the AES 

cipher algorithm. The Grostel algorithm has high 

throughput since many optimization for AES have been 

done in software and hardware over the years. Grostl 

uses the AES S-box function and similar permutation 

functions. 

C. JH 

The JH algorithm was created by Hongjun Wu [4]. 

The JH algorithm is inspired by the AES and Serpent 

cipher algorithms and is made up of 42 rounds of 

execution. Each of the 42 rounds consists of four S-

boxes and MDS transformations. 

D. Keccak 

The Keccak algorithm was the winner of the SHA-3 

competition. The Keccak function is created using a 

number of sponge functions [5]. The Keccak sponge 

function is made up of seven permutation functions of 

different bit lengths. The seven permutation functions 

are then used in XOR and 
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rotation operations. 

E. Skein 

The Skein algorithm is based on the Threefish block cipher 

[6]. Skein uses addition, XOR and rotation to create a MIX 

function. A number of MIX functions are used and the 

outputs of the functions go through permutation functions. 

The Skein algorithm requires 72 or 80 round depending on 

the block size used to run the algorithm. 

 
 

III. POWER ANALYSIS 

The SHA-3 finalist algorithms have been examine and 

evaluated by many different researchers. The work has 

mainly focus on implementation in terms of area and speed. 

A number of works have used FPGAs as the implementation 

technology to analysis. The work in [7] used Virtex 5 FPGAs 

for the Grostel algorithm, [8] examined all five finalist for 

size on Spartan-3 and Virtex 5 FPGAs, and [9] was another 

study on all five finalist. The implementation of the SHA-3 

finalists were written in VHDL and adapted from [10]. The 

power analysis was done on Xilinx ISE 13.1 using Spartan-

3E. The Xilinx tool allows for synthesis to optimize for 

speed, area, and memory type. The FPGA has two synthesis 

optimization options normal and high for speed and area. 

Memory can be distributed memory or block memory. 

A. BLAKE 

The BLAKE algorithm was ran on two different 

configuration of block size BLAKE-32 and BLAKE-64, each 

is used to produce different message digest sizes. The results 

of the BLAKE algorithm on the Spartan-3E are shown in 

Table I. 

The power analysis shows that the average power 

consumption for all the different configurations of 

optimization for BLAKE-32 was 258.25 mW and the average 

power consumption for BLAKE-64 was 313.50 mW. By 

using a larger message digest size the power consumption 

increase by 21.39%. The type of RAM used by the algorithm 

also has an important impact on the power consumption. For 

BLAKE-32 using block-RAM requires on average an 

additional 21.90% more power than using distributed-RAM; 

for BLAKE-64 the additional power for block-RAM is 

41.48%. If power is the top design requirement our analysis 

shows that distributed-RAM should be used in the design. 

The reason for the additional power in block-RAM is that 

block-RAM is a dedicated memory resource on the FPGA; 

by selecting distributed-RAM the design is able to disable the 

dedicated memory from drawing power. The use of block-

RAM does have the ability to improve the processing speed. 

In the BLAKE-32 algorithm, using block-RAM with the 

speed-optimized synthesis configuration an average of 

9.76% speedup in the maximum clock frequency was 

achieved. The BLAKE-64 algorithm had no noticeable 

difference in clocking frequency between block-RAM and 

distributed-RAM. In the BLAKE-64 algorithm there was no 

improvement in the number of slices required for 

implementation when using the area-optimized synthesis 

configuration compared to the speed-optimized synthesis 

configuration. The reason is that the hash algorithm is mostly 
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composed of basic logic functions that cannot be reduced. 

Overall for BLAKE-32 the average power 

consumption for the speed-optimized synthesis option 

was 262.5 mW and for the area-optimized synthesis 

option was 254 mW. The difference is minimal at 

3.35% between speed and area optimization. The 

difference in power for BLAKE-64 increases to 6.25% 

between the speed and area optimization options; the 

average power consumption for speed-optimization was 

323 mW and 304 mW for area-optimization. By using 

the speed-optimized synthesis option an approximate 

speedup of 20% in clock frequency would be expected. 

Examining the results of the research one can 

conclude that the best synthesis option to use is the 

speed-optimized synthesis configuration. The difference 

between power consumption is minimal (3%) between 

speed-optimized and area-optimized but the difference 

in clock speed is large (20%). 

 
TABLE I: BLAKE POWER ANALYSIS 

 Power(mW) Area 
Slices 

Freq 
(MHZ) 

BLAKE-32 

Normal Speed/ D-Mem 234 3813 40.82 

Normal Speed/B-Mem 294 3685 46.51 

High Speed/D-Mem 237 3819 39.22 

High Speed/B-Mem 285 3687 41.41 

Normal Area/D-Mem 231 3812 34.54 

Normal Area/B-Mem 281 3682 34.54 

High Area/D-Mem 229 3812 35.24 

High Area/B-Mem 275 3684 35.24 

BLAKE-64 

Normal Speed/D-Ram 272 7469 36.86 

Normal Speed/B-Ram 375 7224 36.75 

High Speed/D-Ram 269 7470 37.40 

High Speed/B-Ram 376 7225 36.93 

Normal Area/D-Ram 251 7479 30.17 

Normal Area/B-Ram 368 7210 30.08 

High Area/D-Ram 247 7477 30.66 

High Area/B-Ram 350 7210 30.57 

 

B. Grostel 

The Grostel algorithm has two different 

configurations correspond to the different message 

digest sizes that are available 256 and 512. The Grostel 

algorithm does not require any memory so the analysis 

does not compare the difference between block ram and 

distributed ram. The Grostel-512 configuration could 

not be synthesized on the Spartan-3E. The results of the 

Grostel-245 algorithm on the Spartan-3E are shown in 

Table II. 

The power analysis on the Grostel algorithm shows 

the average power consumption for the speed-optimized 

configurations is 287 mW and the area-optimized 

configuration is 283.5 mW, a difference of 1.23%. 

While there is minimal difference in power 

consumption the maximum frequency available has a 

noticeable difference between the size-optimization 

synthesis and speed-optimization synthesis option. The 

speed-optimized synthesis configuration has a 22.79% 

improvement over the area-optimized synthesis 

configuration in clock frequency. 

The analysis shows that the speed-optimized synthesis 

configuration is the best implementation to use. The speed 

option has the benefit of a higher clock rate with a negligible 
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difference in power. 
TABLE II: GROSTEL POWER ANALYSIS 

 Power(mW) Area 
Slices 

Freq 
(MHZ) 

Grostel-256 

Normal Speed 321 3082 87.26 

High Speed 253 3081 86.58 

Normal Area 321 3080 69.16 

High Area 246 3080 72.41 

 
 

C. JH 

The JH algorithm only has one configuration to produce all 

the required message digest sizes. The JH algorithm similar 

to the Grostel algorithm does not require memory so the 

analysis does not include a breakdown of the power for block 

ram and distributed ram. The results of the JH algorithm on 

the Spartan-3E are shown in Table III. 

The power analysis for the JH algorithm shows that the 

speed-optimized synthesis configuration has an average 

power consumption of 281.5 mW and the power for the 

area-optimized synthesis configuration is 270 mW. Using the 

speed-optimized configuration has a 4.26% additional 

requirement for power. The difference is clock frequency is a 

15.15% speedup for speed-optimized over the area-

optimized configuration. 

The synthesis analysis shows that there is no clear 

implementation synthesis option that stands out. The speed-

optimized configuration is 15% faster and uses 4% more 

energy. The implementation to be used in a design will 

depend on the importance of speed and power in the design 

requirements. 

 
TABLE III: JH POWER ANALYSIS 

 Power(mW) Area 
Slices 

Freq 
(MHZ) 

JH 

Normal Speed 276 3217 84.67 

High Speed 287 3215 80.06 

Normal Area 271 3218 73.86 

High Area 269 3218 69.20 

 

D. Keccak 

The Keccak algorithm requires two different 

configurations for the 256-bit and 512-bit message digest 

sizes. The Keccak algorithm does not require the use of any 

RAM in the implementation. The results of the Keccak 

algorithm on the Spartan-3E are shown in Table IV. 

The power analysis for the Keccak algorithm is divided by 

the two different implementations Keccak-256 and Keccak-

512. The Keccak-256 algorithm had an average power 

consumption of 262 mW for the speed-optimized synthesis 

configuration and 222.5 mW for the area-optimized synthesis 

configuration, using the area-optimized configuration has a 

17.75% reduction in power. Keccak-256 has a large 

difference in the clock frequency between the speed-

optimized and area-optimized synthesis, the speed-optimized 

configuration is 48.18% faster than the area-optimized 

configuration. 

The Keccak-512 algorithm has a large difference between 

the speed-optimized and area-optimized synthesis. The 

average speed-optimized synthesis had an average power 

consumption of 303 mW and the area-optimized synthesis 
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had an average power consumption of 227 mW. The 

area-optimized synthesis configuration runs 33.48% 

more power efficient than the speed-optimized 

synthesis configuration. When comparing the clock 

frequency the speed-optimized configuration has a 

39.46% speedup over the area-optimized configuration. 

The Keccak algorithm implementation to use is 

defined by the design requirements. The difference in 

power and speed is great between the speed-optimized 

and area-optimized synthesis. The Keccak-512 

algorithm can be designed to over 30% more power 

efficient or 40% faster. 

 
TABLE IV: KECCAK POWER 

ANALYSIS 

 Power(mW) Area 
Slices 

Freq 
(MHZ) 

Keccak-256 

Normal Speed 261 3036 80.91 

High Speed 263 3036 81.10 

Normal Area 223 3037 54.70 

High Area 222 3037 54.64 

Keccak-512 

Normal Speed 305 2785 73.05 

High Speed 301 2785 73.05 

Normal Area 228 2785 52.38 

High Area 226 2785 52.38 

 

E. Skein 

The Skein algorithm only requires a single 

configuration to create any message digest size. The 

Skein algorithm does not require the use of any RAM in 

the implementation. The results of the Skein algorithm 

are shown in Table V. 

The Skein algorithm has an average power 

consumption of 380 mW for the speed-optimized 

synthesis configuration and 373 mW for the area-

optimized synthesis configuration. The difference 

between the speed-optimized and area-optimized was 

minimal at 2.01%. When examining the clock frequency 

there is a difference of 5.1% between speed-optimized 

and area-optimized. The speed-optimized configuration 

had a clock frequency of 46.15 MHZ and the area-

optimized configuration had a frequency of 43.91 MHZ. 

The analysis shows that there is no large difference 

between area-optimized and speed-optimized synthesis 

implementation. Both speed and power difference by 

less than 5%. 

 
TABLE V: SKEIN POWER 

ANALYSIS 

 Power(mW) Area 
Slices 

Freq 
(MHZ) 

Skein 

Normal Speed 389 1688 46.15 

High Speed 372 1688 46.15 

Normal Area 373 1655 43.90 

High Area 373 1655 43.92 

 

F. Overall Analysis 

All of the five SHA-3 finalist were compared in 

terms of both power (Table VI) and clock speed (Table 

VII); the tables rank the eighteen algorithm implementations 

by performance measurement. The analysis shows why the 

Keccak algorithm was chosen as the SHA-3 winner. The 

Keccak algorithm is at the top of both the power and speed 

ranking list. The Keccak has the top two algorithm 

implementations in terms of power and has two algorithm 
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implementations in the top quarter of the clock frequency 

ranking list. 

 
TABLE VI: SHA-3 FINALIST RANKED BY POWER CONSUMPTION 

Algorithm Power (mW) 

Keccak-256 area optimize 225.5 

Keccak-512 area optimize 227 

BLAKE-64 area optimize DRAM 230 

BLAKE-64 speed optimize DRAM 235.5 

BLAKE-32 area optimize DRAM 249 

Keccak-256 speed optimize 262 

JH area optimize 270 

BLAKE-32 speed optimize DRAM 270.5 

BLAKE-64 area optimize BRAM 278 

JH speed optimize 281.5 

Grostel area optimize 283.5 

Grostel speed optimize 287 

BLAKE-64 area optimize BRAM 289.5 

Keccak-512 speed optimize 303 

BLAKE-32 area optimize BRAM 359 

Skein area optimize 373 

BLAKE-32 speed optimize BRAM 375.5 

Skein speed optimize 380.5 

 
TABLE VII: SHA-3 FINALIST RANKED BY CLOCK FREQUENCY 

Algorithm Freq (MHz) 

Grostel speed optimize 86.92 

JH speed optimize 82.37 

Keccak-256 speed optimize 81.01 

Keccak-512 speed optimize 73.05 

JH area optimize 71.53 

Grostel area optimize 70.79 

Keccak256 area optimize 54.67 

Keccak512 area optimize 52.38 

Skein speed optimize 46.15 

BLAKE-64 speed optimize BRAM 43.96 

Skein area optimize 43.91 

BLAKE-64 speed optimize DRAM 40.02 

BLAKE-32 speed optimize DRAM 37.13 

BLAKE-32 speed BRAM 36.84 

BLAKE-64 area DRAM 34.89 

BLAKE-64 area BRAM 34.89 

BLAKE-32 area DRAM 30.42 

BLAKE-32 area BRAM 30.33 

 

The analysis shows that the BLAKE algorithm should not 

be chosen if computation speed is a top design requirement. 

The BLAKE algorithm is in the bottom half of the ranking for 

clock speed. In terms of power the BLAKE algorithm has 

three implementations in the top 30% of the ranking by 

power consumption. 

The Grosetl algorithm has the highest computation speed 

and is in the bottom half in the power consumption ranking. 

There is no clear advantage to using the Grostel in terms of 

speed and  power. One will chose to use Grostel for the 

hashing algorithm properties only. The Skein algorithm has 

the worst power consumption of the entire SHA-3 finalist and 

is in the lower half of the clock frequency rankings. The 

analysis shows that the Skein algorithm should be avoided. 

IV. CONCLUSION 

The worked conducted in this paper examined the FPGA 

implementation analysis of the SHA-3 finalist. The analysis 

breaks down the power consumption and clock frequency of 

each SHA-3 finalist algorithm using a mixture of different 

synthesis options. The results show that the Keccak 

algorithm is the strongest finalist when examining the 

tradeoff between power and speed. The BLAKE algorithm 

has an advantage of having low power consumption at the 

cost of speed and is useful for power concern designs. The 

Skein and Grostel algorithms have no advantage in terms of 

speed or power and should only be chosen based on the 

quality of the cryptographic strength. 
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