
Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 234 Copyright @ 2020 Authors

Detail Power Analysis of the SHA-3 Algorithm on Xilinx

Spartan-3E

SUDHARANI MAHAPATRA
Assistant Professor, Dept. of Computer Science & Engineering, Aryan Institute of Engineering & Technology, Bhubaneswar

Dr. AMIYA KUMAR SAHOO
Assistant Professor, Dept. of Computer Science & Engineering, Aryan Institute of Engineering & Technology, Bhubaneswar

AMIT KUMAR JHA

Department of Computer science and Engineering, Raajdhani Engineering College, Bhubaneswar, Odisha

SMRUTI MAYEE MISHRA

Department of Computer science and Engineering, NM Institute of Engineering and Technology,Bhubaneswar , Odisha

Abstract—The United States National Institute of Standards

and Technology (NIST) created an open competition to find a

new standard for cryptographic hashing in 2007. The

competition was composed of a number of rounds that ended

with 5 finalists (BLAKE, Grostl, JH, Keccak, Skein) in

December of 2010. This research paper will examine the power

consumption of the 5 finalists on the Xilinx Spartan3E FPGA.

The results in this paper will allow developers examining

including a hash function in a hardware design to have a full

understanding of the power requirements and aid the developer

in making an inform decision. The results show that the Keccak

algorithm has the best tradeoff of power to speed and the

BLAKE algorithm is the best choice for low power design.

Index Terms—FPGA, hashing, power analysis, SHA-3.

consumption of all the finalists on the Xilinx FPGA platform.

The Xilinx FPGA chip Spartan3E was used in this research

project.

This paper is meant to be a guide for researchers and

developers in understanding the power consumption of the

five hashing algorithms with a comparison to power also

provided. Developers in the field will be able to use this

information to aid in the planning stage of devices that

require hashing algorithm. Developers will be able to use our

information to determine which algorithms would work with

their power budget for a design. The work will allow

researchers to have a baseline for power consumption and

examine new ways to reduce power in future designs.

I. INTRODUCTION

The United States National Institute of Standards and

A. BLAKE

II. SHA-3 FINALIST

Technology (NIST) has standardized security algorithms for

the United States. Examples of algorithms the NIST has

standardized include DES, Skipjack, AES, SHA-1, SHA-2,

DSA, and RSA. These algorithms are not only used by

contractor conducting business with the United States

government but are the de facto standard in the technology

field.

The state of the art cryptographic hashing function SHA-2

created in 2001 was reaching the end of its approved lifecycle

and the NIST set forth to create a new standard for adoption

in 2012. The new standard would be known as SHA-3. In

order for SHA-3 to be the most cryptographic secure hashing

algorithm available the NIST created a NIST hash function

competition [1]. The competition started in 2007 and was

narrowed down to five finalist (BLAKE, Grostl, JH, Keccak,

and Skein) in December 2010. The competition ended in

October of 2012 with the selection of Keccak as the winner of

the competition. While Keccak was selected as the SHA-3

algorithm all five finalist will continue to be used in many

application.

The NIST competition chose the winner based on the

following important factors: performance, security, analysis,

and diversity. This paper focuses on examining the

performance of all five finalists. Performance is no longer a

measurement of only execution time. Power has become as

important or more important than speed in many computer

domains, especially mobile and embedded systems. This paper

examines the performance in terms of power

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 235 Copyright @ 2020 Authors

The BLAKE algorithm is created by the team of Jean-

Philippe Aumasson, Luca Henzen, Willi Meire and

Raphael Phan [2]. The BLAKE algorithm is an

adaptation of the ChaCha stream cipher and can produce

message digests of 224-bits, 256-bits, 384-bit, and 512-

bits. The BLAKE algorithm is composed of a ChaCha

function that performs transformations on 4 words. The

transformation involved an XOR and bit rotation leading

to a fast implementation. A total of 10 to 14 rounds of

ChaCha functions are used depending on the size of the

message digests required.

B. Grostel

The Grostl algorithm is created by the team from

Technical University of Denmark and TU Graz [3]. The

Grostel algorithm borrows elements from the AES

cipher algorithm. The Grostel algorithm has high

throughput since many optimization for AES have been

done in software and hardware over the years. Grostl

uses the AES S-box function and similar permutation

functions.

C. JH

The JH algorithm was created by Hongjun Wu [4].

The JH algorithm is inspired by the AES and Serpent

cipher algorithms and is made up of 42 rounds of

execution. Each of the 42 rounds consists of four S-

boxes and MDS transformations.

D. Keccak

The Keccak algorithm was the winner of the SHA-3

competition. The Keccak function is created using a

number of sponge functions [5]. The Keccak sponge

function is made up of seven permutation functions of

different bit lengths. The seven permutation functions

are then used in XOR and

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 236 Copyright @ 2020 Authors

rotation operations.

E. Skein

The Skein algorithm is based on the Threefish block cipher

[6]. Skein uses addition, XOR and rotation to create a MIX

function. A number of MIX functions are used and the

outputs of the functions go through permutation functions.

The Skein algorithm requires 72 or 80 round depending on

the block size used to run the algorithm.

III. POWER ANALYSIS

The SHA-3 finalist algorithms have been examine and

evaluated by many different researchers. The work has

mainly focus on implementation in terms of area and speed.

A number of works have used FPGAs as the implementation

technology to analysis. The work in [7] used Virtex 5 FPGAs

for the Grostel algorithm, [8] examined all five finalist for

size on Spartan-3 and Virtex 5 FPGAs, and [9] was another

study on all five finalist. The implementation of the SHA-3

finalists were written in VHDL and adapted from [10]. The

power analysis was done on Xilinx ISE 13.1 using Spartan-

3E. The Xilinx tool allows for synthesis to optimize for

speed, area, and memory type. The FPGA has two synthesis

optimization options normal and high for speed and area.

Memory can be distributed memory or block memory.

A. BLAKE

The BLAKE algorithm was ran on two different

configuration of block size BLAKE-32 and BLAKE-64, each

is used to produce different message digest sizes. The results

of the BLAKE algorithm on the Spartan-3E are shown in

Table I.

The power analysis shows that the average power

consumption for all the different configurations of

optimization for BLAKE-32 was 258.25 mW and the average

power consumption for BLAKE-64 was 313.50 mW. By

using a larger message digest size the power consumption

increase by 21.39%. The type of RAM used by the algorithm

also has an important impact on the power consumption. For

BLAKE-32 using block-RAM requires on average an

additional 21.90% more power than using distributed-RAM;

for BLAKE-64 the additional power for block-RAM is

41.48%. If power is the top design requirement our analysis

shows that distributed-RAM should be used in the design.

The reason for the additional power in block-RAM is that

block-RAM is a dedicated memory resource on the FPGA;

by selecting distributed-RAM the design is able to disable the

dedicated memory from drawing power. The use of block-

RAM does have the ability to improve the processing speed.

In the BLAKE-32 algorithm, using block-RAM with the

speed-optimized synthesis configuration an average of

9.76% speedup in the maximum clock frequency was

achieved. The BLAKE-64 algorithm had no noticeable

difference in clocking frequency between block-RAM and

distributed-RAM. In the BLAKE-64 algorithm there was no

improvement in the number of slices required for

implementation when using the area-optimized synthesis

configuration compared to the speed-optimized synthesis

configuration. The reason is that the hash algorithm is mostly

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 237 Copyright @ 2020 Authors

composed of basic logic functions that cannot be reduced.

Overall for BLAKE-32 the average power

consumption for the speed-optimized synthesis option

was 262.5 mW and for the area-optimized synthesis

option was 254 mW. The difference is minimal at

3.35% between speed and area optimization. The

difference in power for BLAKE-64 increases to 6.25%

between the speed and area optimization options; the

average power consumption for speed-optimization was

323 mW and 304 mW for area-optimization. By using

the speed-optimized synthesis option an approximate

speedup of 20% in clock frequency would be expected.

Examining the results of the research one can

conclude that the best synthesis option to use is the

speed-optimized synthesis configuration. The difference

between power consumption is minimal (3%) between

speed-optimized and area-optimized but the difference

in clock speed is large (20%).

TABLE I: BLAKE POWER ANALYSIS

 Power(mW) Area
Slices

Freq
(MHZ)

BLAKE-32

Normal Speed/ D-Mem 234 3813 40.82

Normal Speed/B-Mem 294 3685 46.51

High Speed/D-Mem 237 3819 39.22

High Speed/B-Mem 285 3687 41.41

Normal Area/D-Mem 231 3812 34.54

Normal Area/B-Mem 281 3682 34.54

High Area/D-Mem 229 3812 35.24

High Area/B-Mem 275 3684 35.24

BLAKE-64

Normal Speed/D-Ram 272 7469 36.86

Normal Speed/B-Ram 375 7224 36.75

High Speed/D-Ram 269 7470 37.40

High Speed/B-Ram 376 7225 36.93

Normal Area/D-Ram 251 7479 30.17

Normal Area/B-Ram 368 7210 30.08

High Area/D-Ram 247 7477 30.66

High Area/B-Ram 350 7210 30.57

B. Grostel

The Grostel algorithm has two different

configurations correspond to the different message

digest sizes that are available 256 and 512. The Grostel

algorithm does not require any memory so the analysis

does not compare the difference between block ram and

distributed ram. The Grostel-512 configuration could

not be synthesized on the Spartan-3E. The results of the

Grostel-245 algorithm on the Spartan-3E are shown in

Table II.

The power analysis on the Grostel algorithm shows

the average power consumption for the speed-optimized

configurations is 287 mW and the area-optimized

configuration is 283.5 mW, a difference of 1.23%.

While there is minimal difference in power

consumption the maximum frequency available has a

noticeable difference between the size-optimization

synthesis and speed-optimization synthesis option. The

speed-optimized synthesis configuration has a 22.79%

improvement over the area-optimized synthesis

configuration in clock frequency.

The analysis shows that the speed-optimized synthesis

configuration is the best implementation to use. The speed

option has the benefit of a higher clock rate with a negligible

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 238 Copyright @ 2020 Authors

difference in power.
TABLE II: GROSTEL POWER ANALYSIS

 Power(mW) Area
Slices

Freq
(MHZ)

Grostel-256

Normal Speed 321 3082 87.26

High Speed 253 3081 86.58

Normal Area 321 3080 69.16

High Area 246 3080 72.41

C. JH

The JH algorithm only has one configuration to produce all

the required message digest sizes. The JH algorithm similar

to the Grostel algorithm does not require memory so the

analysis does not include a breakdown of the power for block

ram and distributed ram. The results of the JH algorithm on

the Spartan-3E are shown in Table III.

The power analysis for the JH algorithm shows that the

speed-optimized synthesis configuration has an average

power consumption of 281.5 mW and the power for the

area-optimized synthesis configuration is 270 mW. Using the

speed-optimized configuration has a 4.26% additional

requirement for power. The difference is clock frequency is a

15.15% speedup for speed-optimized over the area-

optimized configuration.

The synthesis analysis shows that there is no clear

implementation synthesis option that stands out. The speed-

optimized configuration is 15% faster and uses 4% more

energy. The implementation to be used in a design will

depend on the importance of speed and power in the design

requirements.

TABLE III: JH POWER ANALYSIS

 Power(mW) Area
Slices

Freq
(MHZ)

JH

Normal Speed 276 3217 84.67

High Speed 287 3215 80.06

Normal Area 271 3218 73.86

High Area 269 3218 69.20

D. Keccak

The Keccak algorithm requires two different

configurations for the 256-bit and 512-bit message digest

sizes. The Keccak algorithm does not require the use of any

RAM in the implementation. The results of the Keccak

algorithm on the Spartan-3E are shown in Table IV.

The power analysis for the Keccak algorithm is divided by

the two different implementations Keccak-256 and Keccak-

512. The Keccak-256 algorithm had an average power

consumption of 262 mW for the speed-optimized synthesis

configuration and 222.5 mW for the area-optimized synthesis

configuration, using the area-optimized configuration has a

17.75% reduction in power. Keccak-256 has a large

difference in the clock frequency between the speed-

optimized and area-optimized synthesis, the speed-optimized

configuration is 48.18% faster than the area-optimized

configuration.

The Keccak-512 algorithm has a large difference between

the speed-optimized and area-optimized synthesis. The

average speed-optimized synthesis had an average power

consumption of 303 mW and the area-optimized synthesis

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 239 Copyright @ 2020 Authors

had an average power consumption of 227 mW. The

area-optimized synthesis configuration runs 33.48%

more power efficient than the speed-optimized

synthesis configuration. When comparing the clock

frequency the speed-optimized configuration has a

39.46% speedup over the area-optimized configuration.

The Keccak algorithm implementation to use is

defined by the design requirements. The difference in

power and speed is great between the speed-optimized

and area-optimized synthesis. The Keccak-512

algorithm can be designed to over 30% more power

efficient or 40% faster.

TABLE IV: KECCAK POWER

ANALYSIS

 Power(mW) Area
Slices

Freq
(MHZ)

Keccak-256

Normal Speed 261 3036 80.91

High Speed 263 3036 81.10

Normal Area 223 3037 54.70

High Area 222 3037 54.64

Keccak-512

Normal Speed 305 2785 73.05

High Speed 301 2785 73.05

Normal Area 228 2785 52.38

High Area 226 2785 52.38

E. Skein

The Skein algorithm only requires a single

configuration to create any message digest size. The

Skein algorithm does not require the use of any RAM in

the implementation. The results of the Skein algorithm

are shown in Table V.

The Skein algorithm has an average power

consumption of 380 mW for the speed-optimized

synthesis configuration and 373 mW for the area-

optimized synthesis configuration. The difference

between the speed-optimized and area-optimized was

minimal at 2.01%. When examining the clock frequency

there is a difference of 5.1% between speed-optimized

and area-optimized. The speed-optimized configuration

had a clock frequency of 46.15 MHZ and the area-

optimized configuration had a frequency of 43.91 MHZ.

The analysis shows that there is no large difference

between area-optimized and speed-optimized synthesis

implementation. Both speed and power difference by

less than 5%.

TABLE V: SKEIN POWER

ANALYSIS

 Power(mW) Area
Slices

Freq
(MHZ)

Skein

Normal Speed 389 1688 46.15

High Speed 372 1688 46.15

Normal Area 373 1655 43.90

High Area 373 1655 43.92

F. Overall Analysis

All of the five SHA-3 finalist were compared in

terms of both power (Table VI) and clock speed (Table

VII); the tables rank the eighteen algorithm implementations

by performance measurement. The analysis shows why the

Keccak algorithm was chosen as the SHA-3 winner. The

Keccak algorithm is at the top of both the power and speed

ranking list. The Keccak has the top two algorithm

implementations in terms of power and has two algorithm

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 240 Copyright @ 2020 Authors

implementations in the top quarter of the clock frequency

ranking list.

TABLE VI: SHA-3 FINALIST RANKED BY POWER CONSUMPTION

Algorithm Power (mW)

Keccak-256 area optimize 225.5

Keccak-512 area optimize 227

BLAKE-64 area optimize DRAM 230

BLAKE-64 speed optimize DRAM 235.5

BLAKE-32 area optimize DRAM 249

Keccak-256 speed optimize 262

JH area optimize 270

BLAKE-32 speed optimize DRAM 270.5

BLAKE-64 area optimize BRAM 278

JH speed optimize 281.5

Grostel area optimize 283.5

Grostel speed optimize 287

BLAKE-64 area optimize BRAM 289.5

Keccak-512 speed optimize 303

BLAKE-32 area optimize BRAM 359

Skein area optimize 373

BLAKE-32 speed optimize BRAM 375.5

Skein speed optimize 380.5

TABLE VII: SHA-3 FINALIST RANKED BY CLOCK FREQUENCY

Algorithm Freq (MHz)

Grostel speed optimize 86.92

JH speed optimize 82.37

Keccak-256 speed optimize 81.01

Keccak-512 speed optimize 73.05

JH area optimize 71.53

Grostel area optimize 70.79

Keccak256 area optimize 54.67

Keccak512 area optimize 52.38

Skein speed optimize 46.15

BLAKE-64 speed optimize BRAM 43.96

Skein area optimize 43.91

BLAKE-64 speed optimize DRAM 40.02

BLAKE-32 speed optimize DRAM 37.13

BLAKE-32 speed BRAM 36.84

BLAKE-64 area DRAM 34.89

BLAKE-64 area BRAM 34.89

BLAKE-32 area DRAM 30.42

BLAKE-32 area BRAM 30.33

The analysis shows that the BLAKE algorithm should not

be chosen if computation speed is a top design requirement.

The BLAKE algorithm is in the bottom half of the ranking for

clock speed. In terms of power the BLAKE algorithm has

three implementations in the top 30% of the ranking by

power consumption.

The Grosetl algorithm has the highest computation speed

and is in the bottom half in the power consumption ranking.

There is no clear advantage to using the Grostel in terms of

speed and power. One will chose to use Grostel for the

hashing algorithm properties only. The Skein algorithm has

the worst power consumption of the entire SHA-3 finalist and

is in the lower half of the clock frequency rankings. The

analysis shows that the Skein algorithm should be avoided.

IV. CONCLUSION

The worked conducted in this paper examined the FPGA

implementation analysis of the SHA-3 finalist. The analysis

breaks down the power consumption and clock frequency of

each SHA-3 finalist algorithm using a mixture of different

synthesis options. The results show that the Keccak

algorithm is the strongest finalist when examining the

tradeoff between power and speed. The BLAKE algorithm

has an advantage of having low power consumption at the

cost of speed and is useful for power concern designs. The

Skein and Grostel algorithms have no advantage in terms of

speed or power and should only be chosen based on the

quality of the cryptographic strength.

REFERENCES

[1] NIST, “National institute of standards and technology [docket no:

070911510-7512-01] announcing request for candidate algorithm

nominations for a new cryptographic hash algorithm (SHA-3) family,”

Federal Register, November 2007.

[2] J. P. Aumasson, L. Henzen, W. Meier, and R. C. W. Phan, „SHA-3

proposal BLAKE version 1.3,” NIST SHA-3 Competition.

[3] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C.

Rechberger, M. Schlffer, and S. S. Thomsen, “SHA-3 proposal grostel

version 2.0.1,” NIST SHA-3 Competition.

[4] H. J. Wu, “The hash function jh,” NIST SHA-3 Competition.

[5] G. Bertoni, J. Daemon, M. Peeters, and G. V. Assche, “The Keeccak

sha-3 submission,” NIST SHA-3 Competition.

[6] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T.

Kohno, J. Callas, and J. Walker, “The skein hash function family,”

NIST SHA-3 Competition.

[7] B. Baldwin, A. Byrne, M. Hamilton, N. Hanely, R. McEvoy, W. Pan

and W. Marnane, “FPGA Implementations of SHA-3 Candidates:

CubeHash, GrostEl, LANE, Shabal and Spectral Hash,” IACR report

2009/342.

[8] S. Kerckhof, F. Burvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. de

Dormale, and F. X. Standaert, “Compact FPGA Implementations of the

Five SHA-3 Finalist,” in Proceedings of CARDIS, 2012.

[9] J. P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, S.

Gurung, and J. Pham, “Lightweight Implementations of SHA-3

Candidates on FPGA,” presented at 12th International Conference on

Cryptology in India, 2011.

[10] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O‟Neil, and

W. Marnane, “FPGA Implementations of the Round Two SHA-3

Candidates,” in Proceedings of the 20th International Conference on

Field Programmable Logic and Applications, August 2010.

