
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Volume-15, 2025

Page | 17 Copyright @ 2025 Authors

REAL-TIME CHAT APPLICATION

Swastik Biswal

Sujit Kumar Jena

EmailID:swastikbiswal2023@gift.edu.in,skjena2023@gift.edu.in

Guided By: Prof. Smruti Ranjan Swain Assistant Professor, Department of MCA, GIFT Autonomous, Bhubaneswar,

BPUT, India

Abstract- This project introduces a real time web chat application

which is developed by using the MERN (Mongo DB, Express.js,

React.js, Node.js) stack. Leveraging Web Sockets for bidirectional

communication, the app ensures instant messaging with features like

user authentication and chat room creation. Node.js and Express.js

manage the backend, while MongoDB handles data storage. The

React.js front-end guarantees a dynamic user interface for seamless

interaction. The application caters to diverse scenarios such as team

collaboration and customer support, offering a reliable, responsive,

and scalable solution within the modern web ecosystem.

Keywords-: WebSockets, Socket.IO, push notifications, typing

indicators, group chat, media sharing, end-to-end encryption, user

authentication, message status, low latency, and scalable backend.

 INTRODUCTION:

A real-time chat application enables instant communication between

users through live text messaging, leveraging technologies like

WebSockets or Socket.IO to ensure seamless, low-latency data

exchange. Designed for both one-on-one and group interactions, it

supports features such as typing indicators, media sharing, message

status updates, and user presence, making it ideal for social,

professional, and customer support use cases. With secure

authentication and end-to-end encryption, it ensures user privacy

while providing a fast, responsive, and engaging messaging

experience across web and mobile platforms.

From a technical perspective, real-time chat apps must be built with

scalability, security, and performance in mind. Backend services

handle large volumes of concurrent connections while maintaining

low latency and high throughput. Security features such as user

authentication, data encryption, and access control are crucial to

protect user data and privacy.

PURPOSE:

The primary purpose of a real-time chat application is to facilitate

instant and seamless communication between users, enabling them to

exchange messages, media, and information in real time across

various devices and platforms. It aims to provide a fast, interactive,

and engaging messaging experience for personal, professional, or

customer-focused interactions.

By minimizing delays and ensuring immediate message delivery,

real-time chat apps improve collaboration, enhance user engagement,

and support timely decision-making. These applications are

especially valuable in environments where rapid communication is

essential—such as customer service, team collaboration, online

communities, gaming, and telehealth.

A. Scope

The real-time chat application is designed to enable users to

communicate instantly through text-based messaging in a seamless

and interactive environment. The application will support both

one-on-one and group conversations, allowing users to exchange

messages, images, videos, and files. It will be accessible via web

and mobile platforms to ensure broad usability and convenience.

Key Features in Scope:

• User Authentication & Registration: Secure sign-up and

login with options like email/password, social login, or OTP.

• One-on-One Chat: Private messaging between two users

with real-time delivery.

• Group Chat: Ability to create, join, and manage group

conversations.

• Message Status: Indicators for message sent, delivered, and

seen.

• Typing Indicator & User Presence: Show when users are

typing or online/offline.

• Media Sharing: Support for sending and receiving images,

videos, and documents.

B. LiteratureSurvey

Real-time chat applications have become essential in digital

communication, enabling instant exchange of messages, files, and

media. These applications typically use technologies like

WebSockets for low-latency, full-duplex communication,

supported by backend frameworks such as Node.js, Firebase, or

SignalR. Frontend frameworks like React and Angular provide

responsive user interfaces.

 Key features explored in literature include message persistence,

end-to-end encryption for security, and scalable architectures to

handle high user loads. Studies highlight the superiority of

WebSockets over traditional HTTP polling in terms of efficiency

and speed. While popular platforms like WhatsApp, Slack, and

Discord showcase mature implementations, ongoing research

focuses on improving performance under variable network

conditions, integrating AI features, and enhancing privacy and

cross-platform synchronization.

Method

The development of the real-time chat application followed

an iterative, agile-based software engineering approach.

The backend was implemented using Node.js with

Socket.IO to establish and manage WebSocket connections

for real-time, bidirectional communication. MongoDB was

mailto:swastikbiswal2023@gift.edu.in
mailto:skjena2023@gift.edu.in

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Volume-15, 2025

Page | 18 Copyright @ 2025 Authors

used to store user data and chat histories, ensuring persistence

and scalability. On the client side, the frontend was built using

React.js to provide a dynamic and responsive user interface.

RESTful APIs were developed for user authentication and

message retrieval. Key features such as message broadcasting,

typing indicators, and user presence were implemented using

Socket.IO events. Security measures included JWT-based

authentication and HTTPS communication. The system was

tested under simulated concurrent user loads to evaluate

performance, latency, and scalability.

Figure1:Proposedwork

Connection Initialization

The client first sends a request websocket connection to the

server over HTTP.

The server then responds with an upgrade connection response.

This is part of the WebSocket handshake that upgrades the HTTP

connection to a WebSocket.

Persistent Communication

Once the WebSocket connection is established, a persistent full-

duplex communication channel is created.

Both the client and server can now send messages to each other

in real-time, without needing to repeatedly initiate new HTTP

requests.

The arrows labeled send message show the bi-directional

message flow, which is a core feature of WebSockets.

METHODOLOGY

Requirement Analysis: Identified core features such as real-time

messaging, user authentication, message history, and online

presence.

Architecture Design: Adopted a client-server model using

WebSockets for real-time, full-duplex communication.

Backend Development:

Used Node.js with Socket.IO for managing WebSocket

connections.

Implemented RESTful APIs for user registration, login, and chat

history retrieval.

Integrated JWT authentication for secure session management.

 Database Design:

Used MongoDB to store user information and chat messages.

Ensured message persistence and retrieval based on user sessions.

 Frontend Development:

Built the user interface with React.js, providing components for

login, chat windows, and message notifications.

Enabled real-time UI updates via WebSocket events.

 Security Measures:

Implemented HTTPS for secure data transmission.

Used token-based authentication (JWT) to prevent unauthorized

access.

 Testing and Evaluation:

Conducted unit testing, integration testing, and end-to-end testing.

Simulated multiple concurrent users to test system performance,

latency, and scalability.

 Deployment:

Deployed the application using cloud services like Heroku or

AWS for scalability.

Monitored logs and usage metrics to ensure stable operation.

I. RESULTS

The real-time chat application successfully established

WebSocket connections between the client and server. This

enabled smooth, low-latency, bidirectional communication.

Average message delivery time was less than 100 milliseconds

under normal network conditions, ensuring instant messaging

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Volume-15, 2025

Page | 19 Copyright @ 2025 Authors

between users.

The system was tested with up to 100 concurrent users and showed

stable performance without any noticeable delays or crashes.

User authentication using JWT worked correctly, securing access and

maintaining user sessions throughout the interaction.

All messages were stored persistently in MongoDB. Users could

retrieve their previous conversations without any data loss.

Features like typing indicators, online/offline status, and message

read receipts were implemented and functioned correctly during real-

time interactions.

The user interface was fully responsive and performed consistently

across desktops, tablets, and mobile devices. Real-time updates were

visible across all clients.

.

FUTURE SCOPE

The real-time chat application can be extended by integrating

voice and video calling features. This would enhance user

experience and make the platform more versatile for both personal

and professional communication.

Adding end-to-end encryption (E2EE) for messages would

significantly improve privacy and data security, making the

application suitable for confidential or sensitive communication.

Support for group chats and channels can be introduced to allow

users to communicate in larger communities, similar to platforms

like Slack or Discord.

The application can benefit from AI-powered features such as

smart replies, message suggestions, and automatic moderation of

inappropriate content.

Implementing push notifications for new messages, even when the

app is running in the background, would improve user engagement

and responsiveness.

A chatbot integration for customer support or assistance within the

app could offer immediate responses and enhance usability.

Cross-platform support through native mobile apps (Android and

iOS) using frameworks like Flutter or React Native would make

the application more accessible.

REFERENCES

Real-time chat applications (RTCA) rely on technologies and

protocols that enable instant communication between users,

typically using WebSocket (RFC 6455) for full-duplex

communication over a single TCP connection. Libraries like

Socket.IO simplify WebSocket usage by providing fallbacks and

easy event-driven APIs, making it a popular choice for building

scalable chat apps with Node.js. For backend solutions, Firebase

Realtime Database offers a managed service to handle data

synchronization in real time. Comprehensive guides such as

“Designing Data-Intensive Applications” by Martin Kleppmann

explain the underlying data streaming and messaging concepts

crucial for chat systems. Additionally, resources like MDN’s

WebSocket documentation and Socket.IO’s official docs provide

practical implementation details. Tutorials on building chat apps

with React, Node.js, and Socket.IO are widely available on

platforms like free Code Camp, further aiding developers in

creating efficient real-time communication systems.

