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Abstract 

 As the size of the defects increases, it becomes difficult to predict the different types of 

software defects with high true positive rate. The main objective of the machine learning 

models for software defect-based testing application is to improve the defect prediction rate 

with less error rate. Evaluating the software metrics and defect prediction are the two key 

quality features that determine the success of a software product. Most of the conventional 

meta-heuristic-based software defect testing models are independent of dynamic parameters 

estimation. Also, these conventional models are used to predict the defect in the homogeneous 

software testing systems with limited number of feature space. In this paper, different types of 

software defect prediction systems and its models are discussed along with the limitations on 

various metrics.  

Keyword: Software defect prediction, software testing, machine learning models, classification 

models. 

I. Introduction 

 Detection and analysis of software defects at a very early stage is very much essential 

in the domain of software engineering. It also influences the decision-making process related to 

allocation of resources for evaluation or verification. Software quality assurance can be defined 

as a significant phenomenon for the implementation of various machine learning techniques in 

defect detection. These techniques basically emphasize on single product-based software 

defects rather than the multi-product-based defects. Detection and analysis of software defects 

at a very early stage is very much essential in the domain of software engineering. It also 

influences the decision-making process related to allocation of resources for evaluation or 

verification. Software quality assurance can be defined as a significant phenomenon for the 

implementation of various machine learning techniques in defect detection. These techniques 

basically emphasize on single product-based software defects rather than the multi-product-

based defects. In recent decades, the size of the object-oriented defects increases, the prediction 

of multi-level defects also increasing exponentially. The main objective of the software defect 

prediction models is to improve the true positive rate of the defects with minimum time and 
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cost. Traditional software prediction classifiers are developed to assess the metrics in the 

application level. Bayesian network (BN), Naïve Bayes, SVM, linear regression approaches as 

well as bagging approaches are used to assess the software defects with limited feature space. 

Most of the traditional software defect prediction models are focused on limited defect features 

in a single application. One of the major limitations is that, lack of training information in the 

early phases of software testing process. As the size of the metrics increases, it is difficult to 

process high dimensional features due to impact on memory space and time. Find Bugs 

framework use BCEL Java binary parser for binary code pattern matching by class structure 

analysis, linear code analysis, control flow analysis, and data flow analyses[1]. In [2], the 

authors introduce Find Bugs approach for finding concurrency bugs in Java programs. 

Contest infrastructure has a feature which utilizes bug patterns to trigger concurrency errors 

during test runs. It would be appropriate to mention that software defects reduce the quality 

of software, increase costs and delay the schedule of development. A software development 

team can forecast the possible bug and its severity in the initial stage of software 

development through software defects prediction techniques. The process of locating 

defective components in the software is known as Software Default Prediction prior to the 

start of the testing stage. One of the most active areas of software engineering research is 

prediction of software defects that lead to increased customer satisfaction, more reliable 

software, reduced development time, and reduced rework effort and cost-effectiveness[3]. 

Prediction is known as the job of predicting continuous or ordered values for a given input. 

Thus, the practice of predicting defects is considered to be extremely important in order to 

achieve software quality and to learn from earlier errors. Software metrics[4][5] is considered 

one of the components required to identify and predict the software defect. However, 

identifying the correct software metrics is a major challenge for the developer.  

Defect forecast offers an optimized manner to identify the vulnerabilities that occur owing to 

manual or automatic mistakes in the SDLC stages. As software program addiction increases, 

software quality in the present era is becoming increasingly crucial. Software defects such as 

errors and faults may influence the software quality resulting in client discontent [6]. It is too 

hard to create a quality end item due to the growing software limitations and modular nature.  

A software test is a study to inform stakeholders about the quality of the tested 

product or service. A series of software error detection activities. Testing is a process that is 

used to detect computer software correctness, integrity and quality. A Software Defect / Bug 

is a condition of a software product which does not meet the expectations or requirements of 

the user (not specified but reasonable). In other words, a malfunctioning program or incorrect 
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coding or logic error produces wrong, unintentional findings. The current forecasting work 

concentrates on  estimating the number of faults in software systems; (ii) the discovery of 

fault associations and (iii) classification of fault-pronounced software components, which are 

typically faulted rather than fault-pronounced, in two classes. The second type of work is 

carried out by the community association of data mining to disclose software defects that can 

be used for three purposes[7]. This technique first finds a candidate concurrency bugs 

through code patterns. And then, it inserts noise injections at the candidate bug site in order to 

detect concurrency bugs with high probability in testing[8]. Upon ConTest, this technique 

contributes to active testing of concurrent Java program. They adopted bug patterns for 

assisting code review process[9]. The authors extend the regular expression in Perl language 

for bug specifications and bug detections. As a preprocessing to code review by experts, this 

technique automatically attach the comments on a code which is corresponding to a given 

bug specification[10].As the software industry evolves, the monitoring and enhancement of 

software quality is increasingly engaged in software businesses. In 1992 IBM conceived the 

Orthogonal Default Classification (ODC) in quantitative and qualitative assessment to satisfy 

these criteria. Software defect prediction is a significant guidance for studies into software 

reliability[11]. The technology for defect prediction can be used to discover high-risk 

software module. Software designers can focus on risky modules with more defects to save 

costly testing and time[12], and then use a restricted test funds for risky modules.The 

significant thing is to discover high-risk modules in the software goods for anticipating 

software errors. In the classification method the characteristics in the samples play various 

roles for issues of classification. At the same moment, the interaction between the different 

characteristics impacts classification performance[13]. Very little study focuses on 

relationships between attributes. In most times the characteristics of traditional algorithms are 

always presumed to be distinct during the classification phase. In practical issues however, 

the interplay of characteristics occurs. Therefore, when predicting software defects, the 

interaction between the characteristics must be taken into account[14].Fuzzy integral is a 

non-linear component, based on fuzzy measures. The non-additiveness of fluid measurements 

makes the interaction between classification features complementary to the fluid. The 

fluorescent measures corresponding to these are essential to achieving high-grade efficiency 

in the essential classification of the fluorescent. In general, the measurement of fluctuations is 

very complex[15]. The reciprocal data between characteristics is an significant tool for 

efficient assessment of the related degree between attributes[6] in order to evaluate the 

correlations between the characteristics of data theory. 
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Open-default information metrics are evaluated and a sub-set of smaller-scale software 

metrics are developed from current NASE project information from PROMISE[16]. Research 

has shown that, compared to two other kinds of subset function algorithms, the suggested 

Algorithm enhances the efficiency of the three famously classified kinds.Most techniques of 

this approach extend the type systems of existing programming languages. The extended type 

systems check a program correctly follows a given programming rules to ensure that the 

desired properties holds for the program. The type systems are normally implemented as a 

part of compilers. [17]Introduce an extended Java type system to avoid concurrency errors 

including deadlock and data race. This type system requires every shared member has a 

specification of its synchronization object. However, there are two shortcomings of this 

approach to be applied to general programs. First, these systems restrict programmers to write 

codes in simple manner strictly. Second, these methods require programmers to specify the 

additional information related to synchronization used in a code[18]. These two shortcomings 

are unfeasible for targeting system programs. In system programs, fine tuning of 

synchronization operations are common in order to improve performance. Moreover, the size 

of program is normally too large for programmers to give the additional information 

manually. 

II.Related Works 

Rossa[19] used Complexity Metrics to predict defects. Complexity metrics are considered to 

be superior predictors of potential fault compared to other reputed past fault predictors, i.e. 

previous alterations and previous errors. By knowing which program is prone to defects, the 

development process or the program can be correlated with defect density. The database of 

bugs is the reliable basis for information about malfunctions. The code that changes a lot is 

more likely to fail than the unchanged code. The techniques of machine learning have a 

higher accuracy rate and are therefore much more stable. Some researchers think that an 

optimum place can be used by a single method of choosing characteristics. Therefore, 

techniques such as a ensemble technology can be promoted, which incorporates distinct 

selection techniques, not a single method,[20] and an iteration technique that repeatedly re-

examples the features. Software metrics are also used using other techniques such as 

correlation assessment, logistic regression[21], and mutual information analysis[8]. There are 

research.Dynamic analysis techniques aim to verify a certain property of a program by 

evaluating its actual executions. By observing internal states during target program 

executions, the dynamic analysis techniques can use accurate information of program 
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behaviors. In dynamic analysis, it is possible to achieve value-sensitive and alias-sensitive 

analysis with much less computation cost than in static analysis.  

Dynamic analysis extends traditional testing to check meaningful properties using 

intermediate state information in program executions. Dynamic analytical methods share 

inherently the test constraints. Full evaluation for target programs can not be supported by 

dynamic analysis because the controlled partial conduct of the goal programs is used. The 

other restriction is that it is hard to apply dynamic analysis methods unless target programs 

are full. Executable settings and sample instances are required for the dynamic analysis 

technique. These can only be provided at the subsequent stage of software development, in 

particular for embedded software[22]. 

The defect is a software program flaw that may lead the program to fail to fulfill its tasks. 

Defect forecast offers an optimized manner to identify the vulnerabilities that occur owing to 

manual or automatic mistakes in the SDLC stages. As software program addiction increases, 

software quality in the present era is becoming increasingly crucial. Software defects such as 

mistakes and faults can influence the software quality that contributes to discontent with the 

client. Software metrics and computations are instruments or procedures that include software 

project or system evaluation or evaluation in order to provide constant or nominal 

characteristics  The results were compared to the performance of the classifier proposed with 

17 other data extraction technologies. In general, the predictive precision metric classification 

is helpful. The results also demonstrated the importance not as generally assumed of specific 

classification algorithms. Only eleven program and classification-engine data software 

metrics were calculated. The error rate was 10% and the classification was high. The 

Bayesian Naïve algorithm was tested for by [23].  In data mining and machine learning, 

Naïve Bayes is one of the most common learning algorithms. It is popular thanks to its 

effective inductive learning algorithms. Due to its conditional independence, the Naïve Bayes 

classification provides extremely competitive performance. [24] tried and identified and 

implemented metrics in a common dataset, to provide Software Engineered Management 

software reliability. This research aims to improve all actions by combining additional 

metrics. The testing of the Artificial Immunology System Classifier has produced good 

results. A new method for analyzing software systems ' defective distributions was proposed 

by [25]. While the prediction systems have local meaning only, it is not necessary to use OO 

technology suites; thus measuring technology becomes easier to access.  A machine study 

classification was used to assess the similarity between previous changes or clear changes in 
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buggies. The change classification has been predicted for bugs. There are several software 

metrics available in the model of defect prediction, such as product and process metrics. 

Successful quality control of software involves prevention of defects, removal of defects, and 

measuring defects. Prevention of defects includes all activities that in the first place minimize 

the likelihood of creating an error or defect. Default gaging consists of different matrices of 

detected malfunctions during the development phase and includes the deficiencies that the 

customer is pointing out after release. Default removal is responsible for all activities that 

detect and eliminate deficiencies and errors in any type of deliverable product[26]. For 

example, software metrics, product metrics and process metrics are at the heart of models for 

bug prediction. 

The classification system is trained with functions from the history of software revision that 

classifies software changes as buggy or clean when applied. There was a 78 percent accuracy 

in the results. The changes were higher due to a small granular prediction and the seminal 

information on the source code was not required for classification. A wide range of 

programming languages are used for the changes of classification. The best way to model the 

software components at various failure levels is to have the strong back propagation 

algorithm based on the neural network. [27] introduced a software reliability evaluation 

methodology for Fuzzy-Neural. This paper identified an adaptive network-based fluid 

inference system (ANFIS) reliability prevision model to enhance the evaluation accuracy. 

The model uses the software's reliable information as input data (default lines every thousand 

lines), using reliability prediction as output data, the neural network trainings Adaptive–

Fuzzy, membership of defect counters every thousand lines. The new software defect 

benchmark frame was presented by [28]. This includes both evaluation and forecasting. 

During the evaluation phase, the selected scheme evaluates various systems of learning. In 

the prediction phase, a predictor with all historical data is then used with the best learning 

scheme. Finally, the predictor is employed for the prediction of the new data defect. Bayesian 

networks used in [29]  to determine the likelihood of influence between software metrics and 

defect proneness. [30] compares the k-NN Network which has been implemented as either 

fault or non-default susceptible in classifying software components. The hierarchical 

clustering technique The performance is better compared with the cluster-based approach 

when it comes to neural network approach. A general software defect prediction framework 

was proposed and evaluated by [31] to support the biased and thorough comparison between 

competing systems. The results show that different learning arrangements (i.e. no dominant 

scheme) for different data sets should be selected. Multiple data sets from software projects 
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have been used to model software quality in order to resolve this problem. Because there are 

numerous defects in just a few of the modules, it is necessary to investigate the modules 

which are severely affected in comparison to other modules. The use of the Neural Feed 

Network was examined by [32].  

Multiple Linear Regression (MLR), logistic regression for data modelling[33] used 

the earliest attempts to model maintainability and defects with static source code metrics as 

predictors. The problem with MLR is that it is not easy to interpret relationships between 

predictor software metrics and response variables[34].  The choice of modelling technique 

greatly influences the accuracy of maintenance and prediction of defects models, but different 

prediction model comparison studies have reached different, inconsistent and divergent 

conclusions about the superiority of one modelling technique over the other[35]. [36] 

conducted a systematic review of the prediction of defects and found that two-thirds of the 

prediction of defects studies were based on private datasets and their results could not be 

verified. With a small number of private data sets, different experiment design, different 

measurements of accuracy and lack of application of statistical significance tests, it is not 

possible to understand the strengths and weaknesses of different machine 

learningtechniques[37]. The work embodied in this work concerns the comparison with 

public data sets of a wide range of machine learning techniques for early maintenance and 

prediction defects. Public data sets allow other researchers to examine the validity of 

proposed models by replicating experiments and constructing reproducible or refutable 

models[38]. The work in this work also evaluates machine learning techniques as predictor 

variables for defects with different metric categories such as source code metrics[39], micro-

interaction metrics[40] and software entropy metrics.[41]  presented an effective multi-

objective naïve Bayes learning for cross-project defect prediction [42]. They introduced multi 

objective learning mechanisms and implemented those in cross project environments. This 

approach has three prime objectives and those objectives completely depend upon the process 

of class imbalance. In this piece of research work, a new algorithm known as harmony search 

algorithm is implemented. The above proposed algorithm has the responsibility of resolving 

multi objective Bayes issues. Numbers of solutions along with various PD, PF balance values 

are generated by analysing the source data. After that NB or NBNN is constructed along with 

an individual optimal solution. Additionally, it can determine the fault proneness of the targeted 

data.It is responsible for producing frequent item sets for every individual partition. The item 

set has numbers of abnormalities and known as focused item set. Depending upon real item set, 
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they introduced a new pre-processing technique which is responsible for setting real items those 

are missing in partition only. These changed data have significant role during the development 

process of Naïve Bayes classifier. It is also responsible for detection of defective software 

modules. In the evaluation phase, the performance of NB model with ten bins is considered. It 

can be noticed that, this performance is not much satisfactory. It may either increase or 

decrease with respective to the inclusion of missing item sets. 

Maintenance Index (MI)[43] is a traditional model used to predict software application 

maintenance. It includes various  metrics of Halstead, cyclomatic complexity of McCabe, 

lines of code (LOC) and number of comments. Researchers criticized MI model as they 

found problems applying this model to large and diverse collections of mission-critical 

projects. Recently, [44] found that MI's predicted for five software system releases were the 

same where the actual maintenance effort observed to maintain these systems varied 

considerably. [45] proposed a linear software maintenance prediction model based on a 

minimum set of software design level metrics.[46] studied for a maintenance period of three 

years two commercial object-oriented systems and developed a predictability model using 

Multiple Linear Regression (MLR). [47] studied C++ systems software maintenance using 

MLR as predictors with object-oriented metrics. [48] studied the relationship with the MLR 

modeling technique between design metrics and sustainability. Machine learning 

techniques[49] were not considered in these studies. When there is no acceptable theory that 

can relate maintenance to its software predictor metrics, parametric techniques such as MLR 

are not useful. Machine learning techniques can therefore be used to predict the maintenance 

of software because they are non-parametric in nature. [50] used Bayes Network, Regression 

Trees and MLR to predict the maintenance of software. They concluded that only one system 

studied was superior to MLR by the Bayes Network. These studies[51-53] did not compare 

their results with other techniques of machine learning or MLR or used different 

measurements of accuracy, so the results were not comparable. [54] used fuzzy logic 

techniques for software maintenance measurement. [55]conducted a systematic review of the 

prediction and metrics of software maintenance. Various predictors of maintenance collected 

at source code level, maintenance prediction techniques, accuracy measurements and 

maintenance metrics have been summarized. It was concluded that there were no obvious 

choices to build predictive models for maintainability. A number of techniques for machine 

learning were investigated in prediction of defects. The nature of data sets for defect 

prediction is skewed[56]. Non-defective modules are negative examples (or negative class, 



Dogo Rangsang Research Journal                                            UGC Care Group I Journal 

ISSN : 2347-7180                                                         Vol-09 Issue-01 January - April 2019 

Page | 49                                                                                         Copyright @ 2019 Authors 

majority class) in terms of machine learning literature, and defective modules in training data 

are positive examples (or positive class, minority class). This is referred to as the problem of 

class imbalance. Class imbalance greatly degrades the performance of machine learning 

techniques. [57] investigated the methods of ensembles bagging and boosting over NASA 

MDP datasets and found that ensembles bagging and boosting were more accurate than single 

base classifiers (learners). In Bagging and Boosting Ensembles, they employed seven base 

learners. However, through statistical significance tests, they did not evaluate their models. It 

involves an unbiased and comprehensive comparison technique. A minor modification during 

the evaluation phase may influence the resulted outcomes significantly. This suggested 

technique is very much efficient for real world implementation irrespective of the nature of 

data. There are certain cases, where data is skewed. Model cannot predict sufficient number of 

defective instances for the process of learning. Suppose a method is performing very well in 

case of balanced dataset, it will result poorest performance in case of imbalanced dataset. 

Selecting the most suitable set of attributes that represent a problem, from large set of 

attributes is also a challenging task. Some attributes might be irrelevant, redundant, or 

containing useful information only when combined together. We must select the best possible 

features before feeding them into the algorithm since this influence the quality of the 

prediction model as well as the computer resources (such as calculation time, memory usage 

etc. ). In feature selection, the wrapper is the model evaluation based on different feature 

combinations. The evaluation result (e.g. the accuracy from a 10-fold cross validation) allows 

the identification of the best-performing model and thus, the best-performing feature 

combination. So, the best performing feature combination is the feature combination to select 

from all features. There are three decisions to make to perform this kind of feature selection. 

First, what is the selection criterion to apply. Typically, the outcome of a classifier evaluation 

is the accuracy or the area under the ROC curve AUC[58]. These measures are the mostly 

used selection criteria following the rule: the higher, the better. Second, which algorithm to 

use Although, the wrapper approach is concerned to be a black box approach to score the 

feature sub-sets, the algorithm choice has some influence on the results of the final model. 

Third, we have to determine the appropriate search strategy. Ideally, wrapper methods would 

make use of all possible feature combinations to determine the feature contributions 

(exhaustive, complete search). 

 In the feature selection, there are two fundamental search procedures, the forward and 

backward selection. Forward selection starts from scratch and adds new variables one-by-one 
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while evaluating the optimal search path. The backward selection does the opposite: the 

search starts from a model based on all variables and eliminates one-by-one. The results of 

both approaches can differ due to non-independent variables and different stopping points 

when a certain quality threshold value is reached. In other wrapper application fields also 

other search techniques such as evolutionary search and simulated annealing are used.In a 

larger dataset, not all variables are so important to consider, the greater the number of 

variables, the greater the complexity.  

III.Conclusion 

In this paper, various machine learning models are discussed on software testing defect 

databases along with variation in the software metrics. Most of the conventional software 

defect prediction modelsare difficult to handle large heterogeneous data types for feature 

extraction and classification processfor software testing systems. In this paper, different 

feature selection measures and meta-heuristic classification models are studied for software 

defect prediction process. In the future work, a hybrid meta-heuristic based software defect 

classification framework is designed to improve the decision making process of software 

testing systems. 
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