
Dogo Rangsang Research Journal                                                   UGC Care Journal 

ISSN : 2347-7180                                                        Vol-10 Issue-06 No. 01 June 2020 

Page | 402                                                                                Copyright @ 2020 Authors 
  

 

 
 

Pollutant air emissions prediction by process modelling in the iron and 
steel industry 

 

Deepak Bhuyan*, Suchismita Swain, Narayan Parida 

Department of Mechanical Engineering 

Gandhi Institute for Education and Technology, Baniatangi, Bhubaneswar 

 
Mr. Rakesh kumar sahu, Department Of Mechanical Engineering, 

Capital Engineering College, Bhubaneswar 
 

Abstract 

 

Monitoring air pollutant emissions of large industrial installations is necessary to ensure compliance with environmental legislation. Most of 

the available measurement techniques are expensive, and measurement conditions such as high-temperature emissions, difficulty of access, are 

often difficult. That is why legislation can not impose a permanent emission monitoring in many countries. The possibility to replace it with 

predictive models based on the routine measurements of the main control parameters of the installation is analysed in this paper. In order to 

identify these models, a special measurement campaign of emissions must be performed or, alternatively, a deterministic modelling of the process 

can be developed. This study was carried out in the case of a real installation in the steel industry i.e. a billet re-heating furnace. Physical phenomena 

involved in combustion within the furnace were complex enough to prefer an empirical black-box modelling of the furnace over a deterministic 

approach. A 3-week monitoring campaign of fume emissions at the stack was performed; furnace process parameters during the same period 

were available. The relationship between CO2 emissions and furnace process parameters could successfully be expressed linearly, while NO2 

emission modelling required a non-linear model. Artificial neural networks modelling revealed a good ability to predict NO2 and CO2 

emissions. 
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1. Introduction 
 

Environmental legislation is not uniform across the world, 

or even within the EU Community. Uniform emission stan- 

dards are not generally adopted. Some countries sustain the air 

quality standards, e.g. in the United States air quality stan- 

dards are based on the belief that the purpose of pollution con- 

trol is to prevent targets from being put at risk. Viewed in this 

way, emission standards will therefore vary from place to place. 

Uniform emission standards follow the precautionary principle 

that we should emit the least possible quantity of pol- lutant that 

best available technology (BAT) permits, according 

 

 

to the Integrated Pollution Prevention and Control (IPPC) Di- 

rective in the EU. 

The United States use a combination of air pollution source 

regulations (e.g. power plants) and general ambient air quality 

and they require permanent continuous emission monitoring 

devices. 

At present, in France, the most important installations are 

held to declare their releases; according to this declaration 

and to the current legislation, the installation’s owner has to pay 

a tax on air pollution. The French environmental legisla- tion 

offers four main possibilities to evaluate the releases to be 

declared. The first method is the permanent monitoring of 

emissions; although the most precise, this is in general not 

possible because measurement techniques are expensive and 

measurement conditions are often difficult, due to the high- 

temperature of emissions and to the difficulty of access. 
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In the absence of permanent monitoring, three other alterna- 

tives are accepted. The most commonly-used are the mass bal- 

ance or the estimation based on an emission factor, 

characteristic of each type of installation and each pollutant. 

According to their complexity, the mass balance can not be 

used for all industrial processes, but only for combustion (BO- 

MET, 1991); this approach is based on the chemical reactions 

involved in combustion. The last possibility is the so-called 

correlation method, based on a supplementary campaign of 

measurements permitting to establish relevant correlations be- 

tween emissions and process parameters. These correlations are 

then used for emission evaluation from real-time monitor- ing 

of the control installation parameters. 

This paper focuses on the development of a correlation 

method in the case of a real installation of the French iron and 

steel industry i.e. a billet re-heating furnace. This study was 

performed within the frame of the AI/EX1 European Pro- ject 

(see Schofield et al., 2002). 

Section 2 presents a general overview of the re-heating 

furnace and the database built with the process parameters 

which are continuously monitored and stored for the furnace 

optimisation and control, and with the results of a monitoring 

campaign specially designed to assess measurements of several 

fume parameters at the stack. An intermediate stage, data pre- 

processing, is described in Section 3, while emission modelling 

is presented in Sections 4 and 5: first, a linear, simpler model- 

ling in Section 4, giving satisfactory results for CO2, and then, 

in Section 5, a more complex non-linear modelling of CO2 and 

NO2, using artificial neural networks. Finally, the possibility to 

use the methodology presented in Section 5 as a correlation 

method for emission estimation is discussed. 

 

2. Data collection 
 

2.1. Re-heating furnace description 

 
The billet re-heating furnace of a merchant and strip bar mill 

studied here is a high-capacity one (150 billets hour—1 of 600 
12 12 cm3), with 3 heating zones (3 16 burners), resulting in a 
30 MW total power. Globally, the volume inside 

the furnace is about 24 m long, 7 m large and 1.5 m high, while 

the stack is 35 m high. The heating efficiency (60%) is assumed 

to be a good value. Operation is discontinuous, depending on 

the billet production. The fuel used in combustion is Groningen 

(the Netherlands) natural gas. A furnace layout is presented in 

Fig. 1 and the list of the monitored parameters, in Table 1. 

There is a gas circuit (G) providing the combustion gas for 

zones 1, 2 and 3. Combustion air e circuit (A) e consists of 

fresh air re-heated in the heat exchanger HE (for a better com- 

bustion efficiency) and then distributed to zones 3, 2 and 1. 

Fume e circuit (F) e is collected from all three zones and passes 

through the heat exchanger HE, releasing heat to the fresh air, 

further used as combustion air; the fume is finally 

 

  

Fig. 1. Billet re-heating furnace layout. 
 

released into the atmosphere. The billets, about 1 ton each, 
are initially at ambient temperature. They are introduced in 

the furnace e circuit (B) e where they move at a 12 m s—1 
speed, passing through zones 1, 2 and 3; when leaving the 

furnace, the billets have a temperature of 800e1000 ◦C. The 
first zone, is a pre-heating one; here, temperature varies be- 

tween 870 and 1200 ◦C. The second zone plays the role of 

a temperature equaliser (at about 1200 ◦C) and the third one, 
is the ‘‘high fire’’ zone; here, temperature is quasi-stable (about 

1200 ◦C with variation of maximum 40 ◦C). The com- bustion 
is controlled for stoechiometric proportions; there is an 

oxygen analyser between zones 2 and 3 in order to obtain an 

optimal ratio air/gas flows. Oxygen injection (at the furnace 

temperature) was designed for this purpose. Combustion is 

performed with air in excess. 

Emissions in fume are traditionally not monitored, while the 

furnace is not equipped with a gas analysis system at the stack. 

A gas analysis system coupled to a data sampler was then imple- 

mented to monitor gas pollutants from air emissions (point 13) 

during the measurement campaign specially designed for this 

study’s purposes and realised by the LECES2, the laboratory 

that is in charge of the data collection from the society operating 

the furnace, and which performed the additional measurements. 

Thus, an emission database was built, containing the concentra- 

tions of O2, SO2, NO2, CO and CO2 in fume. The process 

parameters, continuously monitored for optimisation and con- 

trol, are available from the plant process database. 

 

2.2. Furnace database 

 
Process parameters are 1-min sampled and the same sam- 

pling period was adopted for the emission monitoring, which 

lasted for three weeks. Process parameters (21 variables) and 

gas emissions were gathered, leading to 25,540 recordings of 

a 25-variable database. Unfortunately, the 26th variable, CO 

was not included in the database, because it was truncated 

by the analyser’s range. 

 

3. Data pre-processing 
 

Data pre-processing can improve the quality of the data, 

having a significant effect on model performance or on data 

mining results. There are a number of pre-processing 
 

 

1 Artificial Intelligence/EXpert systems for steelworks pollution controls,    

ESCS-STEEL C, 7210-PR/076. 2  LECES Environnement, Voie Romaine, Maizières-les-Metz, France. 
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Table 1 

Re-heating furnace monitoring parameters and their basic statistics: mean, standard deviation, minimum and maximum 

Location Parameter Symbol Statistics  

   Mean Standard deviation Minimum Maximum 

1/2/3 Temperature inside the T1 1110 42.3 870 1197 

 furnace (◦C) e zone 1/2/3 T2 1199 30.3 1017 1278 
  T3 1195 14.7 1089 1237 

1/2 Pressure inside the P1 9.64 1.13 1.30 14.32 
 furnace (mbar) e zone 1/2 P2 10.62 1.42 0.87 16.55 

4 Oxygen concentration O223 2.73 2.18 0.05 14.24 
 (%) e between      

 zone 2e3      

 Oxygen temperature TO2 1209 28.3 1070 1276 

 (◦C) e between      

 zone 2e3      

5/6/7 Gas flow burners Qg1 916 292.6 246 1190 
 (Nm3 h—1) zone 1/2/3 Qg2 961 435.8 304 1785 
  Qg3 194 103.4 63 4217 

8/9/10 Air flow burners Qa1 8118 2564 1080 10,920 
 (Nm3 h—1) zone 1/2/3 Qa2 8541 3841 2580 16,880 
  Qa3 1719 922 232 4217 

11 Temperature under the Tsf1 87 12.5 63 128 
 furnace (◦C) n◦1/n◦2 Tsf2 112 19.3 82 191 

12 Temperature of the combustion Tac 294 48 153 384 
 air after the heat      

 exchanger (◦C)      

 Fume temperature Tse 391 35 159 554 
 after the heat      

 exchanger (◦C)      

13 Fume temperature Tfsf 689 61 499 857 
 at surface outlet (◦C)      

 Oxygen in fume e concentration (%) O2 7.38 1.87 3.7 15.7 

 SO2 in fume e concentration 

(mg Nm—3) 

SO2 13.19 15.05 1 122 

 NO2 in fume e concentration 

(mg Nm—3) 

NO2 71.70 30.13 4.6 195.5 

 CO2 in fume e concentration (%) CO2 7.97 1.09 3.3 10.1 

14 Billet production CAD 49.5 11.98 29 99 
 time between two consecutive      

 billets (s)      

15 Motor intensity e     

16 Billet surface temperature (◦C) TB 860 103 800 1084 

Parameters at points 1e12 and 14e16 concern the process and they are measured continuously for the furnace control (process parameters). At point 13, 

measurements of emissions in fume are not traditionally realised, they were carried out during the monitoring campaign only. 
 

techniques, such as data cleaning, data transformation (nor- 

malisation), data reduction etc. 

 

3.1. Data cleaning 

 
Determination of outliers is one of the first steps in cleaning 

the database. In the present study, some outliers were identi- 

fied to instrument calibration periods (characterised by abnor- 

mal peaks) or to instrument drift during the stand-by regime of 

the furnace (furnace is not working during the week-end). Data 

was checked also for other inconsistencies (discrep- ancies) 

which were also removed, resulting in more missing data in the 

initial database, which was already incomplete. 

 

3.2. Missing data handling 

 
Almost all large empirical data sets suffer from periods 

of missing data caused by instrument failure or human error. 

A lot of attention has been given to this problem by researchers 

(Kolehmainen et al., 2001; Schlink et al., 2003; Elkamel et al., 

2001; Abdul-Wahab and Al-Alawi, 2002; Andretta et al., 2000) 

and various treatments have been proposed to recon- struct 

missing data. These treatments always involve some modelling 

of the data. 

Thus, in order to minimise the effect of a priori assump- 

tions on the results, in this work, a discrimination between short 

and long gaps was done according to the dynamics of the 

different variables. Short and long gaps were then treated 

differently. For short gaps (4 consecutive missing values at 

most), missing data were replaced by linear interpolation. For 

longer gaps, data was not reconstructed and the corre- sponding 

intervals were ignored. 

The working database, after cleaning outliers and ignoring 

the recordings containing at least one missing value, was 

reduced from 25,540 to 13,947 recordings, corresponding 

to a loss of 45.4%; there is one exception however, for the 
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SO2 variable, where only 6763 values remained after data 

cleaning. 

 
3.3. Descriptive statistics 

 
In any model development process, familiarity with the data 

is of the utmost importance. A summary of all param- eters 

monitored during the campaign is given in Table 1. Their 

variability is further discussed according to the ratio (expressed 

in percentage) of the standard deviation to the mean. 

One can notice that the standard deviation is very low with 

respect to the mean (std/mean less than 5%) for some param- 

eters such as: T1, T2, T3, TO2 which are fixed to set-points, the 

most severely constrained being temperature in zone 3. Pres- 

sures (P1 and P2) are controlled too, but variations are more 

important than those for the temperatures (10%e15%). Gas and 

air flows are highly correlated; there are weaker variations in 

zone 1 (about 30%), but they increase progressively to about 

55% in zone 3, where the temperature is allowed very little 

variation. High variability can be noticed for the combustion 

oxygen (O223) (80%) and above all, for SO2 concentration 

in fume (114%). 

SO2 is not correlated to the furnace variables (correlation 

coefficients range between 0.11 and 0.08). The high number of 

values not validated and this lack of correlation can be due to a 

measurement problem; arguably, SO2 levels are at or 

below the detectability of the analyser since natural gas does 

not contain appreciable sulphur (about 10 mg Nm—3). In this 
context, there is no sense in trying to model SO2 emissions. 

 
4. Linear modelling of emissions 

 
Before using any non-linear model, it is judicious to test 

firstly the performance of a simple, linear one. If the model 

output can be satisfactorily explained by a linear combination 

of the inputs, there is no sense in using a more complicated non-

linear model. 

 
4.1. Multiple Linear Regression 

 
Multiple linear regression MLR (see Saporta, 1990; Agirre- 

Basurko et al., 2006) was carried out to find the percentage of 

variance of the parameter to be estimated, explained by the best 

linear combination of the measured variables. A good in- 

dicator of the modelling quality is the root mean squared error 

which can be calculated as 

u
vffi

1

ffiffiffiffi
X

ffiffi
N

ffiffiffiffiffi

 

ffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffi

 

ffiffiffiffi 

 
 

is 0.45%; compared to the mean value of CO2, RMSE repre- 

sents a relative error of 5.58%. 

Meanwhile, for NO2 (Fig. 2b) only 51.6% of the variance 
can be explained linearly and the RMSE corresponding to this 

linear modelling is 20.55 mg Nm—3; compared to the mean 

value of NO2, RMSE represents a relative error of 28.66%. 

Thus, for CO2, the error estimation is below the instrument 

accuracy, but this is not the case for NO2. For the latter, a non- 

linear modelling is necessary for a better estimation. 

The previous results were obtained using all 21 furnace 

process variables. 

When expressing CO2 by a linear combination of the pro- 

cess parameters, the number of explicative variables was varied 

from 1 to 21 and each time the best linear combination was 

selected. All the parameters are not (linearly) significant for the 

CO2 variability; starting from 10 variables, the R2 coefficient is 

rather constant. In addition, with only 5 parameters (oxygen 

concentration O223, air flow in the first zone Qa1, gas flow in 

the third zone Qg3, temperature in the first zone T1, and fume 

temperature Tfsf) one can explain the 80.6% obtained for the 

CO2 variance and 96% of the maximum linear variance, using 

all 21 parameters. The fume temperature at the furnace outlet 

(Tfsf) can explain by itself 66.9% of the CO2 variance. This 

means that the fume temperature best characterises the 

combustion process from which the CO2 concentration is 

issued; however, the fume temperature is not a control param- 

eter, but only the final result of the combustion process; 

nevertheless, it can be considered as a raw indicator of CO2. 

Among the process parameters, those which are the most re- 

lated to CO2 emissions are O223, Qa1, Qg3 and T1. 

 

5. Neural networks modelling of emissions 
 

5.1. Neural network modelling 

 
Neural networks (NN) are capable of modelling highly non-

linear relationships (Gardner and Dorling, 1999, 2000; Abdul-

Wahab and Al-Alawi, 2002). The greatest advantage of a 

neural network is its ability to model a complex non-linear 

relationship without a priori assumptions on its nature (Bu- 

Hamra et al., 2003). 

In a comprehensive review of applications of artificial intel- 

ligence in combustion systems, Kalogirou (2003) presents 

a summary of 22 applications of NNs in combustion, pub- 

lished between 1995 and 2002. In two of them, the authors used 

this technique for emission monitoring; the application 

developed by Tronci et al. (2002) concerned the combustion 

chambers, while Ferretti and Piroddi (2001) estimated NOx 

RMSE ¼ t
N

 
i¼1 

2 
xp — xm 

ð1Þ emissions in power plants. In (Zhou et al., 2004), the authors 
evaluated NOx emissions of a coal-fired boiler by CFD and by 

NNs; according to the authors, the second technique was much 

where xp represents the value predicted by the model, xm the 

corresponding measurement and N the number of measures. 

It appeared that CO2 can be satisfactorily estimated by a lin- 

ear regression (Fig. 2a); 83.4% of its variance can be explained 

linearly and the RMSE corresponding to this linear modelling 

easier than the first one. As a general conclusion of all the cited 

papers, NN are a good candidate for modelling complex 

industrial installations. 

For function approximation, the most suitable architectures 

are considered to be the multilayer perceptron (MLP) (see 
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Fig. 2. (a) Predicted versus monitored CO2. MLR result: predicted CO2 is calculated via a linear combination of all the process parameters. (b) Predicted versus 

monitored NO2. MLR result: predicted NO2 is calculated via a linear combination of all the process parameters. 
 

Abdi, 1994; Fausett, 1994; Bishop, 1995; Ripley, 1996), which 

is also the most popular architecture for NN, and the Radial 

Basis Neural Networks. 

MLP neural networks are universal approximators (Hornik 

et al., 1989) i.e. they can approximate any smooth, measurable 

function. They also possess the remarkable property of parsi- 

mony, i.e. for a similar accuracy, NN require less fitting 

parameters than the universal approximators commonly used; 

more precisely, their number varies linearly with the number of 

degrees of freedom, while it varies exponentially for most other 

approximators (Hornik et al., 1994). 

MLP non-linearity is achieved by using a non-linear activa- 

tion function and by including at least one hidden layer in the 

network’s architecture. A good description of the MLP (sche- 

matic architecture and equations) is given by Agirre-Basurko et 

al. (2006). The nature of the functional relationship between 

inputs and outputs is learnt during a supervised training process 

directly from the data. 

 
5.2. Training algorithms 

 
During the supervised training procedure, series of input and 

associated output data are repeatedly presented to the network 

in order to learn to model the relationship and to ac- curately 

generalise when presenting new, unseen data. This learning 

phase corresponds mathematically to the optimisation of a cost 

function in the weights space; the weights character- ise the 

importance of each connection between neurons from different 

layers, and they represent the fitting parameters of the NN 

model. 

The cost function is chosen according to the performance 

criteria. If performance is estimated in terms of prediction 

accuracy, this corresponds to the minimisation of a function 

of the error signal, defined as the difference between the de- 

sired and the actual output of the network (Schlink et al., 2003), 

e.g. the sum of the squared errors. 

Prediction accuracy is affected by the optimisation algo- 

rithm. Unfortunately, the error surface is often complex and 

contains many local minima (Comrie, 1997); if the optimisa- 

tion algorithm is trapped in a local minimum, the final MLP 

model may be sub-optimal. Global methods of optimisation 

are attractive, but their convergence is slow (Maier and Dandy, 

1998) and their implementation in complex cases is rather 

difficult (Lu et al., 2003). 

Typically, local optimisation methods are preferred, al- 

though the global minimum is not reached; a good local one 

is usually treated as an acceptable solution (Gardner and Dorl- 

ing, 2000). In this study, several local optimisation algorithms 

were tested. 

 
5.2.1. Generalisation ability 

Generalisation ability is defined as the model’s potential to 

perform well on data that were not used to calibrate it (Cheng 

and Titterington, 1994). For the purpose of forecasting, the 

most important property of an algorithm is its ability to gener- 

alise and filter out the noise. Overtraining occurs when the 

model learns the noisy details in the training data, which results 

in the model having poor generalisation capabilities when 

presented with new data. 

In this study, the purpose is not to get a model reproducing 

as well as possible the measurements during the monitoring 

campaign, but a model able to predict plausible results when 

applied to other measurements of the furnace, thus becoming 

a reliable tool for emission estimation. 

Generalisation ability is a function of the ratio of the num- 

ber of training samples to the number of connection weights 

(Maier and Dandy, 2000). Different ratios are proposed empir- 

ically by (Masters, 1993; Weigend et al., 1990; Amari et al., 

1997). If this ratio is too small, continued training can result 

in overfitting of the training data. Traditionally, optimal geom- 

etries have been found by trial and error, but a number of 

systematic approaches for determining optimal network geom- 

etry were also proposed, including pruning or constructive 

algorithms (Bebis and Georgiopoulos, 1994). 

In order to avoid overtraining, and to restrict model 

complexity, a regularisation technique, known as early stop- 

ping can be used. Early stopping (ES) is based on dividing the 

data into 3 subsets (Gardner and Dorling, 1999). The first 

subset is the training set used for computing the gradient and 

updating the network parameters; the second subset is the val- 

idation set. The error on the validation subset is monitored 

during the training process. The validation error will normally 

Predicted NO2 (mg m-3) 
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decrease during the initial phase of training, as does the train- 

ing set error; when the network begins to overfit the data, the 

error on the validation set typically begins to rise, then training 

is stopped and the network parameters at the minimum of the 

Dandy, 1998). When using tanh, Gardner and Dorling (1999) 

propose calculating normalised variables using the formula: 

x ¼ 2
 x — xmin  

— 1 ð3Þ 

validation error are returned. Finally, the performance of the 

network is tested on the third subset, the test set. 
Bayesian regularisation (BR) (Buntine and Weigend, 1991) 

norm xmax — xmin 

is another theoretical robust mechanism which can be used to 

avoid network overfitting, whilst allowing the available data to 

be split into only two sets, the training set and the test set. A 

regularisation term is incorporated into the cost function in or- 

der to penalise overly complex models (Dorling et al., 2003). 

5.3. NO2 and CO2 modelling by NN 

 
In this study, input and output data were normalised (Maier 

and Dandy, 1998, 2000): 

x — x 

It is possible to improve generalisation modifying the perfor- 

mance function by adding a term that consists of the mean 

xnorm ¼ 
s 

ð4Þ 

of the sum of squares of the network weights and biases. Using 

this performance function weights and biases are smaller, forc- 

ing the network response to be smoother and less likely to 

overfit. The problem with regularisation is that it is difficult 

to determine the optimum value for the performance ratio pa- 

rameter i.e. too large, leads to overfitting, whereas if it is too 

small, the network doesn’t adequately fit the training data. 

In this study, several network geometries were tested vary- 

ing the number of hidden layers (1 or 2) and the number of 

neurons in each hidden layer. For each simulation, either ES 

or combined BR/ES were implemented in order to avoid 

overtraining. 

 
5.2.2. Data pre-processing 

Generally, different variables span different ranges. In order 

to ensure that all variables receive equal attention during the 

training process, they should be standardised (Maier and 

Dandy, 2000). In addition, the variables have to be scaled in 

such a way to commensurate with the output range of the 

activation function (Fausett, 1994). It should be noted that if the 

transfer function in the output layer is unbounded (e.g. lin- ear), 

scaling is not strictly required, but it is still recommended 

(Maier and Dandy, 2000). 

The most common activation functions are the sigmoidal- 

type ones, such as the logistic and the hyperbolic tangent, 

ranging between 0 and 1, and 1 and   1, respectively. They 

are both monotonically increasing, and possess simple 

derivatives. Very often the identity function is used for the 

output layer, presenting a special interest when it is necessary 

to extrapolate beyond the range of the training data (Maier and 

Dandy, 2000). 

When using the logistic sigmoid, scaling between 0 and 1 is 

recommended. Data can be transformed by determining the 

minimum and the maximum values of each variable over the 

whole data period and calculate normalised variables using the 

formula (Elkamel et al., 2001): 

  x — xmin  

The maximum absolute value of xnorm was 8 for NO2. Each 

normalised variable was then scaled, in order to range in an in- 

terval included in     1      1 ; scaling consisted in the division of 

each variable by an S-value determined as: 
 

S ¼ a—1maxðjxnormjÞ ð5Þ 

where a was taken 0.8, less than 1, in order to avoid quasi-null 

values of the activation function’s derivative. 

It is important to notice that only linear transformations were 

applied to data prior to the model identification and these 

transformations do not influence the results of a non-linear re- 

gression. Data were later returned to original units using the 

corresponding inverse formulae. 

Models selected for NO2 and CO2 prediction consisted of 

3- or 4-layer feed-forward neural networks (MLP with one 

or two hidden layers). The first layer (the input layer) was 

composed of one neuron for each input (21 neurons), the last 

one (the output layer), consisted of a single neuron, cor- 

responding to the output (NO2 or CO2 values), while the hidden 

layers were composed of a variable number of neu- rons. The 

following activation functions have been selected: tanh for the 

hidden layers, and the unbounded identity func- tion (linear) for 

the output layer. Several training algorithms were tested for 

mainly two network architectures and the results are given in 

Table 2. To improve generalisation, the initial data set, after 

putting samples in a random order, was split in 3 data 

subsets: training (60%), validation (20%) and test (20%). 

Validation set could be used for early stopping. Bayesian 

regularisation (BR) combined with Levenberg-Marquardt 

(LM) algorithm was tested too for im- proving generalisation. 

The best results for NO2 correspond to the LM4 simula- tion 

(see Table 2) and they are presented in Fig. 3a,c,e. The network 

architecture consists of a 21-neuron input layer, 2 hidden layers 

with 40 and 20 neurons respectively and an output layer 

consisting of a single neuron. The training algo- 

xnorm ¼ 
x
  
max — xmin 

ð2Þ rithm was based on the Levenberg-Marquardt optimisation 

method. Early stopping (ES) was implemented in order to 
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— Hyperbolic tangent (tanh) ranges between between    1 and 

1. The gain of the hyperbolic tangent is greater than the sig- 

moidal one. As a result, one would expect training to be slower 

when the sigmoidal transfer function is used (Maier and 

avoid overtraining. The RMSE obtained in this case was 

7.48 mg Nm—3 for the training set, 10.56 mg Nm—3 for the 

validation set and 10.39 mg Nm—3 for the test set. In terms 
of relative error compared to the NO2 mean, the error 
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Table 2 

NO2 modelling by different NN architectures and using different training algorithms 

Simulation Architecture Training Algorithm Regularisation Epochs RMSE 

Training Validation Test 

GD1 21-40-1 GD e 10,000* 21.28 21.08 21.24 

GD2 21-40-20-1 GD e 10,000* 23.86 24.04 24.32 

GD3 21-40-1 GDM (momentum ¼ 0.6) e 10,000* 21.19 21.67 21.16 

GD4 21-40-20-1 GDM (momentum ¼ 0.5) e 25,000* 18.08 17.98 17.96 
GD5 21-40-1 GDA ES 557 26.3 28.52 26.93 

GD6 21-40-20-1 GDA ES 155 22.12 22.07 21.98 

GD7 21-40-1 GDX ES 3401 17.69 17.99 17.65 

GD8 21-40-20-1 GDX ES 1588 18.58 18.72 18.42 

GD9 21-40-1 RBP ES 978 14.32 14.91 14.60 

GD10 21-40-20-1 RBP ES 716 12.55 13.60 13.10 

CG1 21-40-1 CGB ES 277 14.69 15.03 14.75 

CG2 21-40-20-1 CGB ES 242 14.23 14.67 14.48 

CG3 21-40-1 CGF ES 246 15.84 15.94 15.59 

CG4 21-40-20-1 CGF ES 276 14.46 14.97 14.60 

CG5 21-40-1 CGP ES 146 17.64 17.54 17.46 

CG6 21-40-20-1 CGP ES 288 14.45 14.96 14.73 

CG7 21-40-1 SCG ES 100 18.94 18.82 18.65 

CG8 21-40-20-1 SCG ES 74 18.72 18.90 18.32 

CG9 21-60-30-1 SCG ES 171 15.93 16.08 15.94 

QN1 21-40-1 BFGS ES 625 11.33 12.55 12.09 

QN2 21-40-20-1 BFGS ES 212 12.21 13.17 12.75 

QN3 21-40-1 OSS ES 592 15.86 16.31 15.89 

QN4 21-40-20-1 OSS ES 334 15.73 16.03 15.92 

LM1 21-40-1 LM ES 64 8.77 10.96 11.15 

LM2 21-60-1 LM ES 53 9.12 11.91 12.30 

LM3 21-40-20-1 LM ES 31 8.00 11.20 11.10 

LM4 21-40-20-1 LM ES 30 7.48 10.56 10.39 

LM5 21-60-30-1 LM ES 28 7.77 11.69 11.62 

LM6 21-40-1 LM BR/ES 48 10.96 11.94 11.79 

LM7 21-40-20-1 LM BR/ES 94 8.94 11.05 11.49 

Activation functions were: tanh for the hidden layers and unbounded identity (linear) for the output layer. *Maximum number of epochs chosen for training; ES: 

Early Stopping; BR: Bayesian Regularisation; GD: Gradient Descent; GDM: Gradient Descent with Momentum; GDA: Gradient Descent with Variable Learning 

Rate; GDX: Gradient Descent with Momentum and Variable Learning Rate; RBP: Resilient Backpropagation; CGB: Conjugate Gradient with Powell-Beale Restarts; 

CGF: Conjugate Gradient with Fletcher-Reeves Update; CGP: Conjugate Gradient with Polak-Ribiere Update; SCG: Scaled Conjugate Gradient; BFGS: Quasi-

Newton (Broyden, Fletcher, Goldfarb and Shanno algorithm); OSS: One Step Secant (Quasi-Newton secant algorithm); LM: Levenberg- Marquardt. 

 

 
estimation is 10.43% for the training set, 14.72% for the 

validation set and 14.49% for the test set. This error is com- 

parable to the measurement error (10e12%). 

For CO2, the results obtained by MLR were already 

comparable to the measurement error (5.6%). In order to 

improve CO2 estimation, a NN model was tested; the NN 

architecture that gave the best results for NO2 was em- ployed. 

The results are presented in Fig. 3b,d,f; in terms of RMSE 

they showed: for the training set 0.24% (relative error 

compared to the CO2 mean 3%), for the validation set 0.31% 

(relative error 3.9%) and for the test set 0.29% (rel- ative error 

3.6%). It results that the difference from 3.6% to 5.6% 

corresponds to a part of non-linearity in the CO2 variation. 

A joint model for NO2 and CO2 simultaneous simulation 

using a 21-40-2 architecture and the Levenberg-Marquardt 

algorithm with Early Stopping led to very  comparable re- 

sults with the previous individual models; the RMSE for NO2 

was 9.04 mg Nm—3 for training, 11.25 mg Nm—3 for validation 

and 10.47 mg Nm—3 for the test, while for CO2, 

 

 
the results presented in the same order were 0.26%, 0.28% 

and 0.29%. 

 

6. Discussion and conclusions 
 

The most important point to discuss is the possibility and the 

advantages in using the methodology developed in this study, 

the so-called correlation method. 

It was assessed by neural networks modelling that: (i) the 

RMSE for NO2 modelling is about 14.5% of the NO2 mean 

(71 mg Nm—3), which is slightly higher than the measure- ment 
error 10e12% and (ii) the RMSE for CO2 modelling 

is about 3.6% of the CO2 mean (3%), sensibly lower than 

the measurement error. Unfortunately, the generalisation ability 

of the models could not be tested on other databases. One can 

suppose that if the working regime of the installa- tion does not 

change significantly, the model should give similar 

performances. It is important that the measuring campaign used 

for the model identification to be designed such as to include 

all the different working regimes. In these 
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Fig. 3. Monitored and predicted NO2 for: (a) the training (RMSE ¼ 7.48, R2 ¼ 0.94), (c) the validation (RMSE ¼ 10.56, R2 ¼ 0.88) and (e) the test set 

(RMSE ¼ 10.39, R2 ¼ 0.88) e see Table 2, LM4. Monitored and predicted CO2 for: (b) the training (RMSE ¼ 0.24, R2 ¼ 0.95), (d) the validation (RMSE ¼ 0.31, 

R2 ¼ 0.92) and (f) the test set (RMSE ¼ 0.29, R2 ¼ 0.93).  

Predicted NO2 (mg m-3) -Training Set 

Predicted NO2 (mg m-3) - Validation Set Predicted CO2 (%) - Validation Set 

Predicted NO2 (mg m-3) - Test Set Predicted CO2 (%) - Test Set 

Predicted CO2 (%) - Training Set 
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conditions, the neural networks modelling can be considered a reliable correlation method as well for NO2 as for CO2. Moreover, 

in the case of CO2, a simple linear model gives less efficient results than the neural networks (5.6%), but is still comparable 

to the measurement error. 

The other two methods accepted by the French environ- mental legislation based on the global balance of the whole installation 

or on the emission factor are either too difficult to perform (the first case) or provide a very global estima- tion (the second one). 

An example of comparison is pro- posed here between NO2 measured emissions and those calculated using the emission factor. The 

emission factor proposed by the present legislation for NO2 in the case of  a re-heating furnace in the steel industry is 170 g 

equivalent NO2 per ton of steel (BOMET, 1991). Using the gas flow values and the combustion coefficients characteristic to the gas 

burnt here, one can calculate the fume flow and then, the total quantity of NO2 from their measured concentra- tions; it results 

in about 350 kg of NO2 emitted during 233 h when the furnace was working. From the billet pro- duction, the total mass of steel 

can be estimated, and consid- ering 170 g NO2/ton of steel, it results in about 1800 kg of NO2, which represents about 5 times more 

than the measure- ments. By comparison, over the same period, emissions cal- culated by the best available NN amounted to a result 

closer than 1% to measurements, because the algebraic mean error monitoring-prediction is very low: 0.12 mg Nm—3 

for the training set, 0.37 mg Nm—3 for the validation set, and 

0.09 mg Nm—3 for the test set. The quasi-null value of the 
mean error reveals that this method is very successful for 

calculating global emitted amounts, i.e. emissions over a lon- ger period. 

One can notice that the modelling developed in this study was not parsimonious. Indeed, all the variables were used as inputs, for 

the following reasons: 

 

all of them are permanently available (for the process control); 

the main purpose was to achieve an estimation of the emis- sions as good as possible; 

input selection was not crucial, as neural networks belong to the class of data-driven approaches (Maier and Dandy, 2000). 

 

However, this strategy also presents some drawbacks. The network’s size increases artificially; consequently, processing speed 

decreases and the amount of data required to estimate the connection weights efficiently becomes larger. Input selec- tion is important 

also for finding the most influential variables on the emissions and defining thus a more efficient control of the process. For this purpose, 

a post-modelling analysis can also be done. Indeed, neural network modelling permits to assess the importance of each of the input 

variables by using the network weights (Garson, 1991; Goh, 1995; Abdul-Wahab and Al-Alawi, 2002). Parameter selection before and 

after modelling in order to achieve a more efficient control on the installation and to reduce emissions is the subject for some future 

work. 

In conclusion, in the present work, a correlation method based on neural networks is proposed for CO2 and NO2 emis- sion 

estimation, with an error comparable to the measurement one. The method is simpler than the global balance of the whole installation, 

more precise than the emission factor method and requires a short, but well-designed monitoring campaign of emissions. 
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