
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 915 Copyright @ 2019 Authors

THE ABC DATASET IS A BIG DATA SET OF CAD MODELS FOR GEOMETRIC DEEP

LEARNING

Nabnit Panigrahi1, Jibananda Jena2
1, 2gandhi Institute for Education & Technology, Bhubaneswar

Abstract 1. Introduction

We present the ABC-Dataset, a database of one million

Computer-Aided Design (CAD) models for the study of

geometric deep learning techniques and applications. For

the purposes of differential quantities, patch segmentation,

geometric feature recognition, and form reconstruction,

each model is a set of explicitly parametrized curves and

surfaces. In order to generate data in various for-mats and

resolutions, sampling the parametric descriptions of

surfaces and curves makes it possible to generate fair

comparisons for a variety of geometric learning methods.

We carry out a large-scale benchmark for the estimation of

surface normals using our dataset as a use case. We

compare current data-driven methods and assess their

effectiveness against both the ground truth and

conventional normal estimate methods.

.

The combination of large data collections and deep

learning algorithms is transforming many areas of computer

science. Large data collections are an essential part of this

transformation. Creating these collections for many types

of data (image, video, and audio) has been boosted by the

ubiquity of acquisition devices and mass sharing of these

types of data on social media. In all these cases, the data

representation is based on regular discretization in space

and time providing structured and uniform input for deep

learning algorithms.

The situation is different for three-dimensional geomet-ric

models. Acquiring or creating high-quality models of this type

is still difficult, despite growing availability of 3D sensors, and

improvements in 3D design tools. Inherent ir-

Figure 1: Random CAD models from the ABC-Dataset

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 916 Copyright @ 2019 Authors

regularity of the surface data, and still-significant level of skill

needed for creating high-quality 3D shapes contributes to the

limited availability of geometric datasets. Irregularity of

geometric data is reflected in commonly used geometric

formats, which differ in fundamental ways from formats for

images, video, and audio. Existing datasets often lack reli-able

ground truth annotations. We further discuss currently

available geometric datasets in Section 2.

Common shape analysis and geometry processing tasks

that can benefit from geometric deep learning include esti-

mation of differential surface properties (Section 5.1), fea-

ture detection, and shape reconstruction. Ground truth for

some of these tasks is hard to generate, as marking features

by hand is a laborious task and differential properties can

only be approximated for sampled surfaces.
In this work, we make the following contributions:

Dataset. We introduce a dataset for geometric deep learn-ing

consisting of over 1 million individual (and high quality)

geometric models, each defined by parametric surfaces and

associated with accurate ground truth information on the de-

composition into patches, sharp feature annotations, and an-

alytic differential properties. We gather the models through a

publicly available interface hosted by Onshape [5]. Simi-lar to

vector graphics for images, this representation allows

resampling the surface data at arbitrary resolutions, with or

without connectivity information (i.e. into a point cloud or a

mesh).

Benchmark. We demonstrate the use of the dataset by

building a benchmark for the estimation of surface normals.

This benchmark is targeting methods that compute normals
(1) locally on small regions of a surface, and (2) globally over

the entire surface simultaneously. We have chosen this

problem for two reasons: most existing geometric deep

learning methods were tested on this task, and very precise

ground truth can be readily obtained for shapes in our data set.

We run the benchmark on 7 existing deep learning algo-rithms,

studying how they scale as the dataset size increases, and

comparing them with 5 traditional geometry processing

algorithms to establish an objective baseline for future al-

gorithms. Results are presented in Section 5.1.

Processing Pipeline. We develop an open-source geom-

etry processing pipeline that processes the CAD models to

directly feed deep learning algorithms. Details are provided

in Section 3. We will continually update the dataset and

benchmark as more models are added to the public collec-

tion of models by Onshape. Our contribution adds a new

resource for the development of geometric deep learning,

targeting applications focusing on human-created, mechan-

ical shapes. It will allow researchers to compare against

existing techniques on a large and realistic dataset of man-

made objects.

Dataset #Models

C
A

D
Fi

l

es

C
ur

v

es

Pa
tc

h

es

Se
m

an
t

ic
s

C
at

eg
or

ie

s

ABC 1,000,000+ X X X – –

ShapeNet* [22] 3,000,000+ – – – X X

ShapeNetCore 51,300 – – – X X

ShapeNetSem 12,000 – – – X X

ModelNet [58] 151,128 – – – X X

Thingi10K [62] 10,000 – – – – X

PrincetonSB[9] 6670 – – – – X

NIST [4] ≤ 30 X X X – –

Table 1: Overview of existing datasets and their capabili-
ties. *: The full ShapeNet dataset is not yet publicly avail-
able, only the subsets ShapeNetCore and ShapeNetSem.

2. Related Work

We review existing datasets for data-driven processing
of geometrical data, and then review both data-driven and
analytical approaches to estimate differential qualities on
smooth surfaces.

3D Deep Learning Datasets. The community has seen a

growth in the availability of 3D models and datasets.

Segmentation and classification algorithms have benefited

greatly from the most prominent ones [22, 58, 62, 9]. Fur-ther

datasets are available for large scenes [51, 23], mesh

registration [14] and 2D/3D alignment [12]. The dataset

proposed in this paper has the unique property of containing

the analytic representation of surfaces and curves, which is

ideal for a quantitative evaluation of data-driven methods.

Table 1 gives an overview of the most comparable datasets and

their characteristics and capabilities.

Point Cloud Networks. Neural networks for point clouds

are particularly popular, as they make minimal assumptions

on input data. One of the earliest examples is PointNet [46]

and its extension PointNet++ [47], which ensure that the

network output is invariant with respect to point permuta-

tions. PCPNet [29] is a variation of PointNet tailored for

estimating local shape properties: it extracts local patches

from the point cloud, and estimates local shape properties

at the central points of these patches. PointCNN [38]

explores the idea of learning a transformation from the

initial point cloud, which provides the weights for input

points and as-sociated features, and produces a permutation

of the points into a latent order.

Point Convolutional Neural Networks by Extension Op-

erators [11] is a fundamentally different way to process point

clouds through mapping point cloud functions to vol-umetric

functions and vice versa through extension and re-

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 917 Copyright @ 2019 Authors

striction operators. A similar volumetric approach has been

proposed in Pointwise Convolutional Neural Networks [32]

for learning pointwise features from point clouds.

PointNet-based techniques, however, do not attempt to

use local neighborhood information explicitly. Dynamic

Graph CNNs [55] uses an operation called EdgeConv,

which exploits local geometric structures of the point set by

generating a local neighborhood graph based on proxim-ity

in the feature space and applying convolution-like op-

eration on the edges of this graph. In a similar fashion,

FeaStNet [54] proposes a convolution operator for general

graphs, which applies filter kernels in a data-driven manner

to the local irregular neighborhoods.

Networks on Graphs and Manifolds. Neural networks for

graphs have been introduced in [48], and extended in [39, 52].

A wide class of convolutional neural networks with spectral

filters on graphs was introduced in [20] and developed further

in [30, 24, 36]. Graph convolutional neu-ral networks were

applied to non-rigid shape analysis in [15, 60]. Surface

Networks [37] further proposes the use of the differential

geometry operators to extend GNNs to exploit properties of the

surface. For a number of problems where quantities of interest

are localized, spatial filters are more suitable than spectral

filters. A special CNN model for meshes which uses intrinsic

patch representations was pre-sented in [41], and further

generalized in [16, 42]. In con-trast to these intrinsic models,

Euclidean models [59, 57] need to learn the underlying

invariance of the surface em-bedding, hence they have higher

sample complexity. More recently, [40] presented a surface

CNN based on the canon-ical representation of planar flat-

torus. We refer to [19] for an extensive overview of geometric

deep learning methods.

Analytic Normal Estimation Approaches. The simplest

methods are based on fitting tangent planes. For a point set,

these methods estimate normals in the points as directions of

smallest co-variance (i.e., the tangent plane is the total least

squares fit to the points in the neighborhood). For a triangle

mesh, normals of the triangles adjacent to a vertex can be used

to compute a vertex normal as a weighted aver-age. We

consider uniform, area, and angle weighting [34].

One can also fit higher order surfaces to the discrete sur-

face data. These methods first estimate a tangent plane, and

then fit a polynomial over the tangent plane that interpo-lates

the point for which we want to estimate the normal (a so-called

osculating jet [21]). A more accurate normal can then be

recomputed from the tangents of the polyno-mial surface

approximation at the point. The difference for triangle meshes

and point sets is only in collecting the sam-ples in the

neighborhood. In addition, one can use robust statistics to

weight the points in the neighborhood [35].

For the weighted triangle normals we use the implemen-
tation of libigl [33], for computation of co-variance normals

and osculating jets we use the functions in CGAL [45, 10].
For the robust estimation the authors have provided source
code. There are many other techniques for estimating sur-

face normals (e.g. [43]), however we only focus on a se-
lected subset in the current work.

One important generalization is the detection of sharp edges

and corners, where more than one normal can be as-signed to

a point [44, 17]. However, as we only train the ma-chine

learning methods to report a single normal per point, we leave

an analysis of these extensions for future work.

3. Dataset

We identify six crucial properties that are desirable for

an ”ideal” dataset for geometric deep learning: (1) large

size: since deep networks require large amounts of data, we

want to have enough models to find statistically signifi-cant

patterns; (2) ground truth signals: in this way, we can

quantitatively evaluate the performance of learning on dif-

ferent tasks; (3) parametric representation: so that we can

resample the signal at the desired resolution without intro-

ducing errors; (4) expandable: it should be easy to make the

collection grow over time, to keep the dataset challenging

as progress in learning algorithms is made; (5) variation:

containing a good sampling of diverse shapes in different

categories; (6) balanced: each type of objects should have a

sufficient number of samples.

Since existing datasets are composed of acquired or syn-

thesized point clouds or meshes, they do not satisfy prop-erty

2 or 3. We thus propose a new dataset of CAD models, which

is complementary: it satisfies properties 1-4; it is re-stricted to

a specific type of models (property 6), but has a considerable

variation inside this class. While restriction to CAD models

can be viewed as a downside, it strikes a good balance between

having a sufficient number of similar samples and diversity of

represented shapes, in addition to having high-quality ground

truth for a number of quantities.

Acquisition. Onshape has a massive online collection of CAD

models, which are freely usable for research purposes. By

collecting them over a period of 4 months we obtained a

collection of over 1 million models (see Figure 2).

Ground Truth Signals and Vector Representation. The

data is encoded in a vectorial format that enables to resam-
ple it at arbitrary resolution and to compute analytically a

large set of signals of interest (Section 4), which can be used
as a ground truth.

Challenge. However, the data representation is not suit-able

for most learning methods, and the conversion of CAD models

to discrete formats is a difficult task. This paper presents a

robust pipeline to process, and use CAD models as an ideal

data source for geometry processing algorithms.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 918 Copyright @ 2019 Authors

Figure 2: Random examples from the dataset. Most models are mechanical parts with sharp edges and well defined surfaces.

3.1. CAD Models and Boundary Representations

In the following, we will use the term CAD model to re-fer

to a geometric shape defined by a boundary representa-tion (B-

Rep). The boundary representation describes mod-els by their

topology (faces, edges, and vertices) as well as their geometry

(surfaces, curves, and points). The topol-ogy description is

organized in a hierarchical way: Solids are bound by a set of

oriented faces which are called shells; Faces are bound by

wires which are ordered lists of edges (the order defines the

face orientation); Edges are the ori-ented connections between

2 vertices; Vertices are the basic entities, corresponding to

points in space.

Each of these entities has a geometric description, which

allows us to embed the model in 3D space. In our dataset, each

surface can represent a plane, cone, cylinder, sphere, torus,

surface of revolution or extrusion or NURBS patch

[26]. Similarly, curves can be lines, circles, ellipses,
parabolas, hyperbolas or NURBS curves [26]. Each vertex
has coordinates in 3D space. An additional complexity is
added by trimmed patches (see [26] for a full description).

3.2. Processing Pipeline

Assembling a dataset of such a large size is a time-

consuming task where many design decisions have to be made

beforehand: as an example, it requires around 2 CPU years to

extract triangle meshes for 1 million CAD models.

To encourage active community participation and easy

adoption, we use accessible, well-supported open-source

tools, instead of relying on commercial CAD software. It

allows the community to use and expand our dataset in the

future. Our pipeline is designed to run in parallel on large

computing clusters.

The Onshape public collection is not curated. It con-tains

all the public models created by their users, without any

additional filtering. Despite the fact that all models have been

manually created, there is a small percentage of imperfect

models with broken boundaries, self-intersecting faces or

edges, as well as duplicate vertices. In addition to that, there

are many duplicate models, and especially mod-els that are just

made of single primitives such as a plane,

box or cylinder, probably created by novice users that were
learning how to use Onshape.

Given the massive size of the dataset, we developed a set of

geometric and topological criteria to filter low quality of

defective models, which we describe in the supplementary

material, and we leave a semantic, crowd-sourced filtering and

annotation as a direction for future work.

Step 1: B-Rep Loading and Translation. The STEP files
[8] we obtain from Onshape contain the boundary repre-

sentation of the CAD model, which we load and query

using the open-source software Open Cascade [6]. The

translation process generates for each surface patch and

curve segment an explicit parameterization, which can be

sampled at arbitrary resolution.

Step 2: Meshing/Discretization. The parameterizations

of the patches are then sampled and triangulated using the
open-source software Gmsh [28]. We offer an option here

to select between uniform (respecting a maximal edge
length) and curvature adaptive sampling.

Step 3: Topology Tree Traversal/Data Extraction. The

sampling of B-Rep allows to track correspondences be-tween

the continuous and discrete representations. As they can be

differentiated at arbitrary locations, it is possible to calculate

ground truth differential quantities for all sam-ples of the

discrete model. Another advantage is the ex-plicit topology

representation in B-Rep models, which can be transferred to

the mesh in the form of labels. These la-bels define for each

triangle of the discrete mesh to which surface patch it

belongs. The same applies also for the curves, we can label

edges in the discrete mesh as sharp feature edges. While CAD

kernels provide this informa-tion, it is difficult to extract it in

a format suitable for learn-ing tasks. Our pipeline exports this

information in yaml files with a simple structure (see

supplementary material).

Step 4: Post-processing. We provide tools to filter our
meshes depending on quality or number of patches, to
compute mesh statistics, and to resample the generated
surfaces to match a desired number of vertices [27].

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 919 Copyright @ 2019 Authors

Figure 3: Each model in our dataset is composed of mul-
tiple patches and feature curves. The two images show the
distribution of types of patches (left) and curves (right) over
the current dataset (≈ 1M models).

Figure 4: Histograms over the number of patches and
curves per CAD model. This shows that there are many

simpler models which consist of less than 30 patches/100
curves as well as more complex ones. Both histograms are
truncated at the right side.

3.3. Analysis and Statistics

We show an overview of the models in the dataset in Fig-

ures 1 and 2. In Figure 3 and 4 we show the distribution of

surface and edge types and the histogram of patch and edge

numbers, to give an impression of the complexity and va-riety

of the dataset. Updated statistics about the growing dataset are

available on our dataset website [1].

4. Supported Applications

We briefly overview a set of applications that may
benefit from our dataset, that can be used as either training
data or as a benchmark.

Patch Decomposition. Each object in our collection is

naturally divided into surface regions, separated by feature

lines. The decomposition is defined by the author when a

shape is constructed, and is likely to be semantically mean-

ingful. It is also constrained by a strong geometric criteria:

each region should be representable by a (possibly

trimmed) NURBS patch.

Surface Vectorization. The B-rep of a CAD models is the

counterpart of a vector representation for images, that can

be resampled at any desired resolution. The conversion of a

surface triangle mesh into a B-rep is an interesting and

challenging research direction, for which data driven meth-

ods are still at their infancy [49, 50, 25].

Estimation of Differential Quantities. Our models have

ground truth normals and curvature values making them an

ideal, objective benchmark for evaluating algorithms to
pre-dict these quantities on point clouds or triangle meshes

of artificial origin.

Sharp Feature Detection. Sharp features are explicitly

encoded in the topological description of our models, and it
is thus possible to obtain ground truth data for predicting
sharp features on point clouds [56] and meshes.

Shape Reconstruction. Since the ground truth geometry is
known for B-rep models, they can be used to simulate a

scanning setup and quantitatively evaluate the reconstruc-
tion errors of both reconstruction [13, 53] and point cloud

upsampling [61] techniques.

Image Based Learning Tasks. Together with the dataset,

we provide a rendering module (based on Blender [2]) to

generate image datasets. It supports rendering of models

posed in physically static orientations on a flat plane, differ-

ent lighting situations, materials, camera placements (half-

dome, random) as well as different rendering modes (depth,

color, contour). Note that all these images can be consid-

ered ground truth, since there is no geometric approxima-

tion error.

Robustness of Geometry Processing Algorithms. Be-

sides data-driven tasks, the dataset can also be employed for

evaluating the robustness of geometry processing algo-

rithms. Even a simple task like normal estimation is prob-

lematic on such a large dataset. Most of the methods we

evaluated in Section 5.1 fail (i.e. produce invalid normals

with length zero or which contain NANs) on at least one

model: our dataset is ideal for studying and solving these

challenging robustness issues.

5. Normal Estimation Benchmarks

We now introduce a set of large scale benchmarks to

evaluate algorithms to compute surface normals, exploiting

the availability of ground truth normals on the B-rep mod-

els. To the best of our knowledge, this is the first large scale

study of this kind, and the insights that it will provide will

be useful for the development of both data-driven and ana-

lytic methods.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 920 Copyright @ 2019 Authors

Figure 5: Samples from the different categories in our normal estimation benchmark. From left to right: local patches of
growing size and complexity (512, 1024, 2048 vertices), and full models at different densities (512, 1024, 2048 vertices).

Construction. To fairly compare a large variety of both data-

driven and analytic methods, some targeting local esti-mation

and some one-shot prediction of all normals of a 3D model, we

build a series of datasets by randomly sampling points on our

meshed B-reps, and growing patches of dif-ferent sizes,

ranging from 512 vertices to the entire model (Figure 5). For

each patch size, we generate 4 benchmarks with an increasing

number of patches, from 10k to 250k, to study how the data-

driven algorithms behave when they are trained on a larger

input set.

Split. All benchmark datasets are randomly split into

training and test set with a distribution of 80% training data
and 20% test data. The split will be provided to make the
results reproducible.

5.1. Evaluation

Algorithms. We select 12 representative algorithms from the

literature, and 5 of them are traditional ones, Robust Sta-

tistical Estimation on Discrete Surfaces (RoSt) [35] operat-ing

on point clouds (PC), and meshes (M), Osculating Jets (Jets)

[21], also on point clouds and meshes, and Uniform weighting

of adjacent face normals (Uniform) [34]. No-tice that we

replace K-ring neighborhoods with K-nearest neighbors for

RoSt and Jets to support point cloud input. Also, 7 machine

learning methods are selected, including PointNet++ (PN++)

[47], Dynamic Graph CNN (DGCNN) [55], Pointwise CNN

(PwCNN) [32], PointCNN (PCNN) [38], Laplacian Surface

Network (Laplace) [37], PCP-Net (PCPN) [29] and Point

Convolutional Neural Networks by Extension Operators

(ExtOp) [11]. Of these methods, Laplace operates on triangle

mesh input and the rest on point cloud input. Most of their

output is one normal per vertex, except for PCPN and ExtOp

the output is one nor-mal for the center of the patch. We

provide a detailed ex-planation of the (hyper-)parameters and

modifications we did for each method in the supplementary

material. For the statistics, we used only the valid normals

reported by each method, and we filtered out all the degenerate

ones.

Protocol. We compare the methods above on the bench-
marks, using the following protocol: (1) for each method,
we obtained the original implementation from the authors

(or a reimplementation in popular libraries); (2) we used the

recommended or default values for all (hyper-)parameters of

the learning approaches (if these were not provided, we fine-

tuned them on a case by case basis); (3) if the imple-mentation

does not directly support normal estimation, we modified their

code following the corresponding descrip-tion in the original

paper (4) we used the same loss func-tion 1 − N
T

Nˆ
2

, with N

as the estimated normal and Nˆ as the ground truth normal, for

all methods. Note that this loss function does not penalize

normals that are inverted (flipped by 180
◦
), which is an

orthogonal problem usually fixed as in a postprocessing step

[31].

Results. A listing of the statistical results for all meth-ods is

given in Table 2. Our experiments show that neu-ral networks

for normal estimation are stable across several runs; standard

deviation of the losses is of the order of 10
−3

. For the 10k

dataset, most of the networks converge within 24 hours on a

NVIDIA GeForce GTX 1080 Ti GPU. We capped the training

time of all methods to 72 hours.

Comparison of Data-Driven Methods. We observe, as

expected, that the error is reduced as we increase the num-
ber of samples in the training set, this is consistent for all

methods on both patches and full models. However, the im-
provement is modest (Figures 6 and 7).

Sampling Resolution on Full Models. We also explore how

data-driven methods behave when sampling resolution is

growing. DGCNN, PCNN, and PwCNN clearly benefit from

sampling resolution, while PN++ does not show clear

improvements. This phenomenon is likely linked to the spa-

tial subsampling mechanism that is used to ensure sublinear

time in training, but prevents this method from leveraging the

extra resolution. In case of Laplace surface network, it is

difficult to understand the effect since it did not converge after

3 days of training on the highest resolution.

Comparison of Analytic Methods. Analytic methods are

remarkably consistent across dataset sizes and improve as

the mesh sampling resolution is increased. The methods

based on surface connectivity heavily outperform those re-

lying on K-nearest neighbour estimation, demonstrating

that connectivity is a valuable information for this task.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 921 Copyright @ 2019 Authors

PN++ PwCNN Laplace Jets PC Jets M

DGCNN PCNN RoSt PC RoSt M Uniform

0 20 40 60 80

Figure 6: Plot of angle deviation error for the lower resolu-
tion patches (512 points) benchmark, using different
sample size (top to bottom: 10k, 50k, and 100k).

PN++ PwCNN Laplace Jets PC Jets M

DGCNN PCNN RoSt PC RoSt M Uniform

6. Conclusion

We introduced a new large dataset of CAD models, and

a set of tools to convert them into the representations used

by deep learning algorithms. The dataset will continue to

grow as more models are added to the Onshape public col-

lection. Large scale learning benchmarks can be created us-

ing the ground truth signals that we extract from the CAD

data, as we demonstrate for the estimation of differential

surface quantities.

The result of our comparison will be of guidance to the

development of new geometric deep learning methods. Our

surprising conclusion is that, while deep learning meth-ods

which use only 3D points are superior to analytical methods,

this is not the case when connectivity informa-tion is available.

This suggests that existing graph architec-tures struggle at

exploiting the connectivity efficiently and are considerably

worse than the simplest analytical method (uniform), which

simply averages the normals of neigh-bouring faces. It would

be interesting to run a similar study by extending these

algorithms to correctly identify and pre-dict multiple normals

on sharp features and compare them with specialized methods

for this task [18].

Another surprising discovery is that even the uniform al-

gorithm fails to produce valid normals on roughly 100 mod-els

in our dataset due to floating point errors. These kinds of

problems are extremely challenging to identify, and we believe

that the size and complexity of our dataset are an ideal stress

test for robust geometry processing algorithms.

0 20 40 60 80

Figure 7: Plot of angle deviation error for the high-
resolution (2048 points) full model benchmark, using dif-
ferent sample size (top to bottom: 10k, 50k, and 100k).

Data-Driven vs. Analytic Methods. Almost all data-driven

methods perform well against analytic methods for point

clouds, especially if the model resolution is low. How-ever, if

the analytic methods are allowed to use connectiv-ity

information, they outperform all learning methods by a large

margin, even those also using connectivity informa-tion. To

further support this conclusion, we run a similar experiment on

a simpler, synthetic dataset composed of 10k and 50k random

NURBS patches and observe similar re-sults, which are

available in the supplementary material.

7. Distribution

The dataset and all information is available at:
https://deep-geometry.github.io/abc-dataset

It is distributed under the MIT license and split into chunks

of 10k models for each data type. The copyright owners of

the models are the respective creators (listed in the meta

information). The geometry processing pipeline is made

available under the GPL license in form of a containerized

software solution (Docker [3] and Singularity [7]) that can

be run on every suitable machine.

Acknowledgements

We are grateful to Onshape for providing the CAD models and

support. This work was supported in part through the NYU IT

High Performance Computing resources, services, and staff

expertise. Funding provided by NSF award MRI-1229185. We

thank the Skoltech CDISE HPC Zhores cluster staff for comput-

ing cluster provision. This work was supported in part by NSF

CAREER award 1652515, the NSF grants IIS-1320635, DMS-

1436591, and 1835712, the Russian Science Foundation under

Grant 19-41-04109, and gifts from Adobe Research, nTopology

Inc, and NVIDIA.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 922 Copyright @ 2019 Authors

Method/
Vertices

PN
++

512

1024

D
G

C
N

N

2048
2048

 512

P
w

C
N

N

1024

2048
 512

 1024

P
C

N
N

512

1024

 2048

La
pl

ac

e

512
2048

 1024

P
C

P
N

et

512
2048

 1024

E
x
tO

p

512

1024

 2048

P
C

512

R
o

S
t 1024

2048

P
C

512

1024

Je
ts

2048

M

512

R
o

S
t 1024

2048

M

512

1024

Je
ts

2048

U
ni

fo

rm

2048
 512

 1024

 Full Models Patches

 Loss Angle Deviation [
◦
] Loss Angle Deviation [

◦
]

10k 50k 100k 10k 50k 100k 10k 50k 100k 10k 50k 100k

0.168 0.155 0.142 7.83 7.32 6.43 0.034 0.032 0.025 1.70 1.42 1.10

0.180 0.163 0.160 7.49 6.06 6.17 0.056 0.052 0.048 2.11 1.57 1.51

0.171 0.156 0.149 6.75 5.47 5.08 0.081 0.071 0.063 2.48 1.77 1.44

0.177 0.167 0.144 9.61 8.32 7.13 0.054 0.049 0.025 3.20 3.00 1.12

0.126 0.104 0.099 5.91 4.59 4.34 0.048 0.036 0.024 2.98 2.15 1.13

0.090 0.070 0.068 4.54 2.80 2.77 0.045 0.035 0.023 2.66 1.95 0.98

0.273 0.260 0.252 18.73 17.27 16.36 0.092 0.069 0.067 4.71 3.45 3.43

0.217 0.218 0.198 12.78 13.10 11.38 0.107 0.110 0.089 5.50 6.11 4.58

0.188 0.176* 0.168* 11.34 10.54* 10.05* 0.107 0.120* 0.094 5.98 6.36* 4.83

0.146 0.153 0.139 6.47 6.96 6.15 0.037 0.043 0.028 1.84 1.84 1.42

0.104 0.099 0.103 3.56 3.46 3.69 0.025 0.030 0.025 0.94 1.37 0.92

0.065 0.070 0.067 2.05 2.44 2.22 0.023 0.025 0.023* 0.88 1.01 0.83*

0.282 0.203 0.133 20.01 11.94 8.47 0.041 0.047 0.022 1.93 3.13 1.12

0.211 0.138 0.146* 34.24 9.43 9.85* 0.030 0.027 0.029* 1.65 1.36 1.46*

0.197 0.148* 0.158* 9.99 9.95* 10.57* 0.031 0.040 0.040* 1.60 1.67 1.81*

– – – – – – 0.098† 0.081† – 9.95† 9.28† –

– – – – – – 0.123† 0.097† – 13.89† 9.55† –

– – – – – – 0.142† 0.200† – 16.24† 16.45† –

– – – – – – 0.074† 0.073† – 2.42† 2.05† –

– – – – – – 0.095† 0.096† – 3.32† 2.50† –

– – – – – – 0.091† – – 3.00† – –

0.298 0.300 – 21.32 21.36 – 0.083 0.082 – 0.82 0.79 –

0.220 0.223 – 14.47 14.63 – 0.078 0.077 – 0.74 0.72 –

0.164 0.166 – 9.96 10.18 – 0.073 0.072 – 0.59 0.62 –

0.260 0.261 – 17.84 17.97 – 0.050 0.050 – 0.05 0.05 –

0.183 0.186 – 12.19 12.39 – 0.048 0.048 – 0.05 0.05 –

0.129 0.132 – 8.41 8.63 – 0.045 0.044 – 0.04 0.04 –

0.082 0.084 0.084 2.15 2.17 2.18 0.108 0.103 0.102 0.06 0.06 0.06

0.053 0.055 0.056 0.25 0.29 0.29 0.107 0.105 0.105 0.06 0.06 0.06

0.047 0.048 0.050 0.08 0.08 0.08 0.112 0.108 0.107 0.06 0.06 0.06

0.175 0.176 0.175 7.26 7.29 7.29 0.036 0.036 0.036 0.00 0.00 0.00

0.118 0.118 0.117 0.10 0.10 0.11 0.033 0.033 0.033 0.00 0.00 0.00

0.078 0.079 0.079 0.01 0.02 0.02 0.029 0.031 0.031 0.00 0.00 0.00

0.024 0.025 0.024 0.26 0.29 0.28 0.007 0.007 0.007 0.00 0.00 0.00

0.013 0.013 0.013 0.00 0.00 0.00 0.005 0.005 0.005 0.00 0.00 0.00

0.009 0.010 0.009 0.00 0.00 0.00 0.004 0.005 0.004 0.00 0.00 0.00

Table 2: Statistical results for all evaluated methods for the full model and patch benchmarks. The loss is calculated as 1 −

N
T

Nˆ 2 and the angle deviation is calculated as the angle in degrees (N, Nˆ) between ground truth normal and estimated

normal. For the loss we report the mean over all models, for the angle deviation we report the median of all models in the
according datasets. Osculating Jets and Robust Statistical Estimation are evaluated both on point cloud inputs (PC suffix;
comparable to the learning methods) as well as mesh inputs (M suffix). †: PCPNet and ExtOp were not run on full models
since they compute only 1 normal per patch (and their loss, differently from all other rows, is computed only on the vertex
in the center of the patch). *: the training was not completed before the time limit is reached, and the partial result is used for
inference.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 923 Copyright @ 2019 Authors

References

[1] ABC-Dataset. https://deep-geometry.
github.io/abc-dataset. Accessed: 2019-03-
20.

[2] Blender. https://www.blender.org/. Ac-

cessed: 2018-11-14.

[3] Docker. https://www.docker.com/. Ac-
cessed: 2018-11-11.

[4] NIST CAD Models and STEP Files with PMI.

https://catalog.data.gov/dataset/

nist-cad-models-and-step-files-

with-pmi. Accessed: 2018-11-11.

[5] Onshape. https://www.onshape.com/. Ac-
cessed: 2018-11-14.

[6] Open CASCADE Technology OCCT. https://

www.opencascade.com/. Accessed: 2018-11-
11.

[7] Singularity. https://singularity.lbl.

gov/. Accessed: 2018-11-11.

[8] STEP File Format. https://en.wikipedia.
org/wiki/ISO_10303-21. Accessed: 2018-11-
11.

[9] The princeton shape benchmark. In Proceedings of

the Shape Modeling International 2004, SMI ’04,
pages 167–178, Washington, DC, USA, 2004. IEEE
Com-puter Society.

[10] P. Alliez, S. Giraudot, C. Jamin, F. Lafarge,

Q. Merigot,´ J. Meyron, L. Saboret, N. Salman, and

S. Wu. Point set processing. In CGAL User and Ref-
erence Manual. CGAL Editorial Board, 4.13 edition,
2018.

[11] M. Atzmon, H. Maron, and Y. Lipman. Point convo-

lutional neural networks by extension operators. ACM
Trans. Graph., 37(4):71:1–71:12, July 2018.

[12] M. Aubry, D. Maturana, A. Efros, B. Russell, and

J. Sivic. Seeing 3d chairs: exemplar part-based 2d-3d
alignment using a large dataset of cad models. In
CVPR, 2014.

[13] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and

C. T. Silva. A benchmark for surface reconstruc-tion.
ACM Transactions on Graphics (TOG), 32(2):20,
2013.

[14] F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black.

Dynamic FAUST: Registering human bodies in mo-
tion. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[15] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein,

U. Castellani, and P. Vandergheynst. Learning class-

specific descriptors for deformable shapes using lo-

calized spectral convolutional networks. In Computer

Graphics Forum, volume 34, pages 13–23. Wiley
On-line Library, 2015.

[16] D. Boscaini, J. Masci, E. Rodola,` and M. Bronstein.

Learning shape correspondence with anisotropic con-
volutional neural networks. In Advances in Neural

Information Processing Systems, pages 3189–3197,

2016.

[17] A. Boulch and R. Marlet. Fast and robust normal esti-

mation for point clouds with sharp features. Comput.

Graph. Forum, 31(5):1765–1774, Aug. 2012.

[18] A. Boulch and R. Marlet. Deep learning for robust

normal estimation in unstructured point clouds. In
Proceedings of the Symposium on Geometry Process-

ing, SGP ’16, pages 281–290, Goslar Germany, Ger-
many, 2016. Eurographics Association.

[19] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and

P. Vandergheynst. Geometric deep learning: going be-
yond euclidean data. IEEE Signal Processing Maga-
zine, 34(4):18–42, 2017.

[20] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun.

Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203, 2013.

[21] F. Cazals and M. Pouget. Estimating differential quan-

tities using polynomial fitting of osculating jets. Com-

puter Aided Geometric Design, 22(2):121 – 146, 2005.

[22] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song,

H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An
Information-Rich 3D Model Repository. Technical

Report arXiv:1512.03012 [cs.GR], Stanford Univer-
sity — Princeton University — Toyota Technological
Institute at Chicago, 2015.

[23] A. Dai, A. X. Chang, M. Savva, M. Halber,

T. Funkhouser, and M. Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE, 2017.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst.

Convolutional neural networks on graphs with fast lo-

calized spectral filtering. In Advances in Neural Infor-

mation Processing Systems, pages 3844–3852, 2016.

[25] T. Du, J. P. Inala, Y. Pu, A. Spielberg, A. Schulz,

D. Rus, A. Solar-Lezama, and W. Matusik. Inver-
secsg: Automatic conversion of 3d models to csg
trees. ACM Trans. Graph, 37(6):213, 2018.

[26] G. Farin. Curves and Surfaces for CAGD: A Practical

Guide. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 5th edition, 2002.

[27] M. Garland and P. S. Heckbert. Surface simplification

using quadric error metrics. In Proceedings of the 24th

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 924 Copyright @ 2019 Authors

Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’97, pages 209–216,
New York, NY, USA, 1997. ACM Press/Addison-
Wesley Publishing Co.

[28] C. Geuzaine and J. F. Remacle. Gmsh: a three-

dimensional finite element mesh generator with built-in

pre- and post-processing facilities. International Journal

for Numerical Methods in Engineering, 2009.

[29] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J.

Mi-tra. PCPNet: Learning local shape properties from
raw point clouds. Computer Graphics Forum,
37(2):75– 85, 2018.

[30] M. Henaff, J. Bruna, and Y. LeCun. Deep convo-

lutional networks on graph-structured data. arXiv
preprint arXiv:1506.05163, 2015.

[31] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and

W. Stuetzle. Surface reconstruction from
unorganized points, volume 26. ACM, 1992.

[32] B.-S. Hua, M.-K. Tran, and S.-K. Yeung. Point-wise

convolutional neural networks, 2017. cite
arxiv:1712.05245Comment: 10 pages, 6 figures, 10
tables. Paper accepted to CVPR 2018.

[33] A. Jacobson, D. Panozzo, et al. libigl: A simple C++

geometry processing library, 2018.
http://libigl.github.io/libigl/.

[34] S. Jin, R. R. Lewis, and D. West. A comparison of

algorithms for vertex normal computation. Vis. Com-
put., 21(1-2):71–82, Feb. 2005.

[35] E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and

K. Singh. Robust statistical estimation of curvature on
discretized surfaces. In Proceedings of the Fifth Eu-
rographics Symposium on Geometry Processing, SGP

’07, pages 13–22, Aire-la-Ville, Switzerland, Switzer-
land, 2007. Eurographics Association.

[36] T. N. Kipf and M. Welling. Semi-supervised clas-

sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[37] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and

B. Joan. Surface networks. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR,
2018.

[38] Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn. CoRR,

abs/1801.07791, 2018.

[39] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel.

Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

[40] H. Maron, M. Galun, N. Aigerman, M. Trope,

N. Dym, E. Yumer, V. G. Kim, and Y. Lipman. Convo-

lutional neural networks on surfaces via seamless toric

covers. ACM Trans. Graph, 36(4):71, 2017.

[41] J. Masci, D. Boscaini, M. Bronstein, and P. Van-

dergheynst. Geodesic convolutional neural networks
on riemannian manifolds. In Proceedings of the IEEE

international conference on computer vision work-
shops, pages 37–45, 2015.

[42] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svo-

boda, and M. M. Bronstein. Geometric deep learning
on graphs and manifolds using mixture model cnns. In
Proc. CVPR, volume 1, page 3, 2017.

[43] C. Mura, G. Wyss, and R. Pajarola. Robust normal

estimation in unstructured 3d point clouds by selective
normal space exploration. Vis. Comput., 34(6-8):961–
971, June 2018.

[44] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P.

Seidel. Multi-level partition of unity implicits. ACM
Trans. Graph., 22(3):463–470, July 2003.

[45] M. Pouget and F. Cazals. Estimation of local differ-

ential properties of point-sampled surfaces. In CGAL
User and Reference Manual. CGAL Editorial Board,
4.13 edition, 2018.

[46] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Point-net:

Deep learning on point sets for 3d classification and
segmentation. Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1(2):4, 2017.

[47] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++:

Deep hierarchical feature learning on point sets in a
metric space. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information
Process-ing Systems 30, pages 5099–5108. Curran
Associates, Inc., 2017.

[48] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,

and G. Monfardini. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61–80,
2009.

[49] V. Shapiro and D. L. Vossler. Construction and opti-

mization of csg representations. Comput. Aided Des.,
23(1):4–20, Feb. 1991.

[50] G. Sharma, R. Goyal, D. Liu, E. Kalogerakis, and

S. Maji. Csgnet: Neural shape parser for constructive

solid geometry. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018.

[51] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A

rgb-d scene understanding benchmark suite. 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 567–576, 2015.

[52] S. Sukhbaatar, R. Fergus, et al. Learning multiagent

communication with backpropagation. In Advances in
Neural Information Processing Systems, pages 2244–
2252, 2016.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-09 Issue-02 May - August 2019

Page | 925 Copyright @ 2019 Authors

[53] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein.

Noise analysis and synthesis for 3d laser depth scan-
ners. Graphical Models, 71(2):34 – 48, 2009. IEEE

International Conference on Shape Modeling and Ap-
plications 2008.

[54] N. Verma, E. Boyer, and J. J. Verbeek. Feastnet: Feature-

steered graph convolutions for 3d shape anal-ysis. 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2598–2606, 2018.

[55] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bron-
stein, and J. M. Solomon. Dynamic graph cnn for
learning on point clouds. CoRR,
abs/1801.07829,2018.

[56] C. Weber, S. Hahmann, and H. Hagen. Sharp feature

detection in point clouds. In Proceedings of the 2010
Shape Modeling International Conference, SMI ’10,
pages 175–186, Washington, DC, USA, 2010. IEEE
Computer Society.

[57] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li.
Dense human body correspondences using convolu-
tional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 1544–1553, 2016.

[58] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang,
and J. Xiao. 3d shapenets: A deep representation for
volumetric shapes. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages

1912–1920, June 2015.
[59] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang,

and J. Xiao. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,

pages 1912–1920, 2015.

[60] L. Yi, H. Su, X. Guo, and L. J. Guibas. Syncspeccnn:

Synchronized spectral cnn for 3d shape segmentation.
In CVPR, pages 6584–6592, 2017.

[61] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng.

Pu-net: Point cloud upsampling network. In Proceed-
ings of IEEE Conference on Computer Vision and
Pat-tern Recognition (CVPR), 2018.

[62] Q. Zhou and A. Jacobson. Thingi10k: A dataset

of 10,000 3d-printing models. arXiv preprint
arXiv:1605.04797, 2016.

