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Abstract 1. Introduction  

 
We present the ABC-Dataset, a database of one million 

Computer-Aided Design (CAD) models for the study of 

geometric deep learning techniques and applications. For 

the purposes of differential quantities, patch segmentation, 

geometric feature recognition, and form reconstruction, 

each model is a set of explicitly parametrized curves and 

surfaces. In order to generate data in various for-mats and 

resolutions, sampling the parametric descriptions of 

surfaces and curves makes it possible to generate fair 

comparisons for a variety of geometric learning methods. 

We carry out a large-scale benchmark for the estimation of 

surface normals using our dataset as a use case. We 

compare current data-driven methods and assess their 

effectiveness against both the ground truth and 

conventional normal estimate methods. 

.  

 
The combination of large data collections and deep 

learning algorithms is transforming many areas of computer 

science. Large data collections are an essential part of this 

transformation. Creating these collections for many types 

of data (image, video, and audio) has been boosted by the 

ubiquity of acquisition devices and mass sharing of these 

types of data on social media. In all these cases, the data 

representation is based on regular discretization in space 

and time providing structured and uniform input for deep 

learning algorithms. 
 

The situation is different for three-dimensional geomet-ric 

models. Acquiring or creating high-quality models of this type 

is still difficult, despite growing availability of 3D sensors, and 

improvements in 3D design tools. Inherent ir- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Random CAD models from the ABC-Dataset 
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regularity of the surface data, and still-significant level of skill 

needed for creating high-quality 3D shapes contributes to the 

limited availability of geometric datasets. Irregularity of 

geometric data is reflected in commonly used geometric 

formats, which differ in fundamental ways from formats for 

images, video, and audio. Existing datasets often lack reli-able 

ground truth annotations. We further discuss currently 

available geometric datasets in Section 2. 
 

Common shape analysis and geometry processing tasks 

that can benefit from geometric deep learning include esti-

mation of differential surface properties (Section 5.1), fea-

ture detection, and shape reconstruction. Ground truth for 

some of these tasks is hard to generate, as marking features 

by hand is a laborious task and differential properties can 

only be approximated for sampled surfaces.  
In this work, we make the following contributions: 

 

Dataset. We introduce a dataset for geometric deep learn-ing 

consisting of over 1 million individual (and high quality) 

geometric models, each defined by parametric surfaces and 

associated with accurate ground truth information on the de-

composition into patches, sharp feature annotations, and an-

alytic differential properties. We gather the models through a 

publicly available interface hosted by Onshape [5]. Simi-lar to 

vector graphics for images, this representation allows 

resampling the surface data at arbitrary resolutions, with or 

without connectivity information (i.e. into a point cloud or a 

mesh). 

 
Benchmark. We demonstrate the use of the dataset by 

building a benchmark for the estimation of surface normals. 

This benchmark is targeting methods that compute normals  
(1) locally on small regions of a surface, and (2) globally over 

the entire surface simultaneously. We have chosen this 

problem for two reasons: most existing geometric deep 

learning methods were tested on this task, and very precise 

ground truth can be readily obtained for shapes in our data set. 

We run the benchmark on 7 existing deep learning algo-rithms, 

studying how they scale as the dataset size increases, and 

comparing them with 5 traditional geometry processing 

algorithms to establish an objective baseline for future al-

gorithms. Results are presented in Section 5.1. 

 

Processing Pipeline. We develop an open-source geom-

etry processing pipeline that processes the CAD models to 

directly feed deep learning algorithms. Details are provided 

in Section 3. We will continually update the dataset and 

benchmark as more models are added to the public collec-

tion of models by Onshape. Our contribution adds a new 

resource for the development of geometric deep learning, 

targeting applications focusing on human-created, mechan-

ical shapes. It will allow researchers to compare against 

existing techniques on a large and realistic dataset of man-

made objects. 
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ABC 1,000,000+ X X X – – 

ShapeNet* [22] 3,000,000+ – – – X X 

ShapeNetCore 51,300 – – – X X 

ShapeNetSem 12,000 – – – X X 

ModelNet [58] 151,128 – – – X X 

Thingi10K [62] 10,000 – – – – X 

PrincetonSB[9] 6670 – – – – X 

NIST [4] ≤ 30 X X X – – 
       

 

Table 1: Overview of existing datasets and their capabili-
ties. *: The full ShapeNet dataset is not yet publicly avail-
able, only the subsets ShapeNetCore and ShapeNetSem. 
 
 

2. Related Work 
 

We review existing datasets for data-driven processing 
of geometrical data, and then review both data-driven and 
analytical approaches to estimate differential qualities on 
smooth surfaces. 
 
3D Deep Learning Datasets. The community has seen a 

growth in the availability of 3D models and datasets. 

Segmentation and classification algorithms have benefited 

greatly from the most prominent ones [22, 58, 62, 9]. Fur-ther 

datasets are available for large scenes [51, 23], mesh 

registration [14] and 2D/3D alignment [12]. The dataset 

proposed in this paper has the unique property of containing 

the analytic representation of surfaces and curves, which is 

ideal for a quantitative evaluation of data-driven methods. 

Table 1 gives an overview of the most comparable datasets and 

their characteristics and capabilities. 
 
Point Cloud Networks. Neural networks for point clouds 

are particularly popular, as they make minimal assumptions 

on input data. One of the earliest examples is PointNet [46] 

and its extension PointNet++ [47], which ensure that the 

network output is invariant with respect to point permuta-

tions. PCPNet [29] is a variation of PointNet tailored for 

estimating local shape properties: it extracts local patches 

from the point cloud, and estimates local shape properties 

at the central points of these patches. PointCNN [38] 

explores the idea of learning a transformation from the 

initial point cloud, which provides the weights for input 

points and as-sociated features, and produces a permutation 

of the points into a latent order. 
 

Point Convolutional Neural Networks by Extension Op-

erators [11] is a fundamentally different way to process point 

clouds through mapping point cloud functions to vol-umetric 

functions and vice versa through extension and re- 
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striction operators. A similar volumetric approach has been 

proposed in Pointwise Convolutional Neural Networks [32] 

for learning pointwise features from point clouds. 
 

PointNet-based techniques, however, do not attempt to 

use local neighborhood information explicitly. Dynamic 

Graph CNNs [55] uses an operation called EdgeConv, 

which exploits local geometric structures of the point set by 

generating a local neighborhood graph based on proxim-ity 

in the feature space and applying convolution-like op-

eration on the edges of this graph. In a similar fashion, 

FeaStNet [54] proposes a convolution operator for general 

graphs, which applies filter kernels in a data-driven manner 

to the local irregular neighborhoods. 

 
Networks on Graphs and Manifolds. Neural networks for 

graphs have been introduced in [48], and extended in [39, 52]. 

A wide class of convolutional neural networks with spectral 

filters on graphs was introduced in [20] and developed further 

in [30, 24, 36]. Graph convolutional neu-ral networks were 

applied to non-rigid shape analysis in [15, 60]. Surface 

Networks [37] further proposes the use of the differential 

geometry operators to extend GNNs to exploit properties of the 

surface. For a number of problems where quantities of interest 

are localized, spatial filters are more suitable than spectral 

filters. A special CNN model for meshes which uses intrinsic 

patch representations was pre-sented in [41], and further 

generalized in [16, 42]. In con-trast to these intrinsic models, 

Euclidean models [59, 57] need to learn the underlying 

invariance of the surface em-bedding, hence they have higher 

sample complexity. More recently, [40] presented a surface 

CNN based on the canon-ical representation of planar flat-

torus. We refer to [19] for an extensive overview of geometric 

deep learning methods. 

 
Analytic Normal Estimation Approaches. The simplest 

methods are based on fitting tangent planes. For a point set, 

these methods estimate normals in the points as directions of 

smallest co-variance (i.e., the tangent plane is the total least 

squares fit to the points in the neighborhood). For a triangle 

mesh, normals of the triangles adjacent to a vertex can be used 

to compute a vertex normal as a weighted aver-age. We 

consider uniform, area, and angle weighting [34]. 
 

One can also fit higher order surfaces to the discrete sur-

face data. These methods first estimate a tangent plane, and 

then fit a polynomial over the tangent plane that interpo-lates 

the point for which we want to estimate the normal (a so-called 

osculating jet [21]). A more accurate normal can then be 

recomputed from the tangents of the polyno-mial surface 

approximation at the point. The difference for triangle meshes 

and point sets is only in collecting the sam-ples in the 

neighborhood. In addition, one can use robust statistics to 

weight the points in the neighborhood [35]. 
 

For the weighted triangle normals we use the implemen-
tation of libigl [33], for computation of co-variance normals 

 
and osculating jets we use the functions in CGAL [45, 10]. 
For the robust estimation the authors have provided source 
code. There are many other techniques for estimating sur-

face normals (e.g. [43]), however we only focus on a se-
lected subset in the current work. 
 

One important generalization is the detection of sharp edges 

and corners, where more than one normal can be as-signed to 

a point [44, 17]. However, as we only train the ma-chine 

learning methods to report a single normal per point, we leave 

an analysis of these extensions for future work. 

 

3. Dataset 
 

We identify six crucial properties that are desirable for 

an ”ideal” dataset for geometric deep learning: (1) large 

size: since deep networks require large amounts of data, we 

want to have enough models to find statistically signifi-cant 

patterns; (2) ground truth signals: in this way, we can 

quantitatively evaluate the performance of learning on dif-

ferent tasks; (3) parametric representation: so that we can 

resample the signal at the desired resolution without intro-

ducing errors; (4) expandable: it should be easy to make the 

collection grow over time, to keep the dataset challenging 

as progress in learning algorithms is made; (5) variation: 

containing a good sampling of diverse shapes in different 

categories; (6) balanced: each type of objects should have a 

sufficient number of samples. 
 

Since existing datasets are composed of acquired or syn-

thesized point clouds or meshes, they do not satisfy prop-erty 

2 or 3. We thus propose a new dataset of CAD models, which 

is complementary: it satisfies properties 1-4; it is re-stricted to 

a specific type of models (property 6), but has a considerable 

variation inside this class. While restriction to CAD models 

can be viewed as a downside, it strikes a good balance between 

having a sufficient number of similar samples and diversity of 

represented shapes, in addition to having high-quality ground 

truth for a number of quantities. 

 

Acquisition. Onshape has a massive online collection of CAD 

models, which are freely usable for research purposes. By 

collecting them over a period of 4 months we obtained a 

collection of over 1 million models (see Figure 2). 

 

Ground Truth Signals and Vector Representation. The 

data is encoded in a vectorial format that enables to resam-
ple it at arbitrary resolution and to compute analytically a 

large set of signals of interest (Section 4), which can be used 
as a ground truth. 

 

Challenge. However, the data representation is not suit-able 

for most learning methods, and the conversion of CAD models 

to discrete formats is a difficult task. This paper presents a 

robust pipeline to process, and use CAD models as an ideal 

data source for geometry processing algorithms.
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Figure 2: Random examples from the dataset. Most models are mechanical parts with sharp edges and well defined surfaces. 
 
 

3.1. CAD Models and Boundary Representations 
 

In the following, we will use the term CAD model to re-fer 

to a geometric shape defined by a boundary representa-tion (B-

Rep). The boundary representation describes mod-els by their 

topology (faces, edges, and vertices) as well as their geometry 

(surfaces, curves, and points). The topol-ogy description is 

organized in a hierarchical way: Solids are bound by a set of 

oriented faces which are called shells; Faces are bound by 

wires which are ordered lists of edges (the order defines the 

face orientation); Edges are the ori-ented connections between 

2 vertices; Vertices are the basic entities, corresponding to 

points in space. 
 

Each of these entities has a geometric description, which 

allows us to embed the model in 3D space. In our dataset, each 

surface can represent a plane, cone, cylinder, sphere, torus, 

surface of revolution or extrusion or NURBS patch 
 
[26]. Similarly, curves can be lines, circles, ellipses, 
parabolas, hyperbolas or NURBS curves [26]. Each vertex 
has coordinates in 3D space. An additional complexity is 
added by trimmed patches (see [26] for a full description). 
 

3.2. Processing Pipeline 
 

Assembling a dataset of such a large size is a time-

consuming task where many design decisions have to be made 

beforehand: as an example, it requires around 2 CPU years to 

extract triangle meshes for 1 million CAD models. 
 

To encourage active community participation and easy 

adoption, we use accessible, well-supported open-source 

tools, instead of relying on commercial CAD software. It 

allows the community to use and expand our dataset in the 

future. Our pipeline is designed to run in parallel on large 

computing clusters. 
 

The Onshape public collection is not curated. It con-tains 

all the public models created by their users, without any 

additional filtering. Despite the fact that all models have been 

manually created, there is a small percentage of imperfect 

models with broken boundaries, self-intersecting faces or 

edges, as well as duplicate vertices. In addition to that, there 

are many duplicate models, and especially mod-els that are just 

made of single primitives such as a plane, 

 

 

box or cylinder, probably created by novice users that were 
learning how to use Onshape.  

Given the massive size of the dataset, we developed a set of 

geometric and topological criteria to filter low quality of 

defective models, which we describe in the supplementary 

material, and we leave a semantic, crowd-sourced filtering and 

annotation as a direction for future work. 

 
Step 1: B-Rep Loading and Translation. The STEP files  
[8] we obtain from Onshape contain the boundary repre-

sentation of the CAD model, which we load and query 

using the open-source software Open Cascade [6]. The 

translation process generates for each surface patch and 

curve segment an explicit parameterization, which can be 

sampled at arbitrary resolution. 

 

Step 2: Meshing/Discretization. The parameterizations 

of the patches are then sampled and triangulated using the 
open-source software Gmsh [28]. We offer an option here 

to select between uniform (respecting a maximal edge 
length) and curvature adaptive sampling. 

 
Step 3: Topology Tree Traversal/Data Extraction. The 

sampling of B-Rep allows to track correspondences be-tween 

the continuous and discrete representations. As they can be 

differentiated at arbitrary locations, it is possible to calculate 

ground truth differential quantities for all sam-ples of the 

discrete model. Another advantage is the ex-plicit topology 

representation in B-Rep models, which can be transferred to 

the mesh in the form of labels. These la-bels define for each 

triangle of the discrete mesh to which surface patch it 

belongs. The same applies also for the curves, we can label 

edges in the discrete mesh as sharp feature edges. While CAD 

kernels provide this informa-tion, it is difficult to extract it in 

a format suitable for learn-ing tasks. Our pipeline exports this 

information in yaml files with a simple structure (see 

supplementary material). 

 
Step 4: Post-processing. We provide tools to filter our 
meshes depending on quality or number of patches, to 
compute mesh statistics, and to resample the generated 
surfaces to match a desired number of vertices [27]. 
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Figure 3: Each model in our dataset is composed of mul-
tiple patches and feature curves. The two images show the 
distribution of types of patches (left) and curves (right) over 
the current dataset (≈ 1M models).  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Histograms over the number of patches and 
curves per CAD model. This shows that there are many 

simpler models which consist of less than 30 patches/100 
curves as well as more complex ones. Both histograms are 
truncated at the right side. 
 

 

3.3. Analysis and Statistics 
 

We show an overview of the models in the dataset in Fig-

ures 1 and 2. In Figure 3 and 4 we show the distribution of 

surface and edge types and the histogram of patch and edge 

numbers, to give an impression of the complexity and va-riety 

of the dataset. Updated statistics about the growing dataset are 

available on our dataset website [1]. 

 

4. Supported Applications 
 

We briefly overview a set of applications that may 
benefit from our dataset, that can be used as either training 
data or as a benchmark. 
 

Patch Decomposition. Each object in our collection is 

naturally divided into surface regions, separated by feature 

lines. The decomposition is defined by the author when a 

shape is constructed, and is likely to be semantically mean-

ingful. It is also constrained by a strong geometric criteria: 

each region should be representable by a (possibly 

trimmed) NURBS patch. 

 
Surface Vectorization. The B-rep of a CAD models is the 

counterpart of a vector representation for images, that can 

be resampled at any desired resolution. The conversion of a 

surface triangle mesh into a B-rep is an interesting and 

challenging research direction, for which data driven meth-

ods are still at their infancy [49, 50, 25]. 

 

Estimation of Differential Quantities. Our models have 

ground truth normals and curvature values making them an 

ideal, objective benchmark for evaluating algorithms to 
pre-dict these quantities on point clouds or triangle meshes 

of artificial origin. 

 

Sharp Feature Detection. Sharp features are explicitly 

encoded in the topological description of our models, and it 
is thus possible to obtain ground truth data for predicting 
sharp features on point clouds [56] and meshes. 

 

Shape Reconstruction. Since the ground truth geometry is 
known for B-rep models, they can be used to simulate a 

scanning setup and quantitatively evaluate the reconstruc-
tion errors of both reconstruction [13, 53] and point cloud 

upsampling [61] techniques. 

 

Image Based Learning Tasks. Together with the dataset, 

we provide a rendering module (based on Blender [2]) to 

generate image datasets. It supports rendering of models 

posed in physically static orientations on a flat plane, differ-

ent lighting situations, materials, camera placements (half-

dome, random) as well as different rendering modes (depth, 

color, contour). Note that all these images can be consid-

ered ground truth, since there is no geometric approxima-

tion error. 

 

Robustness of Geometry Processing Algorithms. Be-

sides data-driven tasks, the dataset can also be employed for 

evaluating the robustness of geometry processing algo-

rithms. Even a simple task like normal estimation is prob-

lematic on such a large dataset. Most of the methods we 

evaluated in Section 5.1 fail (i.e. produce invalid normals 

with length zero or which contain NANs) on at least one 

model: our dataset is ideal for studying and solving these 

challenging robustness issues. 

 

5. Normal Estimation Benchmarks 
 

We now introduce a set of large scale benchmarks to 

evaluate algorithms to compute surface normals, exploiting 

the availability of ground truth normals on the B-rep mod-

els. To the best of our knowledge, this is the first large scale 

study of this kind, and the insights that it will provide will 

be useful for the development of both data-driven and ana-

lytic methods. 
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Figure 5: Samples from the different categories in our normal estimation benchmark. From left to right: local patches of 
growing size and complexity (512, 1024, 2048 vertices), and full models at different densities (512, 1024, 2048 vertices). 
 

 

Construction. To fairly compare a large variety of both data-

driven and analytic methods, some targeting local esti-mation 

and some one-shot prediction of all normals of a 3D model, we 

build a series of datasets by randomly sampling points on our 

meshed B-reps, and growing patches of dif-ferent sizes, 

ranging from 512 vertices to the entire model (Figure 5). For 

each patch size, we generate 4 benchmarks with an increasing 

number of patches, from 10k to 250k, to study how the data-

driven algorithms behave when they are trained on a larger 

input set. 
 
Split. All benchmark datasets are randomly split into 

training and test set with a distribution of 80% training data 
and 20% test data. The split will be provided to make the 
results reproducible. 
 

5.1. Evaluation 
 
Algorithms. We select 12 representative algorithms from the 

literature, and 5 of them are traditional ones, Robust Sta-

tistical Estimation on Discrete Surfaces (RoSt) [35] operat-ing 

on point clouds (PC), and meshes (M), Osculating Jets (Jets) 

[21], also on point clouds and meshes, and Uniform weighting 

of adjacent face normals (Uniform) [34]. No-tice that we 

replace K-ring neighborhoods with K-nearest neighbors for 

RoSt and Jets to support point cloud input. Also, 7 machine 

learning methods are selected, including PointNet++ (PN++) 

[47], Dynamic Graph CNN (DGCNN) [55], Pointwise CNN 

(PwCNN) [32], PointCNN (PCNN) [38], Laplacian Surface 

Network (Laplace) [37], PCP-Net (PCPN) [29] and Point 

Convolutional Neural Networks by Extension Operators 

(ExtOp) [11]. Of these methods, Laplace operates on triangle 

mesh input and the rest on point cloud input. Most of their 

output is one normal per vertex, except for PCPN and ExtOp 

the output is one nor-mal for the center of the patch. We 

provide a detailed ex-planation of the (hyper-)parameters and 

modifications we did for each method in the supplementary 

material. For the statistics, we used only the valid normals 

reported by each method, and we filtered out all the degenerate 

ones. 
 
Protocol. We compare the methods above on the bench-
marks, using the following protocol: (1) for each method, 
we obtained the original implementation from the authors 

 

 

(or a reimplementation in popular libraries); (2) we used the 

recommended or default values for all (hyper-)parameters of 

the learning approaches (if these were not provided, we fine-

tuned them on a case by case basis); (3) if the imple-mentation 

does not directly support normal estimation, we modified their 

code following the corresponding descrip-tion in the original 

paper (4) we used the same loss func-tion 1 − N
T

Nˆ 
2

, with N 

as the estimated normal and Nˆ as the ground truth normal, for 

all methods. Note that this loss function does not penalize 

normals that are inverted (flipped by 180
◦
), which is an 

orthogonal problem usually fixed as in a postprocessing step 

[31]. 
 
Results. A listing of the statistical results for all meth-ods is 

given in Table 2. Our experiments show that neu-ral networks 

for normal estimation are stable across several runs; standard 

deviation of the losses is of the order of 10
−3

. For the 10k 

dataset, most of the networks converge within 24 hours on a 

NVIDIA GeForce GTX 1080 Ti GPU. We capped the training 

time of all methods to 72 hours. 
 
Comparison of Data-Driven Methods. We observe, as 

expected, that the error is reduced as we increase the num-
ber of samples in the training set, this is consistent for all 

methods on both patches and full models. However, the im-
provement is modest (Figures 6 and 7). 
 
Sampling Resolution on Full Models. We also explore how 

data-driven methods behave when sampling resolution is 

growing. DGCNN, PCNN, and PwCNN clearly benefit from 

sampling resolution, while PN++ does not show clear 

improvements. This phenomenon is likely linked to the spa-

tial subsampling mechanism that is used to ensure sublinear 

time in training, but prevents this method from leveraging the 

extra resolution. In case of Laplace surface network, it is 

difficult to understand the effect since it did not converge after 

3 days of training on the highest resolution. 
 
Comparison of Analytic Methods. Analytic methods are 

remarkably consistent across dataset sizes and improve as 

the mesh sampling resolution is increased. The methods 

based on surface connectivity heavily outperform those re-

lying on K-nearest neighbour estimation, demonstrating 

that connectivity is a valuable information for this task.
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PN++ PwCNN Laplace Jets PC Jets M 

DGCNN PCNN RoSt PC RoSt M Uniform  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0 20 40 60 80 

 
Figure 6: Plot of angle deviation error for the lower resolu-
tion patches (512 points) benchmark, using different 
sample size (top to bottom: 10k, 50k, and 100k). 

 
PN++ PwCNN Laplace Jets PC Jets M 

DGCNN PCNN RoSt PC RoSt M Uniform 

6. Conclusion 
 

We introduced a new large dataset of CAD models, and 

a set of tools to convert them into the representations used 

by deep learning algorithms. The dataset will continue to 

grow as more models are added to the Onshape public col-

lection. Large scale learning benchmarks can be created us-

ing the ground truth signals that we extract from the CAD 

data, as we demonstrate for the estimation of differential 

surface quantities. 
 

The result of our comparison will be of guidance to the 

development of new geometric deep learning methods. Our 

surprising conclusion is that, while deep learning meth-ods 

which use only 3D points are superior to analytical methods, 

this is not the case when connectivity informa-tion is available. 

This suggests that existing graph architec-tures struggle at 

exploiting the connectivity efficiently and are considerably 

worse than the simplest analytical method (uniform), which 

simply averages the normals of neigh-bouring faces. It would 

be interesting to run a similar study by extending these 

algorithms to correctly identify and pre-dict multiple normals 

on sharp features and compare them with specialized methods 

for this task [18]. 
 

Another surprising discovery is that even the uniform al-

gorithm fails to produce valid normals on roughly 100 mod-els 

in our dataset due to floating point errors. These kinds of 

problems are extremely challenging to identify, and we believe 

that the size and complexity of our dataset are an ideal stress 

test for robust geometry processing algorithms. 
 
 
 
 
 
 
 
 
 

 

0 20 40 60 80 

 
Figure 7: Plot of angle deviation error for the high-
resolution (2048 points) full model benchmark, using dif-
ferent sample size (top to bottom: 10k, 50k, and 100k). 

 

Data-Driven vs. Analytic Methods. Almost all data-driven 

methods perform well against analytic methods for point 

clouds, especially if the model resolution is low. How-ever, if 

the analytic methods are allowed to use connectiv-ity 

information, they outperform all learning methods by a large 

margin, even those also using connectivity informa-tion. To 

further support this conclusion, we run a similar experiment on 

a simpler, synthetic dataset composed of 10k and 50k random 

NURBS patches and observe similar re-sults, which are 

available in the supplementary material. 

 

7. Distribution 
 

The dataset and all information is available at:  
https://deep-geometry.github.io/abc-dataset 
 
It is distributed under the MIT license and split into chunks 

of 10k models for each data type. The copyright owners of 

the models are the respective creators (listed in the meta 

information). The geometry processing pipeline is made 

available under the GPL license in form of a containerized 

software solution (Docker [3] and Singularity [7]) that can 

be run on every suitable machine. 
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  Full Models      Patches   

 Loss   Angle Deviation [
◦
]   Loss   Angle Deviation [

◦
] 

               

10k 50k 100k  10k 50k 100k  10k 50k 100k  10k 50k 100k 

0.168 0.155 0.142 7.83 7.32 6.43 0.034 0.032 0.025 1.70 1.42 1.10 

0.180 0.163 0.160 7.49 6.06 6.17 0.056 0.052 0.048 2.11 1.57 1.51 

0.171 0.156 0.149 6.75 5.47 5.08 0.081 0.071 0.063 2.48 1.77 1.44 

0.177 0.167 0.144 9.61 8.32 7.13 0.054 0.049 0.025 3.20 3.00 1.12 

0.126 0.104 0.099 5.91 4.59 4.34 0.048 0.036 0.024 2.98 2.15 1.13 

0.090 0.070 0.068 4.54 2.80 2.77 0.045 0.035 0.023 2.66 1.95 0.98 

0.273 0.260 0.252 18.73 17.27 16.36 0.092 0.069 0.067 4.71 3.45 3.43 

0.217 0.218 0.198 12.78 13.10 11.38 0.107 0.110 0.089 5.50 6.11 4.58 

0.188 0.176* 0.168* 11.34 10.54* 10.05* 0.107 0.120* 0.094 5.98 6.36* 4.83 

0.146 0.153 0.139 6.47 6.96 6.15 0.037 0.043 0.028 1.84 1.84 1.42 

0.104 0.099 0.103 3.56 3.46 3.69 0.025 0.030 0.025 0.94 1.37 0.92 

0.065 0.070 0.067 2.05 2.44 2.22 0.023 0.025 0.023* 0.88 1.01 0.83* 

0.282 0.203 0.133 20.01 11.94 8.47 0.041 0.047 0.022 1.93 3.13 1.12 

0.211 0.138 0.146* 34.24 9.43 9.85* 0.030 0.027 0.029* 1.65 1.36 1.46* 

0.197 0.148* 0.158* 9.99 9.95* 10.57* 0.031 0.040 0.040* 1.60 1.67 1.81* 

– – –  – – –  0.098†   0.081† –  9.95† 9.28† – 

– – –  – – –  0.123†   0.097† –  13.89† 9.55† – 

– – –  – – –  0.142†   0.200† –  16.24†  16.45† – 

– – –  – – –  0.074†   0.073† –  2.42† 2.05† – 

– – –  – – –  0.095†   0.096† –  3.32† 2.50† – 

– – –  – – –  0.091† – –  3.00† – – 

0.298 0.300 – 21.32 21.36 – 0.083 0.082 – 0.82 0.79 – 

0.220 0.223 – 14.47 14.63 – 0.078 0.077 – 0.74 0.72 – 

0.164 0.166 – 9.96 10.18 – 0.073 0.072 – 0.59 0.62 – 

0.260 0.261 – 17.84 17.97 – 0.050 0.050 – 0.05 0.05 – 

0.183 0.186 – 12.19 12.39 – 0.048 0.048 – 0.05 0.05 – 

0.129 0.132 – 8.41 8.63 – 0.045 0.044 – 0.04 0.04 – 

0.082 0.084 0.084 2.15 2.17 2.18 0.108 0.103 0.102 0.06 0.06 0.06 

0.053 0.055 0.056 0.25 0.29 0.29 0.107 0.105 0.105 0.06 0.06 0.06 

0.047 0.048 0.050 0.08 0.08 0.08 0.112 0.108 0.107 0.06 0.06 0.06 

0.175 0.176 0.175 7.26 7.29 7.29 0.036 0.036 0.036 0.00 0.00 0.00 

0.118 0.118 0.117 0.10 0.10 0.11 0.033 0.033 0.033 0.00 0.00 0.00 

0.078 0.079 0.079 0.01 0.02 0.02 0.029 0.031 0.031 0.00 0.00 0.00 

0.024 0.025 0.024 0.26 0.29 0.28 0.007 0.007 0.007 0.00 0.00 0.00 

0.013 0.013 0.013 0.00 0.00 0.00 0.005 0.005 0.005 0.00 0.00 0.00 

0.009 0.010 0.009 0.00 0.00 0.00 0.004 0.005 0.004 0.00 0.00 0.00  

 

Table 2: Statistical results for all evaluated methods for the full model and patch benchmarks. The loss is calculated as 1 − 

N
T

Nˆ 2 and the angle deviation is calculated as the angle in degrees (N, Nˆ) between ground truth normal and estimated 

normal. For the loss we report the mean over all models, for the angle deviation we report the median of all models in the 
according datasets. Osculating Jets and Robust Statistical Estimation are evaluated both on point cloud inputs (PC suffix; 
comparable to the learning methods) as well as mesh inputs (M suffix). †: PCPNet and ExtOp were not run on full models 
since they compute only 1 normal per patch (and their loss, differently from all other rows, is computed only on the vertex 
in the center of the patch). *: the training was not completed before the time limit is reached, and the partial result is used for 
inference. 
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