
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-9 Issue-3 Sept - Dec 2019

P a g e | 110 Copyright ⓒ 2019 Authors

An Efficacious Query Processing Approach with Predictive

Energy Saving using Online Scheduling

Maragani Harinadha

1
, Chinthala Shekhar

2

1,2
Assistant Professor, Department of Computer Science and Engineering

1,2
Malla Reddy Engineering College (A), Hyderabad, Telangana, India.

Abstract

Web search engines are composed by thousands of query processing nodes, i.e.,

servers dedicated to process user queries. Such many servers consume a significant

amount of energy, mostly accountable to their CPUs, but they are necessary to ensure low

latencies, since users expect sub-second response times (e.g., 500 ms). However, users

can hardly notice response times that are faster than their expectations. Hence, we

propose the Predictive Energy Saving Online Scheduling Algorithm (PESOS) to select the

most appropriate CPU frequency to process a query on a per-core basis. PESOS aim at

process queries by their deadlines and leverage high-level scheduling information to

reduce the CPU energy consumption of a query processing node. PESOS base its decision

on query efficiency predictors, estimating the processing volume and processing time of a

query. We experimentally evaluate PESOS upon the TREC ClueWeb09B collection and

the MSN2006 query log. Results show that PESOS can reduce the CPU energy

consumption of a query processing node up to ∼48% compared to a system running at

maximum CPU core frequency. PESOS outperform also the best state of the-art

competitor with a ∼20% energy saving, while the competitor requires a fine parameter

tuning and it may incur in uncontrollable latency violations.

Keywords: Energy consumption, CPU Dynamic Voltage and Frequency Scaling, Web

search engines.

1. Introduction

Web search engines continuously crawl and index an immense number of Web pages

to return fresh and relevant results to the users‟ queries. Users‟ queries are processed by

query processing nodes, i.e., physical servers dedicated to this task. Web search engines

are typically composed by thousands of these nodes, hosted in large data centers which

also include infrastructures for telecommunication, thermal cooling, fire suppression,

power supply, etc [1]. This complex infrastructure is necessary to have low tail latencies

(e.g., 95-th percentile) to guarantee that most users will receive results in sub-second

times (e.g., 500 ms), in line with their expectations [2]. At the same time, such many

servers consume a significant amount of energy, hindering the profitability of the search

engines and raising environmental concerns. In fact, data centers can consume tens of

megawatts of electric power [1] and the related expenditure can exceed the original

investment cost for a data center [3]. Because of their energy consumption, datacentres

are responsible for the 14% of the ICT sector carbon dioxide emissions [4], which are the

main cause of global warming. For this reason, governments are promoting codes of

conduct and best practices [5], [6] to reduce the environmental impact of data centers.

Since energy consumption has an important role on the profitability and environmental

impact of Web search engines, improving their energy efficiency is an important aspect.

Noticeably, users can hardly notice response times that are faster than their expectations

[2]. Therefore, to reduce energy consumption, Web search engines should answer queries

no faster than user expectations. In this work, we focus on reducing the energy

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-9 Issue-3 Sept - Dec 2019

P a g e | 111 Copyright ⓒ 2020 Authors

consumption of servers‟ CPUs, which are the most energy consuming components in

search systems [1]. To this end, Dynamic Frequency and Voltage Scaling (DVFS)

technologies [7] can be exploited. DVFS technologies allow to vary the frequency and

voltage of the CPU cores of a server, trading off performance (i.e., longer response times)

for lower energy consumptions. Several power management policies leverage DVFS

technologies to scale the frequency of CPU cores accordingly to their utilization [8], [9].

However, core utilization-based policies have no mean to impose a required tail latency

on a query processing node. As a result, the query processing node can consume more

energy than necessary in providing query results faster than required, with no benefit for

the users.

In this work we propose the Predictive Energy Saving On-line Scheduling algorithm

(PESOS), which considers the tail latency requirement of queries as an explicit parameter.

Via the DVFS technology, PESOS select the most appropriate CPU frequency to process

a query on a per-core basis, so that the CPU energy consumption is reduced while

respecting a required tail latency. The algorithm bases its decision on query efficiency

predictors rather than core utilization. Query efficiency predictors are techniques to

estimate the processing time of a query before its processing. They have been proposed to

improve the performance of a search engine, for instance to take decision about query

scheduling [10] or query processing parallelization [11], [12]. However, to the best of our

knowledge, query efficiency predictor has not been considered for reducing the energy

consumption of query processing nodes

We build upon the approach described in [10] and propose two novel query efficiency

predictor techniques: one to estimate the number of postings that must be scored to

process a query, and one to estimate the response time of a query under a particular core

frequency given the number of postings to score. PESOS exploit these two predictors to

determine which is the lowest possible core frequency that can be used to process a query,

so that the CPU energy consumption is reduced while satisfying the required tail latency.

As predictors can be inaccurate, in this work we also propose and investigate a way to

compensate prediction errors using the root mean square error of the predictors.

We experimentally evaluate PESOS upon the TREC ClueWeb09 corpus and the query

stream from the MSN2006 query log. We compare the performance of our approach with

those of three baselines: perf [8], which always uses the maximum CPU core frequency,

power [8], which throttles CPU core frequencies according to the core utilizations, and

cons [13], which performs frequency throttling according to the query server utilization.

PESOS, with predictors correction, is able to meet the tail latency requirements while

reducing the CPU energy consumption from ∼24% up to ∼44% with respect to perf and

up to ∼20% with respect to cons, which however incurs in uncontrollable latency

violations. Moreover, the experiments show that energy consumption can be further

reduced by PESOS when prediction correction is not used, but with higher tail latencies.

2. Related Work

In the past, a large part of a data center energy consumption was accounted to

inefficiencies in its cooling and power supply systems. However, Barroso et al. [1] report

that modern data centers have largely reduced the energy wastage of those infrastructures,

leaving little room for further improvement. On the contrary, opportunities exist to reduce

the energy consumption of the servers hosted in a data center. In particular, our work

focuses on the CPU power management of query processing nodes, since the CPUs

dominate the energy consumption of physical servers dedicated to search tasks. In fact,

CPUs can use up to 66% of the whole energy consumed by a query processing node at

peak utilization [1].

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-9 Issue-3 Sept - Dec 2019

P a g e | 112 Copyright ⓒ 2020 Authors

Modern CPUs usually expose two energy saving mechanism, namely C-states and P-

states. C-states represent CPU cores idle states and they are typically managed by the

operating system [14]. C0 is the operative state in which a CPU core can perform

computing tasks. When idle periods occur, i.e., when there are no computing tasks to

perform, the core can enter one of the other deeper C-states and become inoperative.

However, Web search engines process a large and continuous stream of queries. As a

result, query processing nodes are rarely inactive and experience particularly short idle

times. Consequently, there are little opportunities to exploit deep C-states, reducing the

energy savings provided by the C-states in a Web search engine system [15], [16].

When a CPU core is in the active C0 state, it can operate at different frequencies (e.g.,

800 MHz, 1.6 GHz, 2.1 GHz, . . .). This is possible thanks to the Dynamic Frequency and

Voltage Scaling (DVFS) technology [7] which permits to adjust the frequency and

voltage of a core to vary its performance and power consumption. In fact, higher core

frequencies mean faster computations but higher power consumption. Vice versa, lower

frequencies lead to slower computations and reduced power consumption. The various

configurations of voltage and frequency available to the CPU cores are mapped to

different P-states and are managed by the operating system. For instance, the intel_pstate

driver [8] controls the P-states on Linux systems and can operate accordingly to two

different policies, namely perf and power. The perf policy simply uses the highest

frequency to process computing tasks. Instead, power selects the frequency for a core

according to its utilization. When a core is highly utilized, power selects a high frequency.

Conversely, it will select a lower frequency when the core is lowly utilized.

However, Lo et. al [15] argue that core utilization is a poor choice for managing the

cores frequencies of query processing nodes. In fact, the authors report an increase of

query response times when core utilization-based policies are used in a Web search

engine. For such reason, Catena et al. [13] propose to control the frequency of CPU cores

based on the utilization of the query processing node rather than on the utilization of the

cores. The utilization of a node is computed as the ratio between the query arrival rate and

service rate. Then, they propose the cons policy which throttles the frequency of the CPU

cores when the utilization of the node is above or below certain thresholds (e.g., 80% and

20%, respectively). The frequency is selected so to produce a desirable utilization level

(e.g., 70%). Similarly, in our work we control the CPU cores frequencies of a query

processing node using information related to the query processing activity rather than to

the CPU cores utilization. To this end, we build our approach on top of the acpi_cpufreq

driver [9]. This driver allows applications to directly manage the CPU cores frequency,

instead of relying on the operative systems.

Query efficiency predictors (QEPs) are techniques that estimate the execution time of a

query before it is actually processed. Knowing in advance the execution time of queries

permits to improve the performance of a search engine. Most QEPs exploit the

characteristics of the query and the inverted index to pre-compute features to be exploited

to estimate the query processing times. For instance, Macdonald et al. [10] propose to use

term-based features (e.g., the inverse document frequency of the term, its maximum

relevance score among others) to predict the execution time of a query. They exploit their

QEPs to implement on-line algorithms to schedule queries across processing node, in

order to reduce the average query waiting and completion times. The works [11], [12],

instead, address the problem to whether parallelize or not the processing of a query. In

fact, parallel processing can reduce the execution time of long-running queries but

provides limited benefits when dealing with short-running ones. Both the works propose

QEPs to detect long-running queries. The processing of the query is parallelized only if

their QEPs detect the query as a long-running one. Rather than combining term-based

features, Wu et al. [17] propose to analytically model the query processing stages and to

use such model to predict the execution time of queries.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-9 Issue-3 Sept - Dec 2019

P a g e | 113 Copyright ⓒ 2020 Authors

In our work, we modify the QEPs described in [10] to develop our algorithm for

reducing the energy consumption of a processing node while maintaining low tail

latencies.

3. Proposed Methodology

In the following, we introduce the operative scenario of a query processing node (Sec.

3.1), we formalize the general minimum-energy scheduling problem and we shortly

present the state-of-the-art algorithm to solve it offline (Sec. 3.2), and we discuss the

issues of this offline algorithm in our scenario (Sec. 3.3).

Figure 1. The architecture of query processing node.

3.1 Operative scenario

A query processing node is a physical server composed by several multi-core

processors/CPUs with a shared memory which holds the inverted index. The inverted

index can be partitioned into shards and distributed across multiple query processing

nodes. In this work, we focus on reducing the CPU energy consumption of single query

processing nodes, independently of the adopted partition strategy. In the following, we

assume that each query processing node holds an identical replica of the inverted index

[18]. A query server process is executed on top of each of the CPU core of the processing

node (see Figure 1). All query servers access a shared inverted index held in main

memory to process queries. Each query server manages a queue, where the incoming

queries are stored. The first query in the queue is processed as soon as the corresponding

CPU core is idle. The queued queries are processed following the first come first served

policy. The number of queries in a query server’s queue represents the server load.

Queries arrive to the processing node as a stream S = {q1, . . . , qn}. When a query

reaches the processing node it is dispatched to a query server by a query router. The query

router dispatches an incoming query to the least loaded query server, i.e., to the server

with the smallest number of enqueued queries. Alternatively, the query processing node

could have a single query queue and dispatch queries from the queue to idle query

servers. In this work, we use a queue for each query servers since a single queue will not

permit to take local decisions about the CPU core frequency to use for the relative query

server. A similar queue-per core architecture is assumed in [19], to schedule jobs across

CPU cores to minimize the CPU energy consumption, and in [10].

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-9 Issue-3 Sept - Dec 2019

P a g e | 114 Copyright ⓒ 2020 Authors

Figure 2. The example of YDS scheduling, (top) input jobs, (bottom)

resulting optimal schedule with CPU speeds .

3.2 The minimum-energy scheduling problem

Consider the following scenario, where a single core CPU must execute a set
 of generic computing jobs rather than queries. Jobs must be executed over a

time interval . Each job has an arrival time and an arbitrary deadline which

are known a priori. Moreover, each job has a processing volume , i.e., how much

work it requires from the CPU, and jobs can be pre-empted. The CPU can operate at any

processing speed (in time units per unit of work) and its power consumption is a

convex function of the processing speed, e.g., with [7]. Jobs in J must

be scheduled on the CPU. A schedule is a pair of functions denoting,

respectively, the processing speed and the job in execution, both at time t

A schedule is feasible if each job in is completed within its deadline. The minimum-

energy scheduling problem (MESP) aims at finding a feasible schedule such that the total

energy consumption is minimized, i.e.,

Figure 2 shows an example for YDS. Input jobs are illustrated in the upper part of the

picture. The left end of a box indicates the arrival time of the job, while the right end

indicates its deadline. Processing volumes for the jobs are reported inside the relative

boxes. The bottom part of the picture illustrates the optimal solution provided by YDS.

The picture shows the order in which the jobs are scheduled, their start and end time, and

the processing speeds s used for each job. Note that is executed over two different time

intervals, as it is pre-empted to schedule and , which have a higher joint intensity.

3.3 Issues with YDS

YDS finds an optimal solution for the MESP but poses various issues that make

difficult to use it in a search engine to reduce its energy consumption:

1) YDS is an offline algorithm to schedule generic computing jobs and cannot be used

to schedule online queries. In fact, YDS input is the set of jobs to be scheduled in a

interval, with their arrival times and deadlines, that must be known a priori. In contrast,

query arrival times are not known until query arrives. Moreover, YDS relies on EDF,

which contemplates job pre-emption. Context switch and cache flushing cause time

overheads with non-negligible impacts on the query processing time. Therefore, pre-

emption is unacceptable for search engines.

2) YDS requires to know in advance the processing volumes of jobs. Conversely, we

do not know how much work a query will require before its completion.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-9 Issue-3 Sept - Dec 2019

P a g e | 115 Copyright ⓒ 2020 Authors

3) YDS schedules job using processing speeds (defined as units of work per time unit).

The speed value is continuous and unbounded (i.e., the speed can be indefinitely large).

However, the frequencies available to CPU cores are generally discrete and bounded. For

such reasons, in the following Section we modify YDS in order to exploit it in a search

engine.

4. Conclusions

In this paper we proposed the Predictive Energy Saving Online Scheduling (PESOS)

algorithm. In the context of Web search engines, PESOS aim to reduce the CPU energy

consumption of a query processing node while imposing a required tail latency on the

query response times. For each query, PESOS select the lowest possible CPU core

frequency such that the energy consumption is reduced, and the deadlines are respected.

PESOS select the right CPU core frequency exploiting two different kinds of query

efficiency predictors (QEPs). The first QEP estimates the processing volume of queries.

The second QEP estimates the query processing times under different core frequencies,

given the number of postings to score. Since QEPs can be inaccurate, during their training

we recorded the root mean square error (RMSE) of the predictions. In this work, we

proposed to sum the RMSE to the actual predictions to compensate prediction errors. We

then defined two possible configurations for PESOS: time conservative, where prediction

correction is enforced, and energy conservative, where QEPs are left unmodified.

References

[1] L. A. Barroso, J. Clidaras, and U. Ho¨lzle, The Data center as a Computer: An Introduction to

the Design of Warehouse-Scale Machines,2nded. Morgan & Claypool Publishers, 2013.

[2] I. Arapakis, X. Bai, and B. B. Cambazoglu, “Impact of response latency on user behavior in

web search,” in Proc. SIGIR, 2014, pp.103–112.

[3] U.S. Department of Energy, “Quick start guide to increase data center energy efficiency,” 2009.

[Online]. Available: http://goo.gl/ovDP26

[4] The Climate Group for the Global e-Sustainability Initiative, “Smart 2020: Enabling the low

carbon economy in the information age,” 2008. [Online]. Available: http://goo.gl/w5gMXa

[5] European Commission - Joint Research Centre, “The European Code of Conduct for Energy

Efficiency in Data Centre.”[Online]. Available: http://goo.gl/wmqYLQ

[6] U.S. Department of Energy, “Best Practices Guide for Energy-Efficient Data Center Design.”

[Online]. Available: http://goo.gl/pikFFv

[7] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power Management and Dynamic Voltage Scaling:

Myths and Facts,” in Proc. of Workshop on Power Aware Real-time Computing, 2005.

[8] The Linux Kernel Archives, “Intel P-State driver.” [Online]. Available: https://goo.gl/w9JyBa

[9] D. Brodowski, “CPU frequency and voltage scaling code in the Linuxkernel.” [Online].

Available: https://goo.gl/QSkft2

[10] C. Macdonald, N. Tonellotto, and I.Ounis, “Learning to predict response times for online

query scheduling,” in Proc. SIGIR, 2012, pp.621–630.

[11] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and S. Rixner, “Predictive

parallelization: Taming tail latencies in web search,” in Proc. SIGIR, 2014, pp.253–262.

[12] S. Kim,Y. He, S.-w. Hwang, S. Elnikety, and S. Choi, “Delayed dynamic-selective (dds)

prediction for reducing extreme tail latency in web search,” in Proc.WSDM,2015,pp.7–16.

[13] M. Catena, C. Macdonald, and N. Tonellotto, “Load-sensitive cpu power management for web

search engines,” in Proc. SIGIR, 2015, pp.751–754.

[14] V. Pallipadi, S. Li, and A. Belay, “cpuidle: Do nothing, efficiently,” in Proc. Linux

Symposium, vol.2, 2007, pp.119–125.

http://goo.gl/ovDP26
http://goo.gl/w5gMXa
http://goo.gl/wmqYLQ
http://goo.gl/pikFFv
https://goo.gl/w9JyBa
https://goo.gl/QSkft2

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-9 Issue-3 Sept - Dec 2019

P a g e | 116 Copyright ⓒ 2020 Authors

[15] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “Towards energy

proportionality for large-scale latency-critical workloads,” in Proc. ISCA, 2014, pp. 301–312.

[16] D. Meisner, C. M. Sadler, L. A. Barroso, W. -D. Weber, and T. F. Wenisch, “Power

management of online data-intensive services,” in Proc. ISCA, 2011, pp.319–330.

[17] H. Wu and H. Fang, “Analytical performance modelling for top-k query processing,” in Proc.

CIKM, 2014, pp.1619–1628.

[18] A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda, “Hybrid query scheduling

for a replicated search engine,”inProc.ECIR,2013,pp.435–446.

[19] S. Albers, F. Mu¨ller, and S. Schmelzer, “Speed scaling on parallel processors,” in Proc.

SPAA, 2007, pp.289–298.

