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Abstract 
Because huge amounts of spatial data have been collected in various 

applications ranging from remote sensing to geographical 

information systems (GIS), computer cartography, environmental 

assessment and planning, and so on, spatial data mining, or mining 

knowledge from large amounts of spatial data, is a highly 

demanding field. The amount of data collected significantly 

outweighed human abilities to interpret it. Data mining has recently 

expanded its scope beyond relational and transactional databases to 

include geographical databases. This paper reviews recent work on 

geographical data mining, including generalization, clustering, and 

mining spatial association rules, among other topics. It demonstrates 

that spatial data mining is a promising field with numerous open 

questions and potential research achievements. 

1   Introduction 
Large databases have been created as a result of advances in 

database technologies and data collection techniques such as 

barcode reading, remote sensing, satellite telemetry, and so on. 

Data mining or knowledge discovery in databases (KDD) [16, 

30, 43] is a potentially emerging field that addresses the need 

for knowledge/information discovery from data. The finding of 

interesting, implicit, and previously unknown knowledge from 

huge datasets is known as database knowledge discovery [20]. 

Machine learning, database systems, data visualization, 

statistics, and information theory are all fields that data mining 

encompasses. 

Although data mining has been studied extensively in 

relational and transaction databases [2, 16, 25, 43], it is also in 

high demand in other types of databases, such as spatial 

databases, transactional databases, object-oriented databases, 

multimedia databases, and so on. The methods of spatial data 

mining, or the identification of interesting knowledge from 

spatial data, are the topic of this study. 

Spatial data refers to information about items that occupy 

space. A spatial database is a collection of spatial objects that 

are represented by spatial data types and spatial relationships.- 

Among these are ships. Spatial data contains topographical and/or 

distance information and is frequently organized using spatial 

indexing structures and accessed using spatial access methods. 

These inherent characteristics of a spatial database present 

problems and opportunities for spatial data mining [35]. The 

extraction of latent knowledge, geographical relations, or other 

patterns not explicitly stored in spatial databases is referred to as 

spatial data mining, or knowledge discovery in spatial databases 

[34]. 

The foundation for knowledge discovery in databases was 

built by previous work in machine learning [17, 38, 39], 

database systems [50, 51], and statistics [9, 19, 31, 47]. Spatial 

data structures [22, 23, 46], spatial reasoning [10, 12], 

computational geometry [43], and other breakthroughs in 

spatial databases prepared the path for the study of spatial data 

mining. Due to the large amount of spatial data and the 

complexity of spatial data types and spatial accessing methods, 

one of the most significant challenges to spatial data mining is 

the efficiency of spatial data mining algorithms. 

Spatial data mining methods can be used to extract useful and 

consistent information from massive spatial databases. They can 

be used to understand spatial data, uncover correlations between 

geographic and noncapital data, build spatial knowledge bases, 

optimize queries, reorganize data in spatial databases, and capture 

generic characteristics in a clear and succinct manner, among 

other things. Geographic Information Systems (GIS), remote 

sensing, picture database exploration, medical imaging, robot 

navigation, and other areas where spatial data is employed can all 

benefit from this. Characteristic and discriminated rules, 

extraction and description of significant structures or clusters, 

spatial relationships, and other types of knowledge can be 

obtained from spatial data. The goal of this survey is to provide a 

broad perspective of spatial data mining technologies, their 

strengths and shortcomings, how and when to apply them, and 

what has been accomplished thus far and what obstacles remain. 
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Background on Spatial Data Mining 

The most frequent method for examining geographic data 

has been statistical spatial analysis [19, 47]. Because 

statistical analysis is a well-studied field, there are many 

methods available, including numerous optimization 

techniques. It works effectively with numerical data and 

frequently produces realistic models of spatial phenomena. 

The assumption of statistical independence among spatially 

distributed data is a fundamental drawback of this strategy. 

This poses issues since many spatial facts are in reality 

interconnected, meaning that spatial objects are influenced 

by their surroundings. To some extent, regression models 

incorporating spatially lagged forms of the dependent 

variables can help solve this problem. Unfortunately, this 

complicates the modeling process and can lead to errors. 

Statistical procedures do not work well with data that is 

incomplete or inconclusive. Another issue with statistical 

geographic analysis is the high cost of computing the data. 

Researchers developed numerous ways for discovering 

knowledge from massive databases with the advent of data 

mining. The majority of them focus on relational or 

transactional databases. These strategies attempted to 

combine previously developed fields such as machine 

learning, databases, and statistics. The foundation for 

geographical data mining was laid by studies like [1, 25, 

43]. In geographic data mining, machine learning techniques 

such as learning from examples, generalization, and 

specialization are commonly used. It was only a matter of 

time before the statistical cluster analysis technique was 

adapted for use in geographical data mining [41]. Other 

strategies were also applied to knowledge discovery in  

1.1.1   Primitives of Spatial Data Mining 

Rules: Various kinds of rules can be discovered from 

databases in general. For example, characteristic rules, 

discriminate rules, association rules, or deviation and evolution 

rules can be mined. A spatial characteristic rule is a general 

description of spatial data. For example, a rule describing the 

general price range of houses in various geographic regions in a 

city is a spatial characteristic rule. A spatial discriminate rule is 

a general description of the features discriminating or 

contrasting a class of spatial data from other class(es) like the 

comparison of price ranges of houses in different geographical 

regions. Finally, a spatial association rule 

is a rule which describes the implication of one or a set of 

features by another set of features in spatial databases. For 

example, a rule associating the price range of the houses with 

nearby spatial features, like beaches, is a spatial association 

rule. 

Thematic maps show how a single or a few traits 

are distributed over space. This is in contrast to 

general or reference maps, which are designed to 

show the location of items in relation to other 

spatial objects. Different rules can be discovered 

using thematic maps. When evaluating the general 

weather pattern of a geographic region, for 

example, we could want to look at a temperature 

themed map. Thematic maps can be represented in 

two ways: raster and vector. Thematic maps in 

raster image form have pixels connected with 

attribute values. For example, the altitude of 

spatial objects may be coded as the pixel intensity 

on a map (or the color). A spatial item is 

represented in a vector representation. Image 

databases: These are unique geographical 

databases in which the data is virtually entirely 

made up of photos or photographs. Remote 

sensing, medical imaging, and other applications 

employ image databases. They're commonly saved 

as grid arrays that indicate image intensity in one 

or more spectral regions. 

1.1.2 Computations, Queries, and Spatial Data Structures 

Spatial data mining algorithms employ spatial operations such as spatial 

joins, map overlays, and nearest neighbour queries, among others. As a 

result, in spatial data mining, e client spatial access techniques (SAM) 

and data structures for such computing are also a concern [22]. We'll 

start with a brief overview of some of the most common spatial data 

structures and geographical computations. 

Data Structures in Space: Points, lines, rectangles, and other shapes 

make up the spatial data structure. Multidimensional trees have been 

presented as a way to create indices for these data. Quad trees [46], k-d 

trees, R-trees, R*-trees, and others are examples. R-tree [23] and its 

variant R*-tree [6] are two well-known SAMs that have recently 

received a lot of attention in the literature. Objects saved in the 
Minimum Bounding Rectangles are used to approximate objects 

contained in R-trees (MBR). Every node has an R-tree that stores a set 

of rectangles. Pointers to representations of polygon bounds and 

polygon MBRs are stored at the leaves. Each rectangle at the internal 

nodes is linked to a child and represents the smallest bounding 

rectangle of all the rectangles in the child.
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Spatial Computations: Spatial  join is one of the most 

expensive spatial operations. In order to make spatial 

queries e client spatial join has to be e client as well. 

Brinkho et al. proposed an e client multilevel processing of 

spatial joins using R*-Trees and various approximation of 

spatial objects [8].  The r e s t  step let ends possible pairs 

of intersecting objects using rest their MBRs and later other 

approximations.   In the second step - renitent - detailed 

geometric procedure is performed to check for intersection. 

Another important spatial operation, map overlay, is 

especially important in Geographic Information Systems. 

Spatial Query Processing: Optimization strategies for 

spatial query processing are outlined in Aref and Samet [5]. 

The authors proposed an architecture for spatial database 

called SAND (spatial and non spatial data) architecture, 

which is a model of the extended relational database with 

spatial operations [4]. This architecture provides both spatial 

and non spatial components of spatial database to participate 

in query processing and optimization. 

 

1.2 Spatial Data Mining Architecture 

Various architectures (models) have been proposed for data 

mining. They include Han's architecture for general data 

mining prototype DBLEARN/DBMINER [24], Holsheimer 

et al's parallel architecture [29], and Matheus et al.'s multi 

component architecture [37]. Al- most all of these 

architectures have been used or ex- tended to handle spatial 

data mining. Matheus et al.'s architecture seems to be very 

general and has been used by other researchers in spatial data 

mining, including Ester et al. [13]. This architecture - 

comparable to oth- ers - is presented in Figure 1. In this 

architecture, the user may control every step of the mining 

process. Back- ground knowledge, like spatial and non-spatial 

concept hierarchies, or information about database, is stored  in 

a knowledge base. Data is fetched from the storage us- ing 

the DB interface which enables optimization of the queries. 

Spatial data index structures, like R-trees, may be used for e 

cient processing. The Focusing Compo- nent decides which 

parts of data are useful for pattern recognition. For example, it 

may decide that only some attributes are relevant to the 

knowledge discovery task, or it may extract objects whose 

usage promises good results. Rules and patterns are 

discovered by the Pat- tern Extraction module. This module 

may use statistical, machine learning, and data mining 

techniques in conjunction with computational geometry 

algorithms to perform the task of finding rules and relations. 

The in- terestingness and significance of these patterns is 

then processed by Evaluation module to possibly eliminate 

obvious and redundant knowledge. The four last com- 

ponents may interact between themselves through the 

Controller part. 

1.3   Organization of the paper 

The rest of the paper is organized as follows.  In Section 2 we 

survey  the  methods for spatial data mining. We categorize the 

methods and discuss each in detail. Section 2.1 describes 

generalization based methods, Section 2.2 discusses clustering 

based methods, Section 2.3 

presents the methods used to explore spatial associations, 

Section 2.4 describes pattern recognition meth- ods, and nally 

in Section 2.5 other interesting methods are outlined. We 

present suggestions and future directions in Section 3, and we 

conclude our discussion in Section 4. 

 
2 Methods for Knowledge Discovery in Spatial 

Databases 

Geographic data consist of spatial objects and non- spatial 

description of these objects. Non-spatial description of spatial 

objects can be stored in a traditional relational database where 

one attribute is a pointer to spatial description of the object [4]. 

Spatial data can be described using two different properties, 

geometric and topological. For example, geometric properties 

can be spatial location, area, perimeter, etc., whereas 

topological properties can be  adjacency (object  A is neighbor 

of object B), inclusion (object A is inside in object B), and 

others. Thus, the methods for discovering knowledge can be 

focused on the non-spatial and/or spatial properties of spatial 

objects. 

The algorithms for spatial data mining include gene- 

realization-based methods for mining spatial characteristic and 

discriminate rules [25, 35, 41], two-step spatial computation 

technique for mining spatial association rules [34], aggregate 

proximity technique for ending characteristics of spatial 

clusters [33], etc. In the following sections, we categorize and 

describe a number of these algorithms. 

 

2.1 Generalization-Based Knowledge 

Discovery 

One of the widely used techniques in machine learning is 

learning from examples [38]. This method is often 

combined with generalization [39]. This approach cannot be 

directly adopted for large spatial databases because: 1) the 

algorithms are exponential in the number of examples, and 2) 

it does not handle noise and inconsistent data very well. Han 

et al. [25] modified these techniques and gave an attribute-

oriented (as opposed to the tuple-oriented in machine 

learning algorithms) induction algorithm to mine knowledge 

from large relational databases. Later Lu et al. [35] extended 

this technique to spatial databases. Thus, the assumptions that 

are made for relational databases are also carried to spatial 

data mining. 

The  generalization-based  knowledge  discovery  re- 

quires  the  existence  of  background knowledge  in  the 
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form of concept hierarchies. In the case of spatial databases, 

there can be two kinds of concept hierar- chies, non-spatial and 

spatial. Concept hierarchies can be explicitly given by the 

experts, or in some cases they can be generated  automatically 

by data analysis [26]. An example of a concept hierarchy for 

agricultural land use is shown in Figure 2. As  we ascend  the  

concept tree, information becomes more and more general, but 

still remains consistent with the lower concept  levels. For 

example, in Figure 2 both jasmine and basmati can be 

generalized to the concept rice which in turn can be generalized 

to concept grains, which also includes wheat. A similar 

hierarchy may exist for spatial data. For ex- ample, in a 

generalization process, regions representing counties can be 

merged to provinces and provinces can be merged to larger 

regions. Attribute-oriented induc- tion is performed by 

climbing the generalization hier- archies and summarizing the 

general relationships be- tween spatial and non-spatial data at 

higher concept levels. It can be done on non-spatial data by (a) 

climb- ing the concept hierarchy when attribute values in  a 

tuple are changed to the generalized values, (b) remov- ing 

attributes when further generalization is impossible and there 

are too many di erent values for an attribute, and (c) merging 

identical tuples. Induction is continued until every attribute is 

generalized to the desired level. The desired level is reached 

when the number of dif- ferent  values for the  attribute in the  

generalized  table is no greater than the generalization 

threshold for this attribute. During the process of merging of 

identical tu- ples the number of merged tuples is stored in 

additional attribute count to enable quantitative presentation of 

acquired knowledge. Lu et al. [35] presented two gener- 

alization based algorithms, spatial-data-dominant and non-

spatial-data-dominant generalizations. Both algo- rithms 

assume that the rules to be mined are  general data 

characteristics and that the discovery process is initiated by the 

user who provides a learning request (query) explicitly, in a 

syntax similar to SQL. We will brie y describe both 

algorithms as follows: 

 

Spatial-Data-Dominant   Generalization:    In  

the 

 rst step all data described in the query are collected. Given 

the spatial data hierarchy, generalization can be performed 

rst on the spatial data by merging the spatial regions 

according to the description stored in the concept hierarchy. 

Generalization of the spatial objects continues until the spatial 

generalization threshold is reached. The spatial generalization 

threshold is reached when the number of regions is no 

greater than the threshold value. After the spatial-oriented 

induction process, non-spatial data are retrieved and 

analyzed for each of the spatial objects using the attribute- 

oriented induction technique as described above. An 

example of a query and the result of the execution of the 

spatial-data-dominant generalization algorithm is 

presented  in Figure 3.  In this example, temperature in the 

range [20, 27) is generalized to moderate, and temperature 

in the range [27, 1) to hot.  The answer to the query is the 

description of all regions using a disjunction of a few 

predicates which characterize each of the generalized regions. 

Temperature measured in the east-central region of British 

Columbia is in the range [22, 30]. Thus, in our example, the 

description of the temperature weather pattern  in this region 

is hot or  moderate.  The  computational complexity of the 

algorithm is O(N logN ), where N is the number of spatial 

objects. 

Non-spatial-Data-Dominant       Generalization: 

This method also starts with collecting all data relevant to the 

user query. In the example presented in Figure 4 

the DB interface extracts the precipitation data relevant 

to the province and time period  speci ed  in the  query. In the 

second step the algorithm performs attribute- oriented 

induction on the non-spatial attributes, gener- alizing them to a 

higher (more general) concept level. For example, the 

precipitation value in the  range  (10 in., 15 in.] can be 

generalized to the concept wet. The generalization threshold is  

used  to determine  whether to continue or stop the 

generalization process. In this step the pointers to spatial 

objects are collected as a set and put with the  generalized  

non-spatial data.  In the third and the last step of the algorithm, 

neighboring areas with the same generalized attributes are 

merged together based on the spatial function adjacent to. For 

example, if in one area the precipitation value was 17 

in., and in neighboring area it was 18 in. both precipita- 

tion values are generalized to the concept very wet and both 

areas are merged. Approximation can be used to ignore 

small regions with di erent non-spatial descrip- tion. For 

example, if the majority of area land can be described as 

industrial, but a few gas stations exist in this area the whole 

area can be described as industrial one. The result of the 

query may be presented in the form of a map with a small 

number of regions with high level descriptions as it is shown in 

Figure 4. The compu- tational complexity of this algorithm is 

also O(N logN ), where N is the number of spatial objects. 

We presented two generalization based  algorithms that 

assumed the concept hierarchies to be given or generated 

automatically. However, as pointed  out before, there  may  be  

cases  where  such  hierarchies are not present a  priori.  

Another  problem  with previous  algorithms is that the  spatial 

components of the databases are explored by merging regions 

at lower levels of the concept hierarchy to form region(s) at 

higher levels of the hierarchy. Both of these facts suggest that 

the quality and the interestingness of the mined characteristic 

rules is going to be much dependent upon the given concept 

hierarchy(ies). In many cases such 
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k n 

hierarchies are given by the experts and  they  may be not 

entirely appropriate.   Therefore, we would like to 

 nd algorithms that do not need to use these hierarchies. 

We will describe an algorithm not depending on spatial 

concept hierarchies in the next section. 

 

2.2   Methods Using Clustering 

Cluster analysis  is  a  branch  of  statistics  that  has been 

studied extensively for many years. The main advantage of 

using this technique is that interesting structures or clusters can 

be  found directly  from the data without using any background 

knowledge, like concept hierarchies. A similar approach in 

machine learning is known as unsupervised learning. We can 

exploit the results of research  on clustering techniques in the 

spatial data mining process as proposed in [41]. 

Clustering algorithms used in statistics, like PAM or 

CLARA [31], are reported to be ine cient from the 

computational complexity point  of  view.   As  for  the e 

ciency concern, a new algorithm, called CLARANS 

(Clustering large Applications based upon RANdom- ized 

Search), was developed for cluster analysis. Ex- perimental 

evidence showed that CLARANS outper- forms the two 

existing cluster analysis algorithms, PAM (Partitioning 

Around Medoids) and CLARA (Cluster- ing LARge 

Applications). Ng and Han used CLARANS in spatial data 

mining algorithms, SD(CLARANS) and NSD(CLARANS). 

First, we will brie y describe the three cluster analysis 

algorithms. 

The PAM algorithm was developed by Kaufman and 

Rousseeuw [31]. Assuming that there are n  objects, PAM nds 

k clusters by  rst  nding  a representative object  for each  

cluster.  Such  a representative,  which is the most centrally 

located point  in  a  cluster,  is called a medoid. After selecting 

k  medoids,  the algorithm repeatedly tries to make a better 

choice of medoids analyzing all possible pairs  of  objects  

such that one object is a medoid and the other is not. The 

measure of clustering quality is calculated for each such 

combination.  The best  choice of points in one iteration is 

chosen as the  medoids for the next  iteration. The 

outputs the best clustering out of these samples. As 

expected, CLARA can deal with larger data sets than PAM. 

The complexity of each iteration now becomes O(kS2 

+k(n k)), where S is the size of the sample.  The authors 

indicated through their experimental results that samples of 

size 40+2k give good results. 

It is easy to realize that PAM searches  for the  best k 

medoids among a given data set whereas CLARA searches 

for the best k medoids among the selected sample of the 

data set. Let us suppose  that object  Oi is one  of the  

medoids in the  best  k  medoids.   Thus, if during sampling 

Oi is not selected,  then  CLARA will never  nd  the  best  

clustering.  This  is  exactly the tradeo for e ciency. Ng and 

Han's [41] proposed CLARANS algorithm which tries to  

mix both  PAM and CLARA by searching only the subset of 

the data set and it does not con ne itself to any sample at any 

given time.  While CLARA has a  xed sample at every stage 

of the search, CLARANS draws a sample with some 

randomness in each step of the search. The clustering 

process can be presented as searching a graph where every 

node is a potential solution, i.e., a set of k medoids. The 

clustering obtained after replacing a single medoid is called 

the neighbor of the current clustering. The number of 

neighbors to be randomly tried is restricted by the parameter 

maxneighbor. If a better neighbor is found CLARANS 

moves to the neighbor's node and the process is started again, 

otherwise the current clustering produces a local optimum. If 

the local optimum is found CLARANS starts with new 

randomly selected node in search for a new local optimum. 

The number of local optima to be searched is also bounded by 

the parameter numlocal. CLARANS has been 

experimentally shown to be  more  e cient  than  both  PAM  

and  CLARA. The authors claim that the computational 

complexity of every iteration in CLARANS is basically 

linearly proportional to the number of objects. This claim 

has been supported by Ester et al. in [13]. It should be 

mentioned that CLARANS can be used to nd the most 

natural number of clusters knat.  The authors adopted a 

heuristic of determining knat, which uses silhouette 

cost of a single iteration is O(  ( )2).  It is therefore coe cients1,  introduced  by  Kaufman  and  Rousseeuw 

computationally quite ine cient for large values of n and k. 

The CLARA algorithm was proposed  by  Kaufman and 

Rousseeuw  [31] as well.   The di erence  between the PAM  

and  CLARA  algorithms  is  that  the  latter one  is  based  

upon  sampling.   Only  a  small  portion of the real data is 

chosen  as  a representative  of the data and medoids are 

chosen from this sample using PAM. The idea is that if the  

sample is selected  in a fairly random manner, then it correctly 

represents the whole data set and therefore, the representative 

objects (medoids) chosen, will be similar as if chosen from the 

whole data set. CLARA draws multiple samples and 

[31].  CLARANS also enables the detection of outliers, 

e.g., points that do not belong to any cluster. 

Based upon CLARANS, two spatial data mining algorithms 

were developed in a fashion similar to the algorithms discussed 

earlier in this section: spatial dominant approach, 

SD(CLARANS) and non-spatial dominant approach, 

NSD(CLARANS). Both algorithms assume that the user speci 

es the type of the rule to be mined and relevant data  through a  

learning request  in a similar way as in the experimental 

database mining prototype, DBLearn [25]. 

  
1 It is a property of an object that speci es how much 

the object truly belongs to the cluster. 

k 
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i=1 

i=1 

2 

i 

i 

Algorithm SD(CLARANS) 

In this spatial dominant approach, spatial compo- nent(s) 

of the relevant data items are collected and clus- tered using 

CLARANS. Then, the algorithm performs an attribute-

oriented induction on non-spatial descrip- tion of objects in 

each cluster. The result of the query presents high-level non-

spatial description of objects in every cluster. For example, one 

can nd that in Vancou- ver expensive housing units are 

clustered in 3 clusters. In the downtown cluster there are 

mainly expensive con- dominiums; in the waterfront cluster 

mansions and sin- gle houses are located; and the third 

cluster consists mainly of single houses. 

 

Algorithm NSD(CLARANS) 

This non-spatial dominant approach rst applies non- spatial 

generalizations. Attribute-oriented generaliza- tion is 

performed on the non-spatial attributes and pro- duces a 

number of generalized tuples. For example, the descriptions of 

expensive housing units can be gener- alized to single 

houses, mansions and condominiums. Then, for each such 

generalized tuple, all spatial com- ponents are collected and 

clustered using CLARANS to 

 nd knat clusters. In the  nal step, the clusters obtained 

that way are checked to see  if they overlap with clus- ters 

describing other types of objects. If so, then the clusters are 

merged, and the corresponding generalized non-spatial 

descriptions of tuples are merged as well. 

Depending upon the rules or the form of knowl- edge that 

user  wants  to  discover,  it  may be  better to choose one or 

the other of the above two algo- rithms. Usually 

SD(CLARANS) is more e cient than NSD(CLARANS). 

But, when the distribution of points is mainly determined by 

their non-spatial attributes NSD(CLARANS) may have an 

edge. 

CLARANS in large Spatial Databases Focusing 

Methods 

Ester et al. [13] pointed out some of the drawbacks of the 

CLARANS clustering algorithm [41]. First of all, CLARANS 

assumes that the objects to be clustered are all stored in 

main memory. This assumption may not be valid for large 

databases and that is why disk-based methods could be  

required.   Secondly,  the  e ciency of the algorithm can be 

substantially improved by modifying the focusing component 

of the algorithm (see architecture in Figure 1). 

The  rst drawback is alleviated by integrating CLA- 

RANS with e client spatial access methods, like R*- tree. 

R*-tree supports the focusing techniques that Es- ter et al. 

proposed to reduce the cost of computations. It showed that 

the most computationally expensive step 

of CLARANS is calculating the total distances between the 

two clusterings. Thus, the authors proposed two approaches to 

reduce the cost of this step. 

The rst one is to reduce the number of objects to consider. A 

centroid query returns the most central object of a leaf node of 

the R*-tree where neighboring points are stored. Only these 

objects are used  to compute the medoids of the clusters.  Thus, 

the  number of objects taken for consideration is reduced. This 

technique is called focusing on representative objects. The 

drawback is that some objects, which may be better medoids, 

are not considered, but the sample is drawn in the way which 

still ensures good quality of clustering. 

The other technique to reduce  the computations is to 

restrict the access to certain objects that do not actually 

contribute to the computation. The authors further gave two 

di erent focusing techniques which try to exploit this 

approach: focus on relevant clusters, and focus on a cluster. 

Using R*-tree structure the authors proposed a way of 

performing computation only on pairs of objects that can 

improve the quality of clustering instead of checking all 

pairs of objects as it is done in CLARANS algorithm. 

Ester et al. applied the focusing on representative objects 

to a large protein database to nd the segmen- tation of protein 

surfaces so as to facilitate the so-called docking queries. They 

reported that when the focusing technique was used the e 

ectiveness decreased just from 1.5% to 3.2% whereas the e 

ciency increased by factor 50, which was the number of 

points stored in a disk page. The measure of e ectiveness 

used is the average distance of the resulting clustering 

whereas the measure of e ciency used is the CPU time. 

 

Clustering Features and CF trees 

R-trees are not always available and their construction may 

be time consuming. Zhang et. al. [52] pre- sensed another 

algorithm - BIRCH (Balanced Iterative Reducing and 

Clustering) - for clustering of large sets of points.  The method 

they presented  is the incremental one with possibility of 

adjustment of memory require- ments to the size of memory 

that is available. The au- thors used concepts called Clustering 

Feature and CF tree. 

A Clustering Feature CF is the triple summarizing 

information about sub clusters of points. Given N d- 

dimensional points  in  the  sub cluster:  fXig,  CF  is de 

ned as 

CF = (N; L~S; SS) 

 
where N is the number of points in the subcluster, L~S  

is  the  linear  sum  on  N  points,  i.e.,  
PN      

X~  ,  and 

SS  is  the  square  sum  of  data  points,  i.e.,  
PN      

X~    . 

The Clustering Features are su cient for computing clusters  

and  they  constitute  an  e cient  information 
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storage method as they summarize information about the 

subclusters of points instead of storing all points. 

A CF tree is a balanced tree with two parameters: 

branching factor B and threshold T. The branching factor speci 

es maximum number of children. The threshold  parameter  

speci es  the  maximum  diameter of subclusters stored  at  the  

leaf nodes.  By  changing the threshold value we can change 

the size of the tree. The non-leaf nodes store sums of their 

children's CFs, and thus, they summarize the information about 

their children. The CF tree is build  dynamically as  data points 

are inserted. Thus, the method is an incremental one. A point is 

inserted to the closest leaf entry (subcluster). If the diameter of 

the subcluster stored in the leaf node after insertion is larger 

than the threshold value, then, the  leaf  node  and  possibly  

other  nodes are split. After the insertion of the new point the 

information about it is passed towards the root of the tree. One 

can change the size of the CF tree by changing the threshold. If 

the size  of the  memory that is needed for storing the CF tree is 

larger than the size of the main memory, then a larger value of 

threshold is speci ed and the CF tree is rebuilt. The rebuild 

process is performed by building a new tree from the leaf nodes 

of the old tree. Thus, the process of rebuilding the tree is done 

without the necessity of reading all the points. Therefore, for 

building the tree data has to be read just once. The authors 

present also some heuristics for dealing with outliers and 

methods for improving the quality of CF trees by additional 

scans of the data. 

Zhang et. al. claim that any clustering algorithm, 

including CLARANS may be used with CF trees. The CPU 

and I/O costs of the BIRCH algorithm are O(N ). The authors 

performed a number of experiments which showed linear 

scalability of the algorithm with respect to number of points, 

insensibility to the input order, and good quality of 

clustering of the data. 

2.3   Methods Exploring Spatial Associations 

All  methods  that  we  discussed  in  previous  sections 

 nd only characteristic rules that characterize spatial objects 

according to their  nonspatial  attributes.  In many situations we 

want to discover spatial association rules, rules that associate 

one or more spatial objects with other spatial objects. The 

concept of association rules was introduced by Agrawal et 

al. [1] in a study of mining large transaction databases. 

Koperski  and Han [34]  extended  this  concept  to  spatial 

databases. A spatial association  rule  is  of  the  form  X  ! Y 

(c%), where X and Y are sets of spatial or nonspatial 

predicates and c% is the con dence of the rule. For example, 

the following rule is  a  spatial  association rule: is a(x,school)  

! close to(x,park)  (80%).  This rule states that 80% of 

schools are  close  to  parks. There are various kinds  of  spatial  

predicates  that could  constitute  a  spatial  association  rule.      

Some 

examples are: topological relations like intersects, overlap, 

disjoint, etc.; spatial orientations like left of, west of, etc.;  

distance  information,  such  as  close to, far away, etc. 

To con ne the number of discovered rules, the con- cepts 

of minimum support and minimum  con dence are used. The 

intuition behind this is that in large databases, there may 

exist a large number of associa- tions between objects but 

most of them will be applica- ble to only a small number of 

objects, or the con dence of rules may be low. For example, 

the user may not be interested in the relation associating 5% 

of houses and a single school. He/she may be interested in 

rules that apply to at least 50% of houses. We would like to 

lter out associations describing small percentage of objects 

using the minimum support thresholds. We also want to lter 

out rules with low con dence using minimum con dence 

threshold. These thresholds can be di erent at each level of 

non-spatial description of objects since the same thresholds 

may not nd interesting associa- tions at the lower concept 

levels where the number of objects having the same 

description is smaller. Thus, at the lower levels of non-spatial 

hierarchies the percent- age of objects may not reach the 

support threshold for the  higher  levels  2.  Informally, we  can  

de ne  the  sup- port  of a  pattern  A  in  a  set  S3    to  be  the  

likelihood of the  occurrence  of pattern  A in S, and the con 

dence of rule X ! Y to be the likelihood that the pattern Y 

for object Os occurs whenever X occurs for the same object.  

A set  of predicates  P is large in set  S at level l of the non-

spatial concept hierarchy if the support of P is no less than its 

minimum support threshold 0 for level l (it is true for large 

number of objects), and all ancestors of P from the concept 

hierarchy are large at their corresponding levels. A strong 

rule is a rule with large support, i.e., no less than the 

minimum support threshold, and large con dence, i.e., no 

less than the minimum con dence threshold. A top-down, 

progres- sive deepening search method for mining strong 

spatial association rules is described in [34]. 

To minimize the number of costly spatial computa- tions a 

novel two step spatial computation technique for optimization 

during the search for associations was in- troduced [34]. 

Computation starts at the high level of spatial predicates like g 

close to (generalized  close to). A pair of objects satis es the 

predicate g close to if their Minimum Bounding Rectangles are 

located in the dis- tance no greater then the threshold for this 

predicate. Thus, we deal with the problem of the intersections 

of isothetic rectangles. E cient spatial computation algo- rithms 

and structures like R-trees or plane-sweep tech- niques can be 

used in this step. More detailed and ner, 

  
2 See Han and Fu [27] for detailed discussion on the 

rationale behind the multiple level thresholds for mining 

multiple level association rules in large transaction 

databases. 
3 S  is the set of objects that are described. 
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but  more expensive,  spatial computations are  applied at 

lower concept levels only to those patterns that are large at the 

level of the predicate g close to. The ra- tionale behind this is 

that if a pattern is not large at g  close to level it certainly 

will not be large at the level of detailed spatial relations. 

Filtration of large patterns saves a great deal of computations 

since there are much fewer spatial association relationships left 

at the lower concept levels. The ltration process is done using 

min- imum support at the high levels. 

 

Algorithm for Multiple Level Spatial Association 

Rules 

The mining process is started by a query which is to 

describe a class of objects S using other task relevant classes 

of objects, and a set of relevant relations. For example, a 

user may want to describe parks by pre- senting the 

description of relations between parks and other objects like: 

railways, restaurants, zoos, hydro- logical objects, 

recreational objects, and roads. Fur- thermore, the user can 

state that he/she is interested only in objects in the distance 

less  than one kilome- ter from a park.  The  rst step of the 

algorithm col- lects the task-relevant data. Then, some e 

cient spa- tial computations are performed as mentioned 

above to extract spatial associations at the level of 

generalized spatial relations. These e cient computations 

look for objects whose minimal bounding rectangles are 

located in the distance no greater than the threshold to sat- 

isfy the close to predicate. In this way, objects satis- fying 

the predicate g close to (generalized close to) are found. This 

predicate encompasses exact spatial pred- icates like adjacent 

to, intersects, distance less than x. The g close to predicates 

are stored in an extended re- lational database Coarse 

predicate DB. Every row of the Coarse predicate DB is a 

description of a single object from the class of objects being 

described. Description consists of objects which satisfy task 

relevant predicates. For example, a row related to Stanley 

Park in Vancou- ver may include restaurant, zoo, main road, 

inlet, lake and other objects located inside the park or close 

to it. Each predicate in Coarse predicate DB is checked with 

the threshold for the top level to lter out task-relevant classes 

of objects in the g close to predicates which do not promise 

getting large predicates. For example, if only 5% of objects 

from class  S  satisfy the  predicate g close to(s, zoo) and the 

minimum support threshold on the top level is 15% then the 

predicates g close to(s, zoo) will be deleted. This ltration 

results in a database of large predicates (Large Coarse 

predicate DB). A spa- tial association rules at the coarse level 

can be gener- ated from Large Coarse predicate DB. This 

database is further processed using ner spatial computations 

to produce Fine predicate DB. In the Fine predicate DB, 

generalized predicates like g close to are changed into exact 

spatial predicates like adjacent to, intersects, or 

distance less than x. We call a single predicate, like close 

to(x, lake), a 1-predicate. The conjunction of k such 

predicates is called a k-predicate. For example, the predicate 

close to(x, lake) ^ close to(x, restaurant) is a 2-predicate.  

This predicate states that the object x 

is both close to a lake and close to a restaurant The Fine 

predicate DB is used to produce large k-predicates and generate 

association rules at multiple concept levels. At each concept 

level, the algorithm starts with large 1-predicates and 

iteratively generates large k-predicates until no large (k+1)-

predicate can be found by adding a large 1-predicate to any 

large k-predicate. The algorithm 

 nds large predicates by counting the number of occur- rences 

of predicates in the database and comparing this number with 

the support threshold. The predicates and the number of their 

occurrences in Fine predicate DB are stored in the predicate 

table. Based on the informa- tion stored in the predicate table 

the algorithm derives strong rules. For example, if the 

predicate close to(x, lake) occurs in 100 rows of Fine predicate 

DB, the predi- cate close to(x, restaurant) occurs in 90 rows, 

and both predicates close to(x, lake) and close to(x, 

restaurant) occur together in 80 rows, then the rule \is a(x, 

park) ^ close to(x, lake) ! close to(x, restaurant) (80%)" 

may be derived. After nding large predicates on high lev- els 

of concept hierarchies, the algorithm tries to nd large 

predicates and rules on lower levels. For example, restaurants 

may be specialized into oriental restaurants and continental 

restaurants, and the algorithm may nd relations between parks 

and these types of restaurants. 

 

The computational complexity of the algorithm is O(Cc  

nc +Cf  nf +Cnonspatial) [34], where Cc and Cf are 

average costs of computing each spatial predicate at a coarse 

and ne resolution level respectively, nc is the number of 

predicates that are coarsely computed, nf is the number of 

predicates that are nely computed, and Cnonspatial is the total 

cost of generating rules from the predicate databases. It is 

observed that nf is smaller than nc, but Cc is more e cient 

that Cf . 

 

The above algorithm, especially the two-step compu- tation 

technique, is a novel approach towards mining spatial 

association rules at multiple levels. It requires background 

knowledge in the form of concept hierar- chies and expects a 

user to describe the form of the rule s/he wants by giving such 

information in the mining query. It may be a good idea to 

work towards integra- tion of this technique with clustering 

methods to avoid the necessity of the user having to provide 

the concept hierarchies for spatial and nonspatial attributes. 

 

2.4 Using Approximation and Aggregation 

We discussed a clustering algorithm CLARANS in Section 

2.2. The algorithm is an e ective and e cient 
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method of nding where the clusters in the spatial database are, 

i.e., partitioning data into clusters. However, perhaps  the  

more  interesting  result  would be  to   nd  out  why  the  

clusters  are  there.     Knorr and Ng in [33] presented a study 

motivated by this question.  This question can be rephrased as 

\what are the characteristics of the clusters in terms of the 

features that are close to them". The problem is how to measure 

the aggregate  proximity, because  statements  like 90% of the 

houses in a cluster are close to the feature F are more 

informative and interesting than statements  like one house is 

close to a certain feature F. The aggregate proximity is the 

measure of closeness of the set of points in the cluster to a 

feature as opposed to the distance between a cluster boundary 

and the boundary of a feature. 

One  may ask why the  authors are  not simply using the k 

nearest neighbor searches using structures like k-d trees,  R-

trees  and its  variants, Voronoi diagrams4, etc. It turns out 

that such structures  are unable to perform the search needed 

for their purpose. For example, the distance between the  

cluster and a feature is measured as the distance between the 

boundaries, not between the points, like centroids. 

Furthermore, the costs of building and maintaining the indices 

are prohibitive given  the fact that such indices may not be 

used frequently. Therefore, the authors propose the use of 

computational geometry concepts  [44] to  nd  out  the  

characteristics of a given cluster in terms of the  features  close  

to it. The  authors  described  the  algorithm CRH  (where  C is 

for encompassing circle, R for  isothetic  rectangle, and  H  for  

convex  hull5)  which  uses  such  concepts  as 

 lters to reduce the candidate features at multiple levels. In 

short, they collect a large number of features from multiple 

maps  and  feed  them  along  with  the  cluster to the algorithm 

CRH and discover knowledge about spatial relationships as 

shown in Figure 5. 

 

Algorithm CRH 

Knorr and Ng evaluated various computational ge- ometry 

algorithms for distance computation, and shape descriptions 

and overlap computations. Taking into ac- count the problem 

of data distribution in a cluster and various sizes and shapes 

of the features, the authors chose a technique for computing 

the distance between a cluster point and feature boundary. 

For the shape de- scription, the authors chosed minimum 

bounding struc- tures. They used these structures to develop 

a multiple 

 ltering approach, with the lters set up in an increas- ing 

order of accuracy but decreasing order of e ciency. 

 

4 Voronoi diagram of a set of points S is a set of 

points having more that one nearest neighbor from the 

set S. 
5 Convex hull is the minimal, simple closed curve of 
a set of 

points such that a line connecting any two points of the set 

always lies on the interior of the boundary of convex hull. 

That is, lters that are applied earlier are more e cient but 

coarser than the later ones. 

The algorithm CRH rst applies the encompassing circle 

lter to the large number of features. Features that are the 

most promising ones are passed to the isothetic rectangle 

lter. These two lters eliminate a large number of features and 

only a small number of features is passed to the nal convex 

hull lter. Then, the CRH algorithm calculates the aggregate 

proximity of points in the cluster to the convex boundary of 

each feature, upon which the features are ranked. Also, 

each lter has its own threshold, which is the minimum 

number of features to pass on to the next lter. When the 

number of features found lies below the threshold, the 

cluster is enlarged to encompass more features to pass the 

threshold limit. Shape enlargement can be achieved by the 

linear policy (enlarge the shape by constant distance), or by 

the bisection policy. Bisection policy performs enlargement 

or diminution of the area by a distance which decreases 

logarithmically. This policy checks if enough features are in 

the area of shape and enlarges or decreases the area according to 

the need. The problem with this method is that a feature may 

have to be tested for overlap with a cluster many times. The 

technique, which is called by the authors mem- oization, 

can be used to avoid multiple computations by storing the 

distance between each feature and the cluster the rst time 

the intersection test is performed. Depending upon the shapes, 

circles, rectangles or con- vex hulls, the minimum distance 

between the circumfer- ences, the boundaries of the 

rectangles, or the bound- aries of the polygons respectively 

are stored. Finally, the algorithm reports the features with the 

smallest ag- gregate proximities showing minimum and 

maximum distances of points in the cluster to the feature, 

aver- age distance, and percentages of points located in the 

distance less than speci ed thresholds. 

The algorithm CRH is experimentally reported to have 

the  response  time  of  less  than  two  seconds for 

processing 50,000 features. Furthermore, it is empirically 

shown to be scalable and the memoization policy is found to 

be the  most consistent  and e cient of all the shape 

enlargement policies. 

 

2.5  Mining in Image Databases 

Knowledge mining from Image Databases can be viewed as a 

case of spatial data mining. There have been stud- ies, led by 

Fayyad et al. [14, 15, 48], on the automatic recognition and 

categorization of astronomical objects. The authors presented a 

system [15] for identifying vol- canos on the surface of Venus 

from images transmitted by  the  Magellan spacecraft.  The  

Magellan transmit- ted more than 30,000 high resolution 

synthetic  aper- ture radar images of the surface of Venus from 

di erent angles. The system is composed of three basic 

compo- 
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Figure 5: Using CRH for knowledge discovery in spatial databases 
 

 
nents: data focusing, feature extraction, and classi ca- tion 

learning.  Like all other data focusing techniques, the rst  

component  increases  the  overall  e ciency  of the system by 

rst identifying the portion of the image being analyzed that is 

most likely to contain a volcano. This is achieved by 

comparing the intensity of the cen- tral pixel of a region to the 

estimated mean background intensity of its neighborhood 

pixels. The second com- ponent of the system extracts  

interesting features from the data.  Standard methods used  in 

pattern recogni- tion like edge detection or Hough transform, 

deal poorly with the variability and noise presented in the case 

of natural data. Since it is di cult to nd attributes de- scribing 

volcanos exactly, matrices containing volcanos images were 

decomposed to eigenvectors. Eigenvalues were treated as 

attributes  describing  volcanos.  Then the nal task, which is 

performed by the rest  of  the system, is to discriminate 

between volcanos and other objects looking like volcanos. 

Such \false alarms" are caused by objects on the surface of 

Venus causing inten- sity deviations [7].  The  nal component 

of the system uses training examples provided by the experts  

to cre- ate a classi er that can discriminate between volcanos 

and \false alarms". The decision tree method [45] was used for 

this task. The incidence angle of the synthetic aperture radar to 

the planet instrument strongly in u- enced images of volcanos. 

Thus, the images were nor- malized according to this angle. 

The obtained accuracy was about 80%. 

 

In general, it is di cult for experts to provide classi - cations 

with 100% certainty and false classi cations can produce large 

errors during classi cation because they are treated as negative 

examples. Smyth et al. in [48] discussed such issues, using the 

above problem as a case study.  The paper's main contribution 

is the  modeling and treatment of subjective  label information 

given by the experts using probabilistic models. This research 

is important because it concludes that it is possible for the 

knowledge discovery methods to be modi ed to handle 

the lack of absolute ground truths. 

 

In another study [14] - the Second Palomar Obser- vatory 

Sky Survey (POSS-II) - decision tree  methods were also used 

for the classi cation  of galaxies, stars and other stellar objects.  

About  3 TB  of sky images were analyzed. Data images were 

preprocessed by low- level image processing system FOCAS, 

which selected objects and produced basic attributes like: 

magnitudes, areas, intensity, image moments, ellipticity, 

orientation, etc.  Objects  in  the  training  data  set  were  classi 

ed by  astronomers.   Based  on  this  classi cation,  about ten 

training sets for decision tree algorithm were con- structed. 

From the trees obtained by the learning al- gorithm, a minimal 

set of robust, general and correct rules was found. If no 

additional attributes describing features of a single image plate 

were used, the accuracy was about 75%. Additional attributes 

were de ned to reach a higher level of accuracy in every image. 

"Sure- stars" were detected in every image for the purpose 

of 

 nding image resolution. To gain e ciency, this process was 

also automated. Using "sure-stars", two additional attributes for 

every image plate were computed: resolu- tion scale and 

resolution fraction. These two attributes were used for 

normalization of attributes describing ob- jects produced by 

FOCAS. Other attributes like back- ground level or average 

intensity were also used to nor- malize plates. After the 

normalization the classi cation accuracy increased to about 

94%.  About 5 108   objects were classi ed. Obtained 

resolution was one magnitude better than the previous 

astronomical studies and it was possible to classify objects with 

images too faint to be classi ed by astronomers. The 

performance of decision tree methods was compared with 

neural networks. The tested neural networks algorithms were 

(a) traditional backpropagation, (b) conjugate gradient 

optimization, and (c) variable metric optimization. The last two 

al- gorithms use numerical optimization methods to com- pute 

network weights.  A number of di erent networks was tested.  

The performance was fairly unstable with 
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accuracy varying from 30% to 95%. Additional draw- back of 

neural networks was the requirement to specify internal 

parameters such as the number of hidden layers or size. For 

future investigation, testing of unsupervised clustering 

techniques is planned. 

The above studies showed the problems related to dif- 

ferences between images. The necessity of \normaliza- tion" 

of plates was shown to improve intra- and inter- plate classi 

cation. 

Another example of image database mining is Stolorz et al's 

[49] study of fast spatio-temporal data mining from  

geophysical  data  sets.    The   authors   described a distributed 

parallel querying and analysis environ- ment  called  

CONQUEST  (CONtent-based  QUErying in Space and Time). 

CONQUEST can be distinguished from other image database 

mining tools as it takes into account also temporal components 

of the datasets and it is designed to take advantage of parallel 

and distributed processing. CONQUEST was tested on two 

large cli- mate datasets6   to detect cyclones and blocking 

features. The authors used heuristic rules based on signal 

process- ing methods for the extraction of characteristic weather 

phenomena. Di erent task decomposition methods were used to 

facilitate the distribution of work among a group of machines. 

In the case of cyclone detection, the opti- mal solution was the 

decomposition into separate tem- poral slices. The 

decomposition in the temporal dimen- sion is not always the 

best solution, especially when the state plays an important role 

in the detection of charac- teristic features. For detection of 

blocking features, the spatial decomposition, which assigns di 

erent blocks of grid points to di erent machines, was proven to 

be opti- mal. After detection of weather phenomena the authors 

used a clustering algorithm for the detection of shared spatial 

features.  The goal of the authors is the building of a system 

that combines easy formulated queries with fast parallel 

execution and  visualization of  results  for re nements of the 

queries. 

 

2.6   Other Methods 

The problem introduced by  Fayyad  et  al.'s  [14,  15] has been 

followed up by  other  researchers  as  well. One interesting  

study  was  done  by  Bell  et  al.  [7] who proposed a method 

for knowledge discovery in spatial databases based  upon  

evidence  theory  [21]. The authors took the image database 

mining problem described above as a case study. In this study 

[7] the authors described  an extension  of general framework 

for database mining in relational databases based on evidential 

theory [3] to mine knowledge from spatial databases. 

Evidential reasoning [21] is a generalization of con- 

ventional probability in the sense that it does not make 

 

6 The datasets were chosen so that they were free of 

incomplete, noisy and contradictory data. 

any assumptions about the independence  of  data  be- ing 

analyzed.  Therefore,  the evidential reasoning may be a better  

choice  than using probabilistic model like the Bayesian 

method to model the data like Venus pic- tures, where pixels 

may be interrelated. Evidential the- ory provides a method to 

combine evidences gathered from di erent sources to produce a 

single measure of un- certainty. Thus, it is claimed to be a 

better method to reason about spatial data in the presence of 

uncertainty. The combination of evidences is done using a 

technique based upon Dempster-Shafer theory. Informally, this 

theory can be regarded as a generalization of the con- ventional 

probability theory, where the probabilities are 

 xed and known in advance, to the case where only the 

upper and lower bounds on probabilities are available [21]. 

Bell et al. [7] gave an example of how this method can be 

applied to image databases. 

Major et al. [36] used IXLTM commercial tool for mining 

of  the  tropical storm  database.  The  goal was to predict if 

hurricanes can reach the U.S.  territory. Data describing 

hurricanes were decomposed to obser- vations at  points.   

These  observations  were  stored  in a traditional relational 

database. Attributes like po- sition of the hurricane, speed, 

direction, angle to the coast, etc.   were used.   Since multiple 

tuples describ- ing the single hurricane in di erent points were 

stored, some data were  interdependent.  The  interdependency 

of data causes problems, because the algorithm which was used 

assumes independence of data. The best rules according to di 

erent criteria like performance, novelty, signi cance and 

simplicity were selected from rules de- rived by the IXL. The 

GIS  system was used  to support the selection of the best rules. 

This study shows the necessity of extension of traditional data 

mining tech- niques toward spatial data mining for better 

analysis of complex spatial phenomena and spatial objects. 

 

3 Future Directions 

As we mentioned earlier, data mining is a young eld go- ing 

back no more than the late 1980s. Spatial data min- ing is even 

younger since data mining researchers rst concentrated on data 

mining in relational databases. Many spatial data mining 

methods we analyzed actually assume the presence of extended 

relational model for spatial databases. But it is widely believed 

that spatial data are not handled well by relational databases. 

As advanced database systems, like Object-Oriented (OO), 

deductive, and active databases are being developed, methods 

for spatial data mining should be studied in these paradigms. 

Data mining in spatial object-oriented databases: 

How can the OO approach be used to design a spatial database 

[40, 42] and how can knowledge be mined from these databases? 

It is an important question since many researchers have pointed 

out that OO database may be a 
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better choice for handling spatial data rather than tradi- tional 

relational or extended relational models. For ex- ample, 

rectangles, polygons, and more complex spatial objects can be 

modeled naturally in OO database. OO database techniques are 

maturing. OO knowledge rep- resentation techniques for 

spatial data have been pro- posed Mohan and Kashyap [40], 

and e cient SAM, like R-trees can be used to make OO 

database more e  cient in access and retrieval of data. 

Therefore, exploiting OO technology in data mining is an area 

with enormous po- tential. Techniques for generalizations of 

complex data objects, methods and class hierarchies have been 

stud- ied by Han et al. [28]. 

Mining under uncertainty: Use of evidential rea- 

soning [21] can be explored in the mining process for image 

databases and other databases where uncertainty modeling has 

to be done. As mentioned in Bell et al's [7], evidential theory 

can model uncertainty better than traditional probabilistic 

models, like Bayesian methods. Fuzzy sets approach was 

applied to spatial reasoning [10, 11] and it can be extended 

to spatial data mining. 

Alternative clustering techniques: Another in- 

teresting future direction is the clusterings of possibly 

overlapping objects like polygons as opposed to the clus- tering 

of points. Clusters can also maintain additional information 

about each object they contain, which can be the degree of 

membership. In this way, fuzzy clus- tering techniques can 

be used to accommodate objects having the same distance 

from the medoid. 

 

Mining Spatial Data Deviation and Evolution 

Rules: One extension of current work in spatial data 

mining toward spatio-temporal databases is to study data 

deviation and evolution rules. For example, we can nd 

spatial characteristic evolution rules which summarizes the 

general characteristics of the changing data. During the 

mining process one can discover properties of the regions 

with average growth of crops over 2% per year. A spatial 

discriminant evolution rule discriminates the properties of 

objects in the target class from those in the contrasting classes. 

For example, one can make a comparison of the areas where 

air pollution increased last year with the areas where the air 

quality has been improved. 

These rules may be used, for example, in medical imaging, 

where one would like to nd out how certain features are 

deviating from the norm or how they are evolving over time. 

Other applications may include, dis- covering and predicting 

weather patterns of geographic regions, land use planning, and 

others. 

Using Multiple Thematic Maps: We discussed 

generalization-based methods which used a single the- matic 

map during generalizations. Various applica- tions demand 

spatial data mining to be conducted using 

multiple thematic maps. This would involve not only 

clustering but also spatial computations like map over- lay, 

spatial joins, etc. For example, to extract general weather 

patterns, it may be better to use temperature and 

precipitation thematic maps and to carry out gen- eralization 

in both. 

Interleaved generalization: To extend the gene- 

ralization-based methods, it is interesting to consider in- 

terleaving spatial and nonspatial generalizations to get the 

results in more e cient manner.  E cient process- ing can be 

achieved because usually spatial operations, like joins and 

overlays, are more expensive than non- spatial 

computations. Thus, by rst generalizing the non-spatial 

component and minimally using spatial gen- eralizations one 

may save a lot of computation time. 

Generalization  using  temporal  spatial  data: 

This relates to the point we raised on discovery of data 

evolution rules earlier in this section. It may involve 

generalization over a sequence of maps collected during di 

erent time intervals. Then, comparison or summarization 

can be done to discover data evolution regularities. 

Parallel Data Mining: Due to the high volume of 

spatial data used during the computations mining using 

parallel machines or distributed farms of workstations can 

accelerate signi cantly the work. We expect that parallel 

knowledge discovery will be a growing research issue in both 

relational and spatial data mining. 

Cooperation between Statistical Analysis and 

Data Mining: The enhancement of data mining tech- 

niques with mature statistical methods may produce 

interesting new techniques which may work well with di 

erent kinds of problems and on di erent data. For example, 

the statistical techniques may help in judge- ment on 

interestingness and signi cance of rules. 

Spatial Data  Mining Query  Language:  Design 

of the user interface  can  be  one  of the  key issues  in the 

popularization of knowledge discovery techniques. One can 

create a query language which may be used by non-database 

specialists in their work. Such a query interface can be 

supported by Graphical User Interface (GUI) which can make 

the process of query creation much easier. Due to the special 

nature of data the query language can include features  for 

display of the results of a query in graphical mode.  The  user  

interface  can be extended by using pointing devices  for the  

selection of  objects  of  interest.  The  analysis  of  the  results 

from the query may give feedback for re nement of the queries 

and show the direction of further investigation. The language 

should be powerful enough to cover the number of algorithms 

and large variety of data types stored in spatial databases. 

Multidimensional rule visualization: Discovering 
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knowledge is not enough because it has to be presented in a 

manner that the user can understand easily. One of the most e 

ective  ways of digesting the rules discovered is through 

graphical visualizations. Humans are very good at  

interpreting  visual data and  scenes.  This fact should be 

exploited in the data mining process. Multidimensional data 

visualization has been studied [32], but multidimensional 

rule visualization is still an immature area. Spatial data mining 

can use some well- developed visualization techniques in 

computer graphics in this case. 

 

4   Conclusion 

We have shown that spatial data mining is a promising 

 eld of research  with  wide applications in GIS, med- ical 

imaging,  robot  motion  planning,  etc.  Although, the eld is 

quite young, a number of algorithms and techniques have been 

proposed to discover various kinds of knowledge from spatial 

data. We surveyed existing methods for spatial data mining and 

mentioned their strengths and weaknesses. This led us to future 

direc- tions and suggestions for the spatial data mining eld in 

general. The variety of yet unexplored topics and prob- lems 

makes knowledge discovery in spatial databases an attractive 

and challenging research  eld.  We  believe that some of the 

suggestions that we mentioned have already been thought 

about by researchers  and work may have already started on 

them. But what we hope to achieve is to give the reader a 

general perspective of the eld. 
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