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Abstract—Large disturbances in power systems often initiate 
complex interactions between continuous dynamics and discrete 
events. The paper develops a hybrid automaton that describes such 
behavior. Hybrid systems can be modeled in a systematic way by a 
set of differential-algebraic equations, modified to incorporate im- 
pulse (state reset) action and constraint switching. This differen- 
tial-algebraic impulsive-switched (DAIS) model is a realization of 
the hybrid automaton. The paper presents a practical object-ori- 
ented approach to implementing the DAIS model. Each component 
of a system is modeled autonomously. Connections between com- 
ponents are established by simple algebraic equations. The sys- 
tematic nature of the DAIS model enables efficient computation 
of trajectory sensitivities, which in turn facilitate algorithms for 
solving inverse problems. The paper outlines a number of inverse 
problems, including parameter uncertainty, parameter estimation, 
grazing bifurcations, boundary value problems, and dynamic em- 
bedded optimization. 

 

I. INTRODUCTION 

nteractions  between continuous dynamics and discrete 

     events are an intrinsic part of power system dynamic 

behavior. Devices that obey physical laws typically 

exhibit continuous dynamics. Examples range from 

generators and their controllers at the system level, through 

to capacitors and inductors within power electronic 

circuits. On the other hand, event-driven discrete behavior 

is normally associated with rule-based components. 

Examples in this latter category include protection devices 

[1], tap-changing transformers [2], power electronic switches 

[3] and supervisory control [4]. Limits within physical 

devices also fall into this category; an event occurs when a 

controller signal saturates or a FACTS device encounters 

its maximum/minimum firing angle. 

 

To illustrate continuous/discrete interactions in power 

systems, consider a disturbance consisting of an initiating 

event, such as a lightning strike on a transmission line, 

followed by protection action to remove the fault. The fault 

would disturb the steady-state balance between electrical and 

mechanical torques on generator shafts, causing angles and 

frequencies to respond dynamically. In parallel, protection 

relays should detect the fault and decide on the appropriate 

response. Trip signals would be sent to circuit breakers, which 

should disconnect the faulted feeder after a small (mechanical) 

time delay. Meanwhile, oscillations induced in inter machine 

angles may or may not be stable. Removal of the faulted line 

could lead to overloading of other feeders, and their subsequent 

tripping 

 
 

. The consequent increased demand for reactive power may 

activate generator over-excitation protection, causing a 

reduction in terminal voltage, increased system losses, further 

overloading of feeders and finally system disintegration. Whilst 

this scenario seems pessimistic, it has occurred, to the 

detriment (and annoyance) of many consumers! Similar 

continuous/discrete interactions exist across all layers of power 

systems. At the market layer, for example, system 

measurements and participant inputs are interpreted in terms of 

market rules to generate events that affect the physical system. 

 

In all cases, discrete events influence continuous dynamics, 

which in turn trigger new events. Modeling and simulation must 

accurately capture these interactions. Power system simulation 

has generally evolved to the point where the continuous/discrete 

nature of dynamic behavior is fairly accurately replicated. How- 

ever, it is common to find event handling treated as an ad hoc 

addition to continuous state simulation. The nature of inverse 

problems dictates a more systematic hybrid systems approach 

to capturing continuous/discrete interactions. 

 

Power system analysis normally addresses forward prob- 

lems. Given a system model and a set of parameters, system 

dynamic response can be determined. However, the disturbance 

scenario outlined above motivates analysis questions that are 

classed as inverse problems [5]. Such a disturbance would 

generate recordings from wide area measurement systems 

[6]. Those measurements could be used to improve estimates 

of parameters of system models [7], [8]. This is an inverse 

problem; the measured response is given, and a model is used 

to estimate parameters. It is easy to postulate other inverse 

problems. For example, what are the minimal changes in 

controllable parameters, e.g., generator real power and voltage 

setpoints, that would avoid cascading tripping of overloaded 

feeders or voltage dip problems or instability? How signifi- 

cantly do certain parameters, e.g., load voltage dependence, 

impact system behavior? 

 

The paper has the following structure. Section II presents var- 

ious systematic representations of hybrid systems. Implementa- 

tion issues are discussed in Section III. Inverse problems are 

considered in Section IV, and conclusions are presented in Sec- 

tion V. 
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II. HYBRID SYSTEM REPRESENTATION 

A. Background 

Power systems are an important example of hybrid systems, 

which are characterized by: 

• continuous and discrete states; 

• continuous dynamics; 

• discrete events, or triggers; 

• mappings that define the evolution of discrete states at 

events. 

Conceptually, such systems can be thought of as an indexed 

collection of continuous dynamical systems 

  (1) 

along with a mechanism for “jumping” between those systems, 

i.e., for switching between the various . Each system is in- 

dexed by the discrete state , whilst and are the continuous 

dynamic and algebraic states, respectively. The jumping reflects 

the influence of the discrete event behavior, and is dependent 

upon both a trigger condition and a discrete state evolution map- 

ping. Overall system behavior can be viewed as a sequential 

patching together of dynamical systems, with the final state of 

one dynamical system specifying the initial state for the next. 
 

B. Hybrid Automaton 

Interest in hybrid systems spans a broad range of scientific 

communities, from control to computer science; see, for ex- 

ample, [9]. A consequence is that numerous formal definitions 

of hybrid systems have been proposed. Whilst each represen- 

tation has its own particular flavor, they all capture the fun- 

damental aspects of hybrid systems identified above. The fol- 

lowing definition of a hybrid system has been adapted from [10], 

[11]. 

A hybrid automaton is described by the triple 

(2) 

where 

•  is the finite set of discrete states. They form the vertices 

of a graph. 

•  is the collection of dynamical systems 

                        where each    is a topological space 

forming the continuous state space of , and  gener- 

ates the continuous state dynamics according to (1). 

•  is the finite set of events. The events are 

described by the triple                       , where 

- is the set of symbols that label the events; 

-  ,               , is the collection of au- 

tonomous jump sets for each       , i.e., the conditions 

which trigger jumps from state ; 

- , where  

is the autonomous jump transition 

map that describes the outcome of event   originating 

in state . The transitions form edges of a graph. 

 

As indicated above, the hybrid state space of    is given by 

(3) 

 

 

 
Fig. 1. Hybrid automaton. 

 
The state of a hybrid automaton consists of a discrete part         
together with a continuous part           . Fig. 1 provides 

an example of a graph defined by the hybrid automaton. (The 

symbols labeling this graph are described in Section II-E, and 

relate to the example of Section II-F.) 

The dynamic behavior of a hybrid system can be described 

as follows. Given an initial state  ,                       , 

the system trajectory evolves continuously according to until 

(possibly) the state enters        at   . Encountering  
will trigger jump  , with       describing the transition 

to the new state ,   . The process continues 

from that new point. 

 

C. Petri Nets 

Systematic modeling of power systems requires an unam- 

biguous methodology for describing discrete event activity. A 

number of formal languages exist, including Petri nets and fi- 

nite state machines [12]. It is not clear that any particular lan- 

guage is best for power system applications, though Petri nets 

certainly capture the asynchronous and distributed nature of 

power system events [13]. Therefore, a Petri net representation 

has been adopted. As an example, Fig. 2 provides a (partial) 

Petri net model of the automatic voltage regulator (AVR) of a 

tap-changing transformer [2]. This example is considered fur- 

ther in Section II-F. 

A Petri net is represented by a directed bipartite graph with 

two types of nodes: places (drawn as circles) and transitions 

(drawn as rectangles). Weighted directed arcs connect places to 

transitions and vice versa. Weights are denoted as  for an arc 

from place     to transition  and   for an arc from transition 

 to place . In the example of Fig. 2, weights with unit value 

have not been shown. 

Tokens are drawn as black dots, and places act as token 

holders. The number of tokens in a place cannot be negative. 

At any time instant, the marking (state) of a Petri net is given 

by the number of tokens at its places. Transitions model events, 

and cause the manipulation, creation, or disappearance of 

tokens. Transition  is enabled only if each of its input places 

has at least tokens. When transition fires, it removes 

tokens from each of the input places and adds tokens 

to each output place . In hybrid systems, transitions fire when 
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• Each impulse term of the summation in (4) can be ex- 

pressed in the state reset form 

  (6) 

where the notation  denotes the value of  just after the 

reset event, whilst and refer to the values of and 

just prior to the event. This form motivates a generalization 

to an implicit mapping  . 

• The contribution of each in (5) can be expressed as 

 
    (7) 

 

with (5) becoming 

 
 
 

Fig. 2. Tap-changing transformer AVR logic for increasing tap. 

 

 
 

 
  

 
This form is often more intuitive than (5). 

(8) 

the (evolving) continuous state satisfies the corresponding 

trigger condition. 

D. Simulation Model 

Petri nets and hybrid automata provide a framework for 

establishing rigorous mathematical representations of physical 

devices and systems. However, those representations are not 

immediately applicable to forward problems (via simulation), 

much less inverse problems. A model that captures the full 

richness of hybrid system behavior, yet has a form suitable for 

simulation, is required. 

Simulation techniques and properties are well established for 

differential-algebraic-equation (DAE) systems [14]. Therefore, 

the proposed hybrid system model is adapted from that basic 

form by incorporating impulsive action and switching of al- 

gebraic equations, giving the DA impulsive switched (DAIS) 

model 

 

(4) 

 

             (5) 

where 

• are ; 

• is the Dirac delta; 

• is the unit-step function; 

• : ; 

•  ; some elements of each  will 

usually be identically zero, but no elements of the com- 

posite     should be identically zero; each may it- 

self have a switched form, and is defined similarly to (5), 

leading to a nested structure for ; 

•  are selected elements of that trigger state reset 

(impulsive) and algebraic switching events respectively; 

and    may share common elements. 

The impulse and unit-step terms of the DAIS model can be 

expressed in alternative forms: 

Equations (4) and (5) are a reformulation (and slight general- 

ization) of the model proposed in [15]. 

It can be convenient to establish the partitions 

 

                                             (9) 

 
where 

continuous dynamic states, for example generator an- 

gles, velocities and fluxes; 

discrete dynamic states, such as transformer tap posi- 

tions and protection relay logic states; 

parameters such as generator reactances, controller 

gains and switching times. 

 

This partitioning of the differential equations ensures that 

away from events, evolves according to  , whilst 

and remain constant. Similarly, the partitioning of the reset 

equations   ensures that and remain constant at reset 

events, but the discrete dynamic states are reset to new values 

given by . 

Remarks: 

1) The DAIS model assumes constant state–space dimen- 

sion , across events. This differs from 

some other hybrid system implementations, e.g., [16], 

where the state dimension is allowed to vary upon com- 

ponent switching. The DAIS formulation is not restric- 

tive, though it may require carrying some “inactive” states 

following an event. Maintaining constant state dimension 

has a number of advantages though: 1) the variational 

equations describing trajectory sensitivities, presented in 

Appendix I, have a simpler form, and 2) switched states 

are more easily incorporated into objective functions of 

optimization-based inverse problems. 

2) The simulation of DAE systems is prone to technical is- 

sues that do not arise with ordinary differential equation 

(ODE) systems [14]. The switched nature of the DAIS 

model introduces some extra complexities that require 

careful consideration. Component switching can result in 
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coupling of states, with a consequent increase in the DAE 

index. The higher index implies the system must operate 

on a submanifold of the state space. Therefore, at such a 

switching event, the states must be reinitialized to an ap- 

propriate point on the submanifold [17]. This difficulty is 

usually a legacy of modeling approximations. However, 

such modeling is ubiquitous, so the issue cannot be ig- 

nored. 

Initial conditions for the model (4) and (5) are given by 

and              , where is a solution of 

. Note that in solving for , the constraint 

switching described by (5) must be taken into account. This 

establishes the initial discrete state . 

We define the flows of   and    as 
 

                (10) 

where  and  satisfy (4) and (5), along with initial con- 

ditions 

 

                                   (11) 

(12) 

 
 

E. Hybrid Automaton Interpretation of DAIS Model 

The DAIS model (4) and (5) captures the fundamental at- 

tributes of hybrid system behavior, and is a realization of the 

hybrid automaton model (2). Between events, system behavior 

is governed by the DAE dynamical system  given by 

(13) 

                                  (14) 

where     is composed of , together with functions from (5) 

chosen depending on the signs of the elements of . Each dif- 

ferent composition of      is indexed by a unique         . One 

approach to indexing is to associate    with a string of length 

, where each character of that string is the sign of the corre- 

sponding element of , i.e., either “ ” or “ .” If, however,  
has a nested definition, the th symbol is replaced by a string of 

the form “ ,” with each “ ” symbol taking the sign 

of the corresponding element of . This labeling scheme is il- 

lustrated in Fig. 1, where each discrete state forms the vertex 

of a graph. (This figure relates to the example presented in Sec- 

tion II-F.) 

An event is triggered by an element of passing through zero 

and/or an element of changing sign. Therefore, each condi- 

tion of the form or contributes a jump set , 

with  formed from the union of those . The general nature 

of ensures unrestricted specification of trigger conditions for 

any event . In particular, arbitrarily complicated logical propo- 

sitions can be represented [18]. 

In the case of a switching event , the composition of 

is forced to change. Subsequent solution of  may induce 

further switching. This is acceptable, provided the originating 

event does not attempt to reverse, i.e., switching events must 

satisfy . The outcome of a switching event always 

involves a transition to a new discrete state. The dynamic states 

are fixed at a switching event, whilst the jump transition map 

for the algebraic states is defined (implicitly) through the 

solution of the algebraic equations . 

Reset events, on the other hand, map to a new value, but may 

leave the discrete state unchanged. However, it is also possible 

that through the solution of , the reset value of induces 

changes in the signs of some elements of , and hence, a conse- 

quent transition in the discrete state . In this case, jump transi- 

tion maps  are defined (explicitly) in terms of reset equations 

  and (implicitly) through the solution of . 

Note that in power system applications, there is usually no 

guarantee of a unique solution for . In such cases,  is 

nonunique. 

Event labels  can be derived from the discrete state labeling 

scheme. For the switching event , the th symbol in the 

index would be changed to “ ” if the transition was from the 

“   ” state to the “   ” state, i.e.,     was changing from positive 

to negative, or “ ” for the opposite sign change. This form ex- 

tends naturally to nested indexing structures. Labeling for reset 

events can be achieved by augmenting the discrete state label 

by a sequence of symbols, e.g., the symbol “0.” For a reset 

event , the th symbol would be replaced by a dif- 

ferent symbol. Fig. 1 illustrates this scheme for labeling events. 

The figure also indicates that an event may generate a variety of 

transitions, depending on the value of the state when the event 

is triggered. The transitions form the edges of the graph. 

Remark: 

The graph defined by the hybrid automaton describes all 

possible discrete state trajectories. As a hybrid system 

evolves, it will generate a path that traverses the graph. 

(Though generally not all vertices will be visited.) The 

structure of the graph therefore provides insights into 

system behavior. In the context of power systems, such 

a representation could assist in understanding the nature 

of cascading disturbances. The graph structure may serve 

to highlight unanticipated events, and identify (discrete) 

control actions. 

The partitioning of   , , and  given by (9) ensures that el- 

ements of are piecewise constant variables that only change 

value at reset events. Therefore, the dynamical system repre- 

sentation of (1) can be rewritten as 

(15) 
 

and the discrete state redefined as     , where  is now 

countable rather than finite. Reset events cause a change in , 

and a possible consequent change in . Switching events only 

change . 

 

F. Example 

In order to demonstrate the ability of the DAIS structure (4) 

and (5) to model logic-based systems, this example considers a 

relatively detailed representation of the AVR of a tap-changing 

transformer [2]. The model incorporates a voltage deadband and 

timer. Deviation of the regulated bus voltage beyond the dead- 

band initiates the timer. If the timer times out, i.e., reaches its 

maximum, a tap change occurs and the timer is reset. However, 
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should the voltage recover (return to within the deadband) be- 

fore the timer reaches its maximum, the timer is reset and the 

AVR returns to the wait state. The Petri net model of this AVR 

logic for low voltages, i.e., for increasing tap ratio, appeared ear- 

lier in Fig. 2. The model can be represented in the DAIS form as 
 

                                    (16) 
 

 

and (17), shown at the bottom of the page, where   is the value 

of just prior to the switching event. Expressing the model 

using the alternative forms (6)–(8) perhaps provides clearer in- 

sights into model behavior,1 as 

  when 

 

  
 

 

 

 
 

 

  
 

  

 

 
 

  

 

 
(18) 

To assist in connecting AVR logic with the model, Fig. 2 indi- 

cates variables that are related to particular functions. 

The hybrid automaton of Fig. 1 provides a representation 

of this model. The labeling scheme of Section II-E has been 

adopted in that figure. States are labeled according to the signs 

of switching triggers and , and are indicated in (18). Event 

labeling is based on zero crossings of , , and . 

The behavior of the timer is central to the dynamics of this 

device. The timer value                         ramps up 

 when the voltage deviates outside the deadband 

. While the timer is active, both   and   remain constant. 

Their values change only at events that reset the timer. 

1) If the timer reaches the threshold , i.e.,       
or equivalently , a tap change occurs via the 

reset event. This event forces         and hence 

. The timer is not directly disabled by this event, 

1Actual implementation, however, simply checks whether (y > 0 and y   > 

0) is true or not, corresponding to u(y )u(y ) = 1  or 0, respectively. 

so will continue ramping if the voltage remains outside 

the deadband . 

2) If the voltage returns to within the deadband  , 

is set equal to  , ensuring  . In this 

case, the timer is disabled . Note that remains 

constant whenever the voltage deviates outside the dead- 

band, i.e., when changes from positive to negative. It 

only changes value when the voltage is restored. 

Remarks: 

1) It is clear from the example that translating a Petri net 

model into its equivalent DAIS model is not always an 

intuitive process. However, the approach adopted in [19] 

provides the basis for an automated procedure. 

2) An event is always triggered by a zero-crossing some- 

where in the system. The actual trigger is only directly 

observable to its local component. However, the conse- 

quences of the event are generally more widely observ- 

able. The example illustrates this difference between local 

and remote events. Consider the events that trigger timer 

resetting. A tap change is a local (to the transformer) event 

that is triggered by the local variable crossing zero. 

Voltage recovery, on the other hand, may occur as a con- 

sequence of a remote event, such as feeder restoration. 

This consequent event is observed by the tap-changer via 

a sign change (but not a zero-crossing) of the local vari- 

able . In the former case, the zero-crossing can be used 

to trigger a reset event. In the latter case, switching will 

occur as a consequence of the remote event. This distinc- 

tion necessitates the parallel roles of and in the ex- 

ample. It is an important consideration in object-oriented 

system modeling, as discussed in Section III-A. 

G. Trajectory Sensitivities 

Trajectory sensitivities provide a way of quantifying the vari- 

ation of a trajectory resulting from (small) changes to param- 

eters and/or initial conditions [20]. To obtain the sensitivity of 

the flows  and  to initial conditions , the Taylor series ex- 

pansion of (10) is formed. Neglecting higher order terms gives 

 
  (19) 

 
  (20) 

 

In accordance with the partitioning (9),  incorporates parame- 

ters , so that sensitivity to initial conditions includes param- 

eter sensitivity. Equations (19) and (20) describe the changes 

  and    in a trajectory, at time along the trajec- 

tory, for a given (small) change in initial conditions  

 

 
 

 

 

 

  

(17) 
 



Dogo Rangsang Research Journal                                                        UGC Care Group I Journal 

ISSN : 2347-7180                                                           Vol-09 Issue-03 September-December 2019 

Page | 609                                                                                            Copyright @ 2019 Authors 

 

. The time-varying partial derivatives   
and      are known as trajectory sensitivities. An overview of 

the variational equations describing the evolution of these sen- 

sitivities is provided in Appendix I. 

Along smooth sections of the trajectory, the trajectory sensi- 

tivities evolve according to a linear time-varying DAE system 

(31) and (32). For large systems, these equations have high di- 

mension. However, the computational burden is minimal when 

an implicit numerical integration technique such as trapezoidal 

integration is used to generate the trajectory. An overview of 

this result is provided in Appendix II. Details can be found in 

[21]–[23]. 

More complete details of both appendices can be found in 

[15]. 

 
III. IMPLEMENTATION 

A. Flexible Component Interconnection 

Models of large systems are most effectively constructed 

using a hierarchical or modular approach. With such an ap- 

proach, components are grouped together as subsystems, and 

the subsystems are combined to form the complete system. This 

allows component and subsystem models to be developed and 

tested independently. It also allows flexibility in interchanging 

models. 

The interactions inherent in hybrid systems are counter to this 

decomposition into subsystems and components. The discus- 

sion following the tap-changer example reflects this difficulty. 

However, the algebraic equations of the DAIS model can be ex- 

ploited to achieve the desired modularity. Each component or 

subsystem can be modeled autonomously in the DAIS structure, 

with “interface” quantities, e.g., inputs and outputs, established 

as algebraic variables. The components are then interconnected 

by introducing simple algebraic equations that “link” the inter- 

face variables. This is similar to the connections concept of [24]. 

Note that all interconnections are noncausal [25], i.e., no rigid 

input–output arrangement of components is assumed. 

To illustrate this linking concept, consider a case where the 

th algebraic state of component , denoted , is required by 

component . In the model of component , the corresponding 

quantity would appear as an algebraic variable . The con- 

nection is made via the simple algebraic equation 

. In general, all linking can be achieved by summations of the 

form 

 

                                        (21) 

where is . Note that all connections are external to the 

component models. 

The linking strategy results in an interesting structure for the 

complete system Jacobian 

 

                                 (22) 

(This Jacobian has the same structure as the matrix , given 

by (48), that is required for implicit numerical integration and 

for computing trajectory sensitivities.) Components contribute 

square blocks down the diagonal of  and flattened rectangular 

blocks along the diagonal of the upper section of . The lower 

section of  is an incidence matrix, with ’s given by the 

external connections (21). The corresponding lower section of 

is zero. Fig. 3 illustrates this structure2 . A Jacobian structure 

like that of was identified in [26], where a similar arrangement 

of components and connections was used in the development of 

an optimal power flow. 

Remarks: 

• Because the linking process yields the full system Jaco- 

bian , trajectory sensitivities are well defined, and may 

be efficiently computed, for the full system. 

• The Jacobian effectively defines a graph of the system 

topology. Vertices (nodes) are established by the physical 

network and communication networks. Edges (inter- 

connections) are described by the connections within 

multi-node (network) components, together with the 

incidence matrix defined by the external connections. 

• The structure and values of the lower connection subma- 

trix of    , and hence , are fixed for all time. This can 

be exploited in the factorization of  to improve the ef- 

ficiency of solving (46) and (47). The efficiency improve- 

ment can be significant, as these equations are solved at 

every time step. 

• In general, components and subsystems of any form can 

be modeled, provided they are structured with interfacing 

algebraic variables that can be linked to other components. 

Noise and/or random disturbances can be added to the 

model by linking components that generate random sig- 

nals. 

 
B. Matlab Implementation 

The proposed modular approach to constructing hybrid 

systems has been implemented in Matlab [27]. In this imple- 

mentation, the system is described by a data file that contains 

information and (separate) de- 

tails. Each component of the system contributes an entry to 

that consists of the component name, initial 

values for , and background parameters. Links between 

components are fully described in using the 

form given by (21). 

Every component is described by a file that cal- 

culates values for ,   and   , and sparsely stores elements of 

the partial derivative matrices , ,     ,    ,  and . These 

component files are reusable, i.e., case independent, and reside 

in a component library. Relative indexing is used within the 

component files, as each component model is autonomous. (All 

connection information is externally defined.) Hence, within a 

model, the indexing of Jacobian elements uses only local equa- 

tion and variable numbering. The simulation kernel uses these 

relative indices, along with knowledge of equation and variable 

dimensions across all models, to generate the location of each 

element in the full matrices, i.e., the absolute indices. The actual 

matrices are never built explicitly though, but rather are stored 

sparsely. Full details can be found in [27]. 
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Fig. 3.   Sparsity structure of the complete system Jacobian J. 

 

C. Symbolic Differentiation 

As indicated above, partial derivative matrices are calculated 

and stored sparsely within component files. Hand derivation of 

these partial derivatives can be tedious for large complicated 

models. Therefore, the process has been automated through the 

use of symbolic differentiation [27]. Symbolic manipulation 

has been utilized in power system simulation previously [28], 

though the implementation was quite different. 

The generation of a component file begins with an analytical 

model in the DAIS form. The analytical model must be unam- 

biguously mapped into a character representation that can be 

manipulated symbolically. It is also important that this mapping 

does not restrict the implementation of the DAIS form. Fortu- 

nately, the DAIS model structure is well suited to such trans- 

lation. All elements of the model can be clearly and uniquely 

identified. 

A Matlab function has been developed for translating the 

input model representation into a component file that can in- 

teract with the simulation kernel. Building the , , and equa- 

tions involves relatively straightforward character string manip- 

ulation. Generating the partial derivatives is more challenging. 

Firstly, equations and variable strings are converted to symbols. 

Symbolic differentiation produces partial derivatives that must 

be simplified and converted back to strings. If the final expres- 

sion is zero, the derivative is discarded, as the matrices are stored 

sparsely. 

Component files are generated off-line and stored in the com- 

ponent library. Therefore, symbolic manipulation does not slow 

simulation speed. 

D. Computation of Junction Points 

Switching and reset events generically do not coincide with 

the time instants of the numerical integration process. However, 

simulation accuracy depends upon correct location, between in- 

tegration time steps, of events [18]. 

A simple check of sign changes in trigger variables    and 

at each integration step will reveal most events [15]. However, 

this check fails to detect events where the associated trigger vari- 

ables change sign an even number of times over a time step. A 

more thorough search for events is required, though a tradeoff 

must be made between search accuracy and computational cost. 

An efficient approach proposed in [18] uses interpolation poly- 

nomials generated by a backward differentiation formula (BDF) 

integration method [14]. 

 
IV. INVERSE PROBLEMS 

System analysis is often tantamount to understanding the in- 

fluence of parameters on system behavior, and applying that 

knowledge to achieve a desired outcome. The “known” infor- 

mation is the desired outcome. The parameters that achieve that 

outcome must be deduced. Because of the inverse nature of the 

problem, the process has traditionally involved repeated simu- 

lation of the model. This can be time consuming and frustrating, 

as the relationship between parameters and behavior is often not 

intuitively obvious. 

Systematic modeling, as presented in Sections II and III, al- 

lows the development of new tools that can solve inverse prob- 

lems directly, albeit via iterative techniques. The DAIS model 
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Fig. 4. Tap-changer dynamic load system. 

 

is conducive to the efficient generation of trajectory sensitivi- 

ties. Those sensitivities quantify, to the first order, the effects 

of parameters on dynamic behavior. They therefore underlie the 

development of gradient-based algorithms. 

Sections IV-A–F present a range of inverse problems. Algo- 

rithms that address those problems are outlined. This list is not 

exhaustive, but seeks to provide an overview of the possibilities 

that follow from systematic modeling. 

A. Parameter Uncertainty 

System parameters can never be known exactly. In fact, 

uncertainty in some parameters, e.g., load models, can be quite 

high. Quantifying the effects of parameter uncertainty is not 

strictly an inverse problem, but illustrates the value of the extra 

trajectory sensitivity information available from systematic 

models such as the DAIS representation. 

Because of the uncertainty in parameters, investigation of 

system behavior should (ideally) include multiple studies over 

a range of parameter values. However, simulation of large sys- 

tems is computationally intensive. Such an investigation would 

be extremely time-consuming. A common practical approach 

is to assume that a nominal set of parameters provides an ade- 

quate representation of behavior over the full range of values. 

This may not always be a good assumption though. 

A computationally feasible (though approximate) approach 

to repeated simulation is to generate a first-order approximation 

of the trajectory for each set of perturbed parameters. The first- 

order approximation is obtained by truncating the Taylor series 

expansion of the flow . Using (19) and (20) gives 

 

        (23) 

 

where          ,  are computed along the nominal trajectory 

. Therefore, if the trajectory sensitivities ,  
are available for a nominal trajectory, then (23) can be used to 

provide a good estimate of trajectories  corresponding 

to other (nearby) parameter sets . (Recall the parameters are 

embedded in .) 

The computational burden involved in generating the approx- 

imate trajectories is negligible. Given the nominal trajectory 

and associated trajectory sensitivities, new (approximate) tra- 

jectories can be obtained for many parameter sets. Therefore, a 

Monte Carlo technique can be employed to quantify the uncer- 

tainty in a trajectory: 

• parameter sets are randomly generated; 

• first-order approximations are obtained using (23). 

The simple system of Fig. 4 can be used to illustrate the 

Monte Carlo process. This system includes the tap changing 

transformer AVR of Section II-F, and a dynamic load. The dark 

line of Fig. 5 shows the nominal trajectory corresponding to 

the tripping of a supply feeder (simulated by an increase in 

impedance ). In response to that event, voltage drops instan- 

taneously, causing an initial reduction in load. Load tries to re- 

cover, further stressing the system and driving the voltage lower. 

Eventually, after a time delay , the transformer taps. This 

process continues until the transformer reaches its maximum tap 

position. 

Fig. 5 also shows the bound obtained from the Monte Carlo 

process. The parameters  and the load time constant were 

uniformly distributed over a range of around their nom- 

inal values. The bound was obtained using 200 randomly chosen 

sets of parameters. Further details can be found in [29]. 

Statistics quantifying the uncertainty in system behavior due 

to parameter uncertainty can be obtained from the Monte Carlo 

simulation. For example, it is possible to estimate the probability 

that a disturbance would initiate protection operation or that the 

voltage would fall below some predetermined threshold. 

Another approach to assessing the significance of parameter 

uncertainty is via worst case analysis [30]. This involves finding 

the values of parameters (within specified bounds) that induce 

the greatest deviation in system variables, for example voltages. 

The algorithm can be formulated as a constrained optimization, 

and is truly an inverse problem. Such optimization problems are 

discussed as part of later inverse problems. 
 

B. Parameter Estimation 

System-wide measurements of power system disturbances 

are frequently used in post-mortem analysis to gain a better 

understanding of system behavior [6]–[8], [31]. In undertaking 

such studies, measurements are compared with the behavior 

predicted by a model. Differences are used to tune the model, 

i.e., adjust parameters, to obtain the best match between the 

model and the measurements. This process requires a system- 

atic approach to 

1) identifying well-conditioned parameters that can be esti- 

mated reliably from the available measurements; 

2) obtaining the best estimate for those parameters. 

It is shown in [8] that trajectory sensitivities can be used to 

guide the search for well-conditioned parameters, i.e., parame- 

ters that are good candidates for reliable estimation. Large tra- 

jectory sensitivities imply the corresponding parameters have 

leverage in altering the model trajectory to better match the mea- 

sured response. Small trajectory sensitivities, on the other hand, 

imply that large changes in parameter values would be required 

to significantly alter the trajectory. Parameters in the former cat- 

egory are well-conditioned, whereas the latter parameters are 

ill-conditioned. Only parameters that influence measured states 

can be identified. A parameter may have a significant influence 



Dogo Rangsang Research Journal                                                        UGC Care Group I Journal 

ISSN : 2347-7180                                                           Vol-09 Issue-03 September-December 2019 

Page | 612                                                                                            Copyright @ 2019 Authors 

 

 
 

Fig. 5. Trajectory bounds. 
 

on system behavior, but if that influence is not observable in the 

measured states, then the parameter is not identifiable. The con- 

cept of identifiability is explained more formally in [32]. 

A parameter estimation algorithm that is based on a Gauss–

Newton iterative procedure is presented in [8]. The algorithm 

minimizes a nonlinear least-squares cost 

  (24) 

where    are the sampled measurements of the disturbance, 

 are the flows provided by the model that correspond to the 

measured quantities, and are the unknown parameters. This 

minimization can be achieved (locally at least) by the iterative 

scheme 
 

   

                                       (25) 

where  is a scalar that determines the parameter update step 

size.3 The matrix    is built from the trajectory sensitivities , 

i.e., sensitivity of model flows    to parameters . The invert- 

ibility of relates directly to identifiability [32]. 

Remarks: 

1) Parameter estimation via (25) is not restricted to smooth 

systems. In fact, it is possible to estimate parameters that 

underlie event descriptions (provided measurements cap- 

ture an occurrence of the event.) 

2) For large systems, feasibility of the Gauss–Newton algo- 

rithm is dependent upon efficient computation of trajec- 

tory sensitivities. This underlines the importance of sys- 

tematic modeling, as provided by the DAIS model. 

C. Boundary Value Problems 

It is interesting to consider boundary value problems of the 

form 

                                      (26) 

where  is the final time, and  is the trajectory that starts 

from and is generated by (4) and (5). The initial values 

are variables that must be adjusted to satisfy . (Though may 

directly constrain some elements of .) To establish the solu- 

tion process, (26) may be rewritten 

(27) 

which has the form       . Boundary value problems are 

solved by shooting methods [34], [35], which are a combina- 

tion of Newton’s method for solving (27) along with numerical 

integration for obtaining the flow . Newton’s method requires 

the Jacobian 

 

(28) 

 
which is dependent upon the trajectory sensitivities evaluated at 

. Boundary value problems per se are uncommon in power 

systems. However an application of increasing importance is 

the calculation of limit cycles (sustained oscillations). 

Oscillations have been observed in a variety of power systems, 

from generation [36] to distribution [37]. In this latter case, 

oscillations were driven by interactions between transformer 

tapping and capacitor switching. Systematic modeling, as 

provided by the DAIS representation, is vital for capturing 

such hybrid system phenomena. 
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To solve for limit cycles, (27) can be written as 

 

 

where  lies on the limit cycle and  is its period. 4 The solution 

of this boundary value problem via a shooting method requires 

, which is exactly the Monodromy matrix [34], [38]. The 

eigenvalues of this matrix determine the stability of the limit 

cycle. 

 
D. Grazing Bifurcations 

When a system trajectory encounters the operating charac- 

teristic of a protection device, a trip signal is sent to circuit 

breakers. If the trajectory almost touches the operating charac- 

teristic but just misses, no trip signal is issued. The bounding 

(separating) case corresponds to the trajectory grazing, i.e., just 

touching, the operating characteristic, but not crossing it. This 

is a form of global bifurcation; it separates two cases that have 

significantly different outcomes. Numerous names exist for this 

phenomenon, including switching-time bifurcation and grazing 

bifurcation. There is a close relationship to border-collision bi- 

furcations. 

Examples of such bifurcations can be found in many applica- 

tion areas. They are particularly important in power electronic 

circuits, where zero-crossings are fundamental to control strate- 

gies, and to the switching of self-commutating devices [3], [39]. 

In fact it has been shown that grazing bifurcations can provide 

a path to chaos in simple dc–dc converters [40]. 

Identifying the critical values of parameters that correspond 

to a grazing bifurcation is an inverse problem. Let the switching 

characteristic (border) be described by         . A trajectory 

will be tangential to that characteristic at the point   
  given by 

 

 

 

 
  

The critical values of parameters are given by . This is a spe- 

cial form of boundary value problem. Shooting methods provide 

the basis for gradient-based algorithms. Further details can be 

found in [41]. 

 
E. Dynamic Embedded Optimization 

Optimization problems arise frequently in the analysis of 

power system dynamics. Examples range from tuning generator 

AVR/PSSs to determining the optimal location, amount and 

switching times for load shedding [42]. Most problems can be 

formulated using a Bolza form of objective function 

 

(29) 

 
where 

 
  (30) 

 

 

 

 
Fig. 6. AVR/PSS block representation. 

 
 

are the design parameters, i.e., the parameters adjusted to 

achieve the objective, and  is the final time. 

The solution of (29) for hybrid systems is complicated by 

discontinuous behavior at events. However, those complications 

largely disappear under the assumption that the order of events 

does not change as    and  vary, i.e., no grazing bifurcations 

occur. This assumption is common throughout the literature, 

though it is expressed in various ways: transversal crossings 

of triggering hypersurfaces are assumed in [10], existence of 

trajectory sensitivities is assumed in [43], and [44] assumes all 

flows have the same history. All statements are equivalent. 

Under that assumption, and other mild assumptions, it is con- 

cluded in [44] that if    is continuous in its arguments then a 

solution to (29) exists. Further, [43] shows that if  is a smooth 

function of its arguments, then it is continuously differentiable 

with respect to     and  . The minimization can therefore be 

solved using gradient-based methods. Trajectory sensitivities, 

as provided by the DAIS model, underlie the gradient informa- 

tion. 

If the event ordering assumption is not satisfied,   may 

be discontinuous. The optimization problem then takes on a 

combinatorial nature, as each continuous section of  must be 

searched for a local minimum. 

Nontraditional design capabilities arise from embedding the 

DAIS model within the optimization framework (29) and (30). 

To illustrate, consider the generator AVR/PSS shown in Fig. 6. 

The clipping limits on the PSS output  and the anti-windup 

limits on the field voltage  introduce events that can be cap- 

tured by the DAIS model. Typically, PSS output limits are as- 

signed on an ad hoc basis. However, [45] determines optimal 

limit values by establishing a cost function (30) that maximize 

damping whilst minimizing deviations in the generator terminal 

voltage. Fig. 7 compares optimal performance with that ob- 

tained using standard limit values. (Note that only the limit 

values differ between these two cases. All other parameters are 

fixed.) 

Other optimization problems do not naturally fit the Bolza 

form of objective function (30). Cascaded tap-changing trans- 

formers provide an interesting example [46]. Minimizing the 

number of tap change operations is equivalent to minimizing 

the number of crossings of triggering hypersurfaces. Such a 

problem, by definition, does not satisfy the earlier assumption 

requiring constant ordering of events. This minimization is 

best addressed using switching control design techniques [47], 

though the solution process is not yet well established. 
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Fig. 7. Generator angle response. 

 

F. Technical Issues 

Changes in event ordering, as discussed in the Section IV-E, 

influence all gradient-based algorithms for solving inverse prob- 

lems. The effect is similar to power flow solution when reac- 

tive power limits change status. Algorithms usually converge, 

though with a slower convergence rate and a reduced region of 

convergence. 

Another interesting aspect of hybrid systems is that trajec- 

tories may not be unique in reverse time even though they are 

unique in forward time. In other words, the same final value 

 can be reached from different initial values . In such 

cases, the trajectory sensitivity matrix  is singular. This 

matrix underlies solution algorithms for numerous inverse prob- 

lems, for example (28). An approach to addressing this issue is 

to decompose      into components that influence  and 

those that do not. Attention is then restricted to the former group. 

This is an area of on-going research. 

 

 
V. CONCLUSION 

 

The response of power systems to large disturbances 

often involves interactions between continuous dynamics and 

discrete events. Such behavior can be captured by a hybrid 

automaton. The automaton has a graph representation, with 

vertices corresponding to modes (discrete states) of system 

operation, and edges describing transitions induced by events. 

The system responds smoothly within each mode. Cascading 

failure of a power system results in a path traversing the graph. 

Hybrid systems can be modeled by a set of DAE equations, 

modified to incorporate impulse (state reset) action and con- 

straint switching. This DAIS model is a realization of the hybrid 

automaton. 

Models of large systems are most effectively constructed 

using a modular or object-oriented approach. However the 

interactions inherent in hybrid systems make that difficult to 

achieve. The desired modularity can be achieved in a prac- 

tical way with the DAIS model though. Components and/or 

subsystems are modeled autonomously, with connections 

established via simple algebraic equations. The Jacobian of the 

DAIS model effectively defines a graph of system topology. 

Furthermore, the object-oriented model structure is amenable 

to symbolic manipulation. 

Systematic modeling allows the development of tools for 

solving inverse problems, including parameter uncertainty 

and estimation, boundary value problems, grazing bifurcation 

analysis and dynamic embedded optimization. The DAIS 

model is conducive to the efficient computation of trajectory 

sensitivities. Those sensitivities underlie gradient-based algo- 

rithms for addressing inverse problems. 

Many power system simulators now use implicit numerical 

integration techniques, such as trapezoidal integration. Mod- 

ification of such simulators to compute trajectory sensitivities 

along smooth sections of a trajectory is therefore quite straight- 

forward. However, mapping trajectory sensitivities through 

events requires cleanly defined event triggering conditions, as 

provided by the DAIS model. Incorporating that feature into 

existing simulators may be a challenging, though certainly 

surmountable, problem. 
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APPENDIX   I 

TRAJECTORY SENSITIVITY EQUATIONS 

Away from events, where system dynamics evolve smoothly, 

the sensitivities  and  are obtained by differentiating (13) 

and (14) with respect to . This gives 

(31) 

(32) 

where                                 , and likewise for the other Jacobian ma- 

trices. Note that    ,    ,    ,     are evaluated along the trajec- 

tory, and hence are time varying matrices. It is shown in Ap- 

pendix II that the solution of this (potentially high order) linear 

time-varying DAE system can be obtained as a by-product of 

solving the original DAE system (13) and (14). 

Initial conditions for  are obtained from (11) as 

  (33) 

where is the identity matrix. Initial conditions for  follow 
directly from (32) 

  (34) 

Equations (31) and (32) describe the evolution of the sensitiv- 

ities  and  between events. However, at an event, the sensi- 

tivities are often discontinuous. It is necessary to calculate jump 

conditions describing the step change in  and . For clarity, 

consider a single switching/reset event, so the model (4)–(8) re- 

duces to the form 5 

(35) 

                           (36) 

                           (37) 

Let be the point where the trajectory encounters the 

hypersurface  , i.e., the point where an event is trig- 

gered. This point is called the junction point and is the junc- 

tion time. Assume that the trajectory encounters the triggering 

hypersurface transversally. 

Just prior to event triggering, at time    , we have 

Following the event, i.e., for , calculation of the sensi- 

tivities proceeds according to (31) and (32), until the next 

event is encountered. The jump conditions provide the initial 

condi- tions for the post-event calculations. 

Actual power systems involve many discrete events. The 

more general case follows naturally, and is presented in [15]. 

 
APPENDIX II 

EFFICIENT TRAJECTORY SENSITIVITY COMPUTATION 

Consider the DAE system (13) and (14) which describes 

the behavior over the periods between events. The trapezoidal 

approach to numerical integration approximates the differential 

equation (13) by a set of algebraic difference equations. These 

algebraic equations are coupled with the original algebraic 

equations (14) giving 

(46) 

(47) 

where the superscripts and index the time instants  
and , respectively, and    is the integration 

time step. (The subscript  has been dropped from  for clarity.) 

Equations (46) and (47) describe the evolution of the states , 

from time instant  to the next time instant . 

Notice that (46) and (47) form a set of implicit nonlinear alge- 

braic equations. To solve for         ,          given ,  requires 

the use of a nonlinear equation solver. Newton-based iterative 

techniques are commonly used. The solution process involves 

forming and factorizing the Jacobian 

 
  (48) 

 
Now consider the sensitivity equations (31) and (32). Using 

trapezoidal integration, they are approximated by 
 

                                 (38) 

                              (39) 

where        . Similarly, are defined for time 

, just after the event has occurred. It is shown in [15] that the 

jump conditions for the sensitivities  are given by 

 
  

Rearranging gives 
 

 

(49) 

(50) 

 

 

 
 

 
  

where 
 

 

 
 

 

 
 

  

(40) 

 

(41) 

 
(42) 

 

(43) 

(44) 

       (51) 

Therefore, and are obtained as the solution of a 

linear matrix equation. But notice that the matrix to be inverted 

in solving (51) is exactly the Jacobian (48) used in solving for 

, . Because that matrix has already been built and 

fac- torized to calculate       ,        , the solution of (51) 

involves little extra computation. 

The sensitivities  immediately after the event are given by 

(45) 
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