

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 204 Copyright @ 2020 Authors

Software Fault Prediction Models to Improve

Quality

Submitted By: Niladri Bhusan Biswal, Asst. Prof in Raajdhani Engineering College, Bhubaneswar

 Radhamohan Acharya, Asst.Prof In Aryan Institute of Engineering and Technology,Bhubaneswar

 Prasanna Kumar Chhotaray, Asst. prof in NM Institute of Engineering and Technology, Bhubaneswar

 Biraja Nayak, Asst.Prof In Capital Engineering College, Bhubaneswar.

Abstract

In spite of meticulous planning, properly documentation
and right method manage for the duration of software
program development, occurrences of positive defects
are inevitable. These software program defects may also
cause degradation of the software which is probably the
underlying purpose of failure. In today’s slicing aspect
opposition it is important to make aware efforts to govern
and limit defects in software program engineering.
However, those efforts value money, time and resources.
This paper identifies causative elements which in flip
advise the treatments to enhance software program
productivity. The paper additionally showcases on how
the diverse disorder prediction fashions are applied
ensuing in decreased significance of defects.

1. Introduction

Software metrics has been used to describe the complexity of

the program and, to estimate software development time.

“How to predict the quality of software through software

metrics, before it is being deployed” is a burning question,

triggering the substantial research efforts to uncover an

answer to this question. There are number of papers

supporting statistical models and metrics which profess to

answer the quality question. Typically, software metrics

elucidate quantitative measurements of the software product

or its specifications. Defects can be defined in a disparate

ways but are generally defined as aberration from

specifications or ardent expectations which might lead to

failures in procedure. Defect data analysis is of two types;

Classification and prediction that can be used to extract

models describing significant defect data classes or to predict

future defect trends. Classification predicts categorical or

discrete, and unordered labels, whereas prediction models

predict continuous valued functions. Such analysis can help

us for providing better understanding of the software defect

data at large.

A software defect is an error, flaw, bug, mistake, failure,

or fault in a computer program or system that may

generate an inaccurate or unexpected outcome, or

precludes the software from behaving as intended. A

project team always aspires to procreate a quality software

product with zero or little defects. High risk components

within the software project should be caught as soon as

possible, in order to enhance software quality. Software

defects always incur cost in terms of quality and time.

Moreover, identifying and rectifying defects is one of the

most time consuming and expensive software processes.

It is not practically possible to eliminate each and every

defect but reducing the magnitude of defects and their

adverse effect on the projects is achievable.

In year 2008 and 2009, SANS institute conducted a study

to identify the most common and dangerous 25 software

bugs or defects. About 30 organizations gave their

contribution for the study. Commercials software

organizations like Apple, Aspect Security, Breach

Security, CERT, Homeland Security, Microsoft, MITRE,

Oracle, Red Hat and Tata; academic institutes like

University of California, Perdue University etc were

among these organizations. These 25 security problems

were classified into three domains [14] shown in figure 1.

Therefore, defect prediction is extremely essential in the

field of software quality and software reliability. Defect

prediction is comparatively a novel research area of

software quality engineering. By covering key predictors,

type of data to be gathered as well as the role of defect

prediction model in software quality; the interdependence

between defects and predictor can be identified. This

paper gives you intensive insights and future research

avenues about software defect prediction.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 205 Copyright @ 2020 Authors

Fig. 1 Security Problems

Preemptive discovery of software defects in a software

project empowers managers to make appropriate decisions

and plan limited project resources in a more structured and

systematic way. In general, we should focus on the following

different aspects of the problem.

• Defect prevention;

• Defect detection;

• Defect correction;

Since defect prediction is a relatively new domain of

research, in this paper we will be discussing various

prediction models which have been proposed. In the current

prediction models, complexity and size metrics are used in

order to preempt any defects that might occur during

operation or testing phase of the project. In another model of

defect prediction, reliability based models use the operational

profile of a system to predict failure rate that the project will

face. Also in most projects, information collected in the

testing and defect detection is analyzed to help predict defeats

for similar types of projects. However, since all models of

defect prediction have areas where they come up short, the

search for one model that can predict defects in a wide range

of projects has been on. The multivariate model of defect

prediction have been touted as the model that can solve this

issue but still no all encompassing model has been uncovered

as of now. With the importance of enforcing the highest levels

of quality in systems, it has become imperative to improve

defect prediction techniques so that they can anticipate more

defects at an early stage leading to a quality project delivery.

1.1 A General Defect Prediction Process:
To construct a prediction model, we must have defect and

measurement data collected from actual software

development efforts to use as the learning set. There exist

compromise between how well a model fits to its learning set

and its prediction performance on additional data sets.

Therefore, we should evaluate a model‟s performance by

comparing the predicted defectiveness of the modules in

a test set against their actual defectiveness [20].

Sunghun Kim et al. [18] have described a common defect

prediction process shown in the figure 2.

Fig. 2 General Defect Prediction Process

Labeling: Defect data should be gathered for training a

prediction model. In this process usually extracting of

instances i.e. data items from software archives and

labeling (TRUE or FALSE) is done.

Extracting features and creating training sets: This step

involves extracting of features for prediction of the labels

of instances. General features for defect prediction are

complexity metrics, keywords, changes, and structural

dependencies. By combining labels and features of

instances, we can produce a training set to be used by a

machine learner to construct a prediction model.

Building prediction models: General machine learners

such as Support Vector Machines (SVM) or Bayesian

Network can be used to build a prediction model by using

a training set. The model can then obtain a new instance

and predict its label, i.e. TRUE or FALSE.

Assessment: The evaluation of a prediction model

requires a testing data set besides a training set. The labels

of instances in the testing set are predicted and the

prediction model is evaluated by comparing the prediction

and real labels. 10-fold cross-validation is broadly used to

separate the training and testing sets.

Inadequ
ate
authoriza
tion and
access
control
Inad

equat
e
crypt
ograp
hic
algori
thms
Hard

coding
and

Defense

Uncon
straine
d
memor
y
buffers
Control

loss of state
data
Control

loss of paths
and file
names

Hazardous paths
Uncontro

lled code
generatio

Resource

Poor input
validation

Poor
encodin
g of
output

SQL query
structures
Web page

structures
Operating

system
command
structures
Open

transmission
of sensitive

Intera

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 206 Copyright @ 2020 Authors

2. Problem Definition

As we have discussed upon earlier, defect prediction is vital

in nature. Our prime objective is to predict defects without

overrunning the estimated cost as well as without delaying

scheduled delivery of software. However, the main issue

related to this is mainly the plethora of models which can be

used for the same. All models of defect prediction have their

own set of advantages and disadvantages which makes it hard

to understand which fault prediction model should be used

and more importantly in what type of project. Since every

project tends to be unique, this is hard from a decision making

standpoint. However, we believe thorough model evaluation

can enable project managers to make a more informed

decision.

In our study, we will cover the popular models of defect

prediction and evaluate the pros and cons of each model along

with the situations where the models can be used. We will

evaluate the models based a varied set of criteria depending

on the model being discussed. After evaluation, we will also

include our personal observations and interpretations on why

we think certain decision models are useful along with

substantiating case studies of real world usage wherever

possible.

3. Study of Software Defect Prediction Models

 Prediction Model using size and complexity

metrics

Among the popular models of defect prediction, the approach

that uses size and complexity metrics is fairly well known.

This model uses the program code as a basis for prediction of

defects. More specifically, lines of code (LOC) are used along

with the concept of complexity model developed by McCabe.

Using regression equations, simple prediction metrics

estimates can be obtained using a dependent variable (D)

defined as the sum of defects found during testing and after 2

months post release. Famously, Akiyama made 4 equations.

We have illustrated the equation that includes the LOC

metric:

Defect (D) = 4.86 + 0.018 Lines of Code (L) (1)

Gaffney deduced above equation (1) into another prediction

equation. He argued that LOC was not language dependent

owing to optimal size for individual modules with regards to

defect density. The regression equation is given below:

D = 4.2 + 0.0015 L4/3 (2)

The size and complexity models presume that defects are

direct function of size or defects are occurred due to

program complexity. This model ignores the underlying

casual effects of programmers and designers. They are the

human factors who actually commence the defects, so any

attribution for flawed code depends on individual(s) to

certain extent. Poor design capability or problem

difficulty may result in highly complex programs.

Difficult problems might require complex solutions and

naive programmers might create „spaghetti code‟ [6].

 Machine Learning Based Models

Machine learning (ML) algorithms has demonstrated

great practical significance in resolving a wide range of

engineering problems encompassing the prediction of

failure, error, and defect-impulsions as the system

software grows to be more complex. ML algorithms are

very useful where problem domains are not well defined,

human knowledge is limited and dynamic adaption for

changing condition is needed, in order to develop efficient

algorithms. Machine learning encompasses different

types of learning such as artificial neural networks

(ANN), concept learning (CL), Bayesian belief networks

(BBN), reinforcement learning (RL), genetic algorithms

(GA) and genetic programming (GP), instance-based

learning (IBL), decision trees (DT), inductive logic

programming (ILP), and analytical learning (AL)[3].

G. John, P. Langley [4] employed RF method for

prediction of faulty modules with NASA data sets.

Prediction of software quality was introduced by

Khoshgaftaar et al. [5] by using artificial neural network.

In this model they classified modules as fault prone or non

fault prone, using large telecommunication software

system. They compared their end results with another

non– parametric model achieved from discriminant

method. Fenton et al. [6] suggested the use of Bayesian

belief networks (BBN) for the prediction of faulty

software modules. Elish et al. [7] recommended the use of

support vector machines for predicting defected modules

with context of NASA data sets. This model compares its

prediction performance with other statistical and machine

learning models. We have discussed few models in detail

to enhance the understanding of Machine learning based

prediction models.

 The Probabilistic Model for Defect Prediction

using Bayesian Belief Network

Fenton, Krause and Neil [6] proposed a probabilistic

model for defect prediction. They recommended a holistic

model rather than a single issue (for e.g. size, or

complexity, or testing metrics, or process quality data).

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 207 Copyright @ 2020 Authors

evidence in order to successful defect prediction. The model

uses Bayesian Belief Network (BBN) as the suitable practice

for representation of this evidence. The Bayesian approach

causes statistical conclusion to be improved by expert

judgment in those parts of a problem sphere where empirical

data is scattered. Additionally, the causal or influence

organization of the model better reflects the series of real

world events and relations than any other practice.

BBN can be exploited to support effective decision making

for SPI (Software Process Improvement), by executing the

following steps.

Fig. 3 Bayesian Approach

A BBN represents the joint probability distribution for a

set of variables. This is achieved by defining Directed acyclic

graph (DAG) and Conditional probability tables A BBN can

be employed to deduce the probability distribution for a target

variable (e.g., “Defects Detected”), which indicates the

probability that the variable will obtain on each of its possible

values (e.g., “very low”, “low”, “average”, “high”, or “very

high” for the variable “Defects Detected”) given the observed

values of the other variables [8, 9].

N. Fenton, M. Neil and D. Marquez [17] reviewed the use of

Bayesian networks to overcome impediments of using BN‟s

for predicting software defects and software quality. BN tools

and algorithms suffered from „Achilles‟ heel. This compelled

modelers to predefine discretization intervals in advance and

resulted in inadequate predictions for large set of data. To

improve this „dynamic discretization‟ algorithm was used.

This algorithm exploits entropy error as the basis for

approximation allowing more accuracy.

3.2.1 The Probabilistic Model for Defect Prediction

using Bayesian Belief Network

The Fuzzy Logic model is based on the concept or

reasoning and works on a value that is approximate in

nature. It is a step up from conventional Boolean Logic

where there can only be True or False. In case of Fuzzy

logic, the truth of any statement is degree and not an

absolute number. Modeled on human intuition and

behavior, the biggest plus point of Fuzzy logic is that as

opposed to the traditional yes – no answers, this model

factors in the degree of truth and hence makes allocation

for the more human like answers.

Previously in this report, we have elaborated on why it is

important to identify software quality issues at an early

stage. Ajeet Kumar Pandey and N. K. Goyal [10]

suggested the model of Fuzzy Logic and the software

metrics as well as process maturity, the model can be

constructed as follows:

Fig. 3 Fuzzy Logic Approach

This model uses inputs and puts them in a range system.

After this, a set of rules is defined that dictates and

influences how inputs will be utilized in getting the output

as well as finding the definitive value in the fuzzy set. The

model has a set of metrics or reliability relevant metric

(RRML) list which is made from the available software

metrics. The metrics are pertinent to their respective

phases in the software development life cycle.

Requirement Phase Metrics - As you can see the model

has uses three requirements metrics (RM) i.e.

Requirements Change Request (RCR), Review,

Inspection and Walk through (RIW), and Process

Maturity (PM) as input to the requirements phase.

Design Phase Metrics – similar to the above phase, three

design metrics (DM) i.e. design defect density (DDD),

fault days number (FDN), and data flow complexity (DC)

have considered as input.

Achieve a probability
distribution for each
variable in the BBN

Defining the
accurate relationships
among variables

Identification of
variables

(Hypothesis ,

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 208 Copyright @ 2020 Authors

Coding Phase Metrics – In this phase, two coding metrics

(CM) such as code defect density (CDD) and cyclomatic

complexity (CC) have been taken as input at coding phase.

The outputs of the model will be the number of faults at the

end of Requirements Phase (FRP), number of Faults at the

end of Design Phase (FDP), and number of Faults at the end

of Coding Phase (FCP).

 Defect Prediction Models Based on Genetic

Algorithms

Genetic Algorithms is an approach to machine learning which

behaves similarly to the human gene and the Darwinian

theory of natural selection. It is a part of the Evolutionary

Algorithms which generate solutions based on the techniques

more commonly found in nature like mutation, selection,

crossover etc.

Genetic Algorithms are implemented beginning with an

individual population that is usually represented in the form

of trees. A possible solution is represented by each tree or say

chromosome in this case. Nodes on the tree signify particular

traits that relates to the problem for which the solution is being

searched. Collectively, the set of potential solutions to the

problem is (represented by the chromosomes) as known as the

population.

Where genetic algorithms come into place is when you need

to solve problems which can have many solutions. Here,

genetic algorithms are being used to cluster the classes

defined as per object oriented metrics into subsystems or

commonly known as components of software. As elaborated

earlier, genetic algorithm uses an approach akin to Charles

Darwin‟s “Survival of the Fittest” or natural selection. The

reason this approach is being considered is because the large

solutions set which provide a number of possible solutions to

a problem. When applying a genetic algorithm to a problem,

there are a few implications which are made. The same are as

follows

a) There must be a fitness function present for the

evaluation of weather a solution is a possible one or

not

b) Whenever there is a solution found, there should a

representation of it made by a chromosome.

c) Whichever genetic operators will be applied must be

established

Additionally the definition of a solution in this case would be

one which would be both complete as well as valid. In terms

of a representation, there is the assumption that the possible

solutions have been encoded in the solutions space.

How do Genetic Algorithms work?

In the beginning, the Genetic Algorithms start with a large

population. In that population, each individual represents

a plausible solution to the problem. These individuals in

the population are then encoded in a binary string that is

called a chromosome. After that, the group of the

individuals will compete so that they can reproduce and

then formulate the next generation. However, there is a

function called the fitness function that determines which

of the competing individuals will gain the right to

reproduce. Having the fitness function in place makes

sure that only the best individuals of the population will

be able to carry over their offspring into the next

generation. The next generation is formed by the

following activities taking place.

a) Reproduction – reproduction process takes place

when two chromosomes exchange a portion of

their code to form the new individuals. The

crossover points (where the bits of the code will

exchange) are selected by random (for a simple

version of the algorithm). At the crossover point,

the chromosomes exchange the data keeping the

original data up to that point.

b) Mutations – this comes in to introduce variation

in the next generation which prevents the

reaching of local minima. Whereas crossover

alters the genes after a randomly selected

crossover point between 2 chromosomes,

mutation selects on node in the tree of one

chromosome and changes the genetic material.

This process repeats itself until there is a perfect solution

set reached (optimal fitness level). However, there are

occasions when this does not happen. In such cases, the

program terminates after a set of iterations. The iterations

of the proceeds are also known as generations.

Example of using Genetic Algorithms in a Web Fault

Prediction

Research on Genetic Algorithms being applied is few

since this is a relatively new domain. In the following, we

show how it can be applied to an online web application,

proposed by Marshima M. Rosli et al. [16].

Namely, there is the requirement of three components to

build the model of Fault prediction using Genetic

Algorithms. They are as follows

a) Software Metric Extractor

b) Fault Classes Detection System

c) Genetic Algorithm Generator

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 209 Copyright @ 2020 Authors

The model can be represented diagrammatically as follows:

Fig 5 Genetic Algorithm Approach

How this model would work is that the information about

metrics would be extracted from source files as well as the

logs. Then the optimal metrics can be found by the GAG part

of the model which will subsequently use reproductions and

mutations to create new generation of populations until the

optimal set of metrics are found.

 Software Defect Prediction Models using

Artificial Neural Network

The artificial neural network is based on the human biological

system in its architecture and design. It processes information

in a way similar to the human brain using an intricate system

of interconnected neurons to solve highly complex problems.

The artificial neural networks work in a similar fashion and

use a trial and error process to construct models of the

problem space. Using “guesses” of what the desired output

should be, the actual result and the predicted result (guesses)

are compared and if there is a difference, that value is passed

on to the network as feedback so that internal adjustments can

be made to get a better quality of results in the future. Over a

period of time, this process continues as the network is

presented with other sets of data until it gives an accurate

model of the process.

As told in the introduction, the artificial neural network has a

set of elements which perform the computations required on

the problem set. In this case, the feed forward as well as the

back propagation training algorithm have been used for the

purposes of defect prediction. The architecture of the network

is such that there are two neurons in the output layer (basically

fault and non fault). The output that has the greatest value is

selected thereafter. The learning process happens by finding

a vector of the

connection weights which lower the error sum squared on

the training set. The training of the network happens with

the continuous back propagation and the weights are

adjusted after each observation which is then fed forward

for each of the classes (fault and non fault).

Neha Gautam, Parvinder S. Sandhu, Sunil Khullar [11]

recommended to use Multilayer Perceptron and RBF

based Neural Network approaches for the identification of

the relation between the several qualitative as well as

quantitative factor of the modules. These approaches also

identify the number of defects existing in the module that

will be beneficial for the prediction of defects. The

methodology consists of the following steps:

1. Find the Qualitative and Quantitative attributes

of software systems

2. Select the suitable metric values as

representation of statement

3. Analyze, refine metrics and normalize the metric

values and Explore different Neural Network

Techniques

 Defect Density Prediction Model

Defect density is a measure of the total confirmed defects

divided by the size of the software entity being measured.

The Number of Known Defects is the count of total

defects identified against a particular software entity,

during a particular time period. Defect to date since the

creation of module, defects found in a program during an

inspection, defects to date since the shipment of a release

to the customer are examples of most commonly known

defects. Size is like a normalizer that permits comparisons

between various software entities (i.e., modules, releases,

products). Size is normally measured either in Lines of

Code or Function Points [21]. Defect density is useful for

the comparison of defects in different software

components in order to identify high-risk components and

associated resources. Moreover, it can also used for

comparison among various software products in term of

quality.

 Constructive Quality Modeling for Defect

Density Prediction (COQUALMO)

Sunita Chulani [12] presented Constructive Quality

Modeling for Defect Density Prediction (COQUALMO),

a quality prediction model. This software model focuses

on the prediction of defect density and is hence an

estimation model. The COQUALMO model is generally

applied to the early phases of the software lifecycle such

as the activities of analysis and design. However, this

model can also be applied to the later stages of the SDLC

helping in refining the defect density estimate when a

larger set of

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 210 Copyright @ 2020 Authors

information is available. The COQUALMO model enables

project managers to get an estimate with relation to metrics

like shipping time as well as the payoffs for investing in

quality as well as a better understanding of the interactions

involved with respect to quality strategies.

This model comprises of two main phases namely

1. Defect Introduction Model – this model deals with

the basis that defect can be introduced in any stage

of the SDLC and the classification is done based on

the origin of the defects. Conceptually, this model

can be through of being similar to a tank with

specific pipes. These pipes relate to the origin of

defects which in this case can be of three types,

namely requirements, design and coding. The same

has been illustrated in the given model.

As you can infer, the defects can be of different

types. Critical defects would require the most

attention since they could case the system to crash or

cause serious damage. The High level would be

responsible for loss of system‟s critical functions

without any measures for a workaround. Medium

level is similar to the high level with the only

difference being that a workaround solution will

exist in this case.

Fig. 6 COQUALMO

2. Defect Removal Model - similar to the Defect

Introduction model, the DR model estimates the

defects in requirements, design and coding which are

introduced into the product or system under

development. This model aims to estimate the

removed defects. Classification of the defect

removal activities falls into 3 techniques namely :

● Very low

● Low

● Nominal

● High

● Very high

● Extra high

The “very low” level is the least effective defect removal

method and the extra high is the most effective defect

removal method.

 Defect Prediction Model based on Six Sigma

Metrics

Muhammad Dhiauddin Mohamed Suffian and Suhaimi

Ibrahim [12] suggested Six Sigma approach, which is a

structured and systematic way to construct the

mathematical model for prediction of functional defects

in system testing. It focuses on those software projects

that follow V-Model software development process. Six

Sigma methodology provides analysis of key factors in

phases earlier to testing phase that have explicit effect in

the detection of defect in system testing. This prediction

model is organized in to five phases; Define, Measure,

Analyze, Design and Verify phases. These phases exhibit

the progression and relationship between the outputs of

each phase towards building the model.

• Define phase: It involves creating project definition

and collecting primary requirements of the project.

• Measure phase: It uses Measurement System Analysis

(MSA) to validate the repetition and reproduction of

defects.

• Analyze phase: During this phase, data collected

earlier, is used to run regression analysis.

• Design phase: In this phase, additional refinement is

carried out in the previous equation. The predictors

used earlier have been revised in order to select only

logical predictors. It is done by filtering metrics that

include only legitimate data. It produces logical

connection with functional defects. Fresh data set are

used to generate new regression equation.

• Verify phase: In this final phase, reliability of the

prediction model is evaluated using statistical method.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 211 Copyright @ 2020 Authors

Capability flow-up and scorecard are performed to ensure

customer requirements are fulfilled.

The Design for Six Sigma (DfSS) methodology also provides

a Control plan that guides on subsequent action when the

genuine functional defects discovered do not occur within the

range of prediction interval. The Six Sigma method of

building defect prediction models is a good fit of software

defect prediction. The processes and methodologies proposed

in Six Sigma provide ample opportunities to formulate a clear

outline of issues to be addressed, the data collection as well

as measurement along with model generation, construction

and validation. Equations formulated by the model give a

good idea on what could be the possible factors which

contribute to defects.

4. Conclusions

Prediction is the task of predicting continuous or ordered

values for given input. However, as we have seen, some

classification techniques such as Bayesian belief networks,

neural network and genetic algorithms can be adapted for

prediction. Training a classifier or predictor is not enough; we

would like an estimate of how accurately the classifier can

predict the deviating behavior of future defects, that is, future

defect data on which the classifier has not been trained. We

have observed various methods to construct more than one

classifier (or predictor) and now we want to estimate their

accuracy. We can use Predictor error measures in techniques

for accuracy estimation, such as the holdout, random sub

sampling, k-fold cross-validation, and bootstrap methods.

Software defect prediction is the process of tracing defective

components in software prior to the start of testing phase.

Occurrence of defects is inevitable, but we should try to limit

these defects to minimum count. Defect prediction leads to

reduced development time, cost, reduced rework effort,

increased customer satisfaction and more reliable software.

Therefore, defect prediction practices are important to

achieve software quality and to learn from past mistakes. Size

or complexity measures are simple regression models, which

normally assume simple relationship between defects and

program complexity. These models are not subjected to the

controlled statistical testing required to set up a causal

relationship. Fenton and Neil advocate that these models fall

short to take account of all the causal or explanatory variables

necessitated in order to construct the models generalizable.

They presented probabilistic model based on Bayesian belief

networks to overcome this problem.

Furthermore, we have presented the use of various

machine learning techniques for the software fault

prediction problem. The unfussiness, ease in model

calibration, user acceptance and prediction accuracy of

these quality estimation techniques demonstrate its

practical and applicative magnetism. These modeling

systems can be used to achieve timely fault predictions for

software components presently under development,

providing valuable insights into their quality. The

software quality assurance team can then utilize the

predictions to use available resources for obtaining cost

effective reliability enhancements.

There are number of software defect prediction models

available but in our study we have arrived on this

conclusion that these models heavily depends on the

nature ,volume of the defect data and accuracy of

classifier and predictors. Most of the researches were

carried out with the help of NASA defect data sets. We

would like to express gratitude to the NASA MDP

organization for making their defect data sets publicly

available.

References
[1] Clark, B. and Zubrow, D., “How Good Is the Software: A

Review of Defect Prediction Techniques”, Software

Engineering Institute, SEPG 2002 Conference.

[2] N. Fenton and M. Neil “A Critique of Software Defect

Prediction Research”, IEEE Trans. Software Eng., 25,

No.5, 1999.

[3] Du Zhang, “Applying Machine Learning Algorithms in

Software Development” The Proceedings of 2000

Monterey Workshop on Modeling Software System

Structures, Santa Margherita Ligure, Italy, pp. 275-285.

[4] L. Guo, Y. Ma, B. Cukic, H. Singh, “Robust prediction of

fault proneness by random forests,” In: Proceedings of the

15th International Symposium on Software Reliability

Engineering (ISSRE‟04), pp. 417–428, 2004.

[5] T.M. Khoshgaftaar, E.D. Allen, J.P, Hudepohl, S.J. Aud,

Application of neural networks to software quality

modeling of a very large telecommunications system,”

IEEE Transactions on Neural Networks, vol. 8, no. 4, pp.

902- 909, 1997.

[6] Norman Fenton, Paul Krause and Martin Neil, “A

Probabilistic Model for Software Defect Prediction”, IEEE

Transactions on Software Engineering, 2001.

[7] K. Elish, M. Elish, “Predicting defect-prone software

modules using support vector machines,” Journal of System

and Software, vol. 81, pp. 649-660.
[8] T. Mitchell, Machine Learning, McGraw-Hill, 1997.
[9] F.V. Jensen, “An Introduction to Bayesian Networks”,

Springer, 1996.

[10] Ajeet Kumar Pandey & N. K. Goyal, “A Fuzzy Model for

Early Software Fault Prediction Using Process Maturity

and Software Metrics” International Journal of Electronics

Engineering, 1(2), 2009, pp. 239-245.

[11] Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal,

“A Genetic Algorithm Based Classification Approach for

Finding Fault Prone Classes”, World Academy of Science,

Engineering and Technology, 2009.

