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Abstract 

 

Monitoring air pollutant emissions of large industrial installations is necessary to ensure compliance with environmental 

legislation. Most of the available measurement techniques are expensive, and measurement conditions such as high-

temperature emissions, difficulty of access, are often difficult. That is why legislation can not impose a permanent emission 

monitoring in many countries. The possibility to replace it with predictive models based on the routine measurements of the 

main control parameters of the installation is analysed in this paper. In order to identify these models, a special measurement 

campaign of emissions must be performed or, alternatively, a deterministic modelling of the process can be developed. This 

study was carried out in the case of a real installation in the steel industry i.e. a billet re-heating furnace. Physical phenomena 

involved in combustion within the furnace were complex enough to prefer an empirical black-box modelling of the furnace 

over a deterministic approach. A 3-week monitoring campaign of fume emissions at the stack was performed; furnace 

process parameters during the same period were available. The relationship between CO2 emissions and furnace process 

parameters could successfully be expressed linearly, while NO2 emission modelling required a non-linear model. Artificial 

neural networks modelling revealed a good ability to predict NO2 and CO2 emissions. 

 
Keywords: Fume emissions; NO2; CO2; Steelworks process modelling; Artificial neural networks; Multiple linear regression; Correlation 
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1. Introduction 

Environmental legislation is not uniform across the world, or even within the EU Community. Uniform emission 

stan- dards are not generally adopted. Some countries sustain the air quality standards, e.g. in the United States 

air quality stan- dards are based on the belief that the purpose of pollution con- trol is to prevent targets from being 

put at risk. Viewed in this way, emission standards will therefore vary from place to place. Uniform emission 

standards follow the precautionary principle that we should emit the least possible quantity of pol- lutant that best 

available technology (BAT) permits, according to the Integrated Pollution Prevention and Control (IPPC) Di- 

rective in the EU. The United States use a combination of air pollution source regulations (e.g. power plants) and 

general ambient air quality and they require permanent continuous emission monitoring devices. 

At present, in France, the most important installations are held to declare their releases; according to this 

declaration and to the current legislation, the installation’s owner has to pay a tax on air pollution. The French 

environmental legisla- tion offers four main possibilities to evaluate the releases to be declared. The first method 

is the permanent monitoring of emissions; although the most precise, this is in general not possible because 

measurement techniques are expensive and measurement conditions are often difficult, due to the high- 

temperature of emissions and to the difficulty of access. 

In the absence of permanent monitoring, three other alterna- tives are accepted. The most commonly-used are the 

mass bal- ance or the estimation based on an emission factor, characteristic of each type of installation and each 

pollutant. According to their complexity, the mass balance can not be used for all industrial processes, but only 

for combustion (BO- MET, 1991); this approach is based on the chemical reactions involved in combustion. The 

last possibility is the so-called correlation method, based on a supplementary campaign of measurements 

permitting to establish relevant correlations be- tween emissions and process parameters. These correlations are 

then used for emission evaluation from real-time monitor- ing of the control installation parameters. 

This paper focuses on the development of a correlation method in the case of a real installation of the French 

iron and steel industry i.e. a billet re-heating furnace. This study was performed within the frame of the AI/EX1 

European Pro- ject (see Schofield et al., 2002). 

Section 2 presents a general overview of the re-heating furnace and the database built with the process parameters 

which are continuously monitored and stored for the furnace optimisation and control, and with the results of a 

monitoring campaign specially designed to assess measurements of several fume parameters at the stack. An 

intermediate stage, data pre- processing, is described in Section 3, while emission modelling is presented in 

Sections 4 and 5: first, a linear, simpler model- ling in Section 4, giving satisfactory results for CO2, and then, in 
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Section 5, a more complex non-linear modelling of CO2 and NO2, using artificial neural networks. Finally, the 

possibility to use the methodology presented in Section 5 as a correlation method for emission estimation is 

discussed. 

 

2. Data collection 
 

2.1. Re-heating furnace description 

 
The billet re-heating furnace of a merchant and strip bar mill studied here is a high-capacity one (150 billets     
hour-1 of 600 12 12 cm3), with 3 heating zones (3 16 burners), resulting in a 30 MW total power. Globally, the 
volume inside the furnace is about 24 m long, 7 m large and 1.5 m high, while the stack is 35 m high. The heating 
efficiency (60%) is assumed to be a good value. Operation is discontinuous, depending on the billet production. 
The fuel used in combustion is Groningen (the Netherlands) natural gas. A furnace layout is presented in Fig. 1 and 
the list of the monitored parameters, in Table 1. 

There is a gas circuit (G) providing the combustion gas for zones 1, 2 and 3. Combustion air e circuit (A) e 

consists of fresh air re-heated in the heat exchanger HE (for a better com- bustion efficiency) and then distributed 

to zones 3, 2 and 1. Fume e circuit (F) e is collected from all three zones and passes through the heat exchanger 

HE, releasing heat to the fresh air, further used as combustion air; the fume is finally 

  

Fig. 1. Billet re-heating furnace layout. 
 

released into the atmosphere. The billets, about 1 ton each, are initially at ambient temperature. They are 
introduced in the furnace e circuit (B) e where they move at a 12 m s—1 speed, passing through zones 1, 2 and 
3; when leaving the furnace, the billets have a temperature of 800e1000 ◦C. The first zone, is a pre-heating one; 
here, temperature varies be- tween 870 and 1200 ◦C. The second zone plays the role of a temperature equaliser 
(at about 1200 ◦C) and the third one, is the ‘‘high fire’’ zone; here, temperature is quasi-stable (about 1200 ◦C 
with variation of maximum 40 ◦C). The com- bustion is controlled for stoechiometric proportions; there is an 

oxygen analyser between zones 2 and 3 in order to obtain an optimal ratio air/gas flows. Oxygen injection (at the 

furnace temperature) was designed for this purpose. Combustion is performed with air in excess. 

Emissions in fume are traditionally not monitored, while the furnace is not equipped with a gas analysis system at 

the stack. A gas analysis system coupled to a data sampler was then imple- mented to monitor gas pollutants from air 

emissions (point 13) during the measurement campaign specially designed for this study’s purposes and realised 

by the LECES2, the laboratory that is in charge of the data collection from the society operating the furnace, and 

which performed the additional measurements. Thus, an emission database was built, containing the concentra- tions 

of O2, SO2, NO2, CO and CO2 in fume. The process parameters, continuously monitored for optimisation and con- 

trol, are available from the plant process database. 

 

2.2. Furnace database 

 
Process parameters are 1-min sampled and the same sam- pling period was adopted for the emission 

monitoring, which lasted for three weeks. Process parameters (21 variables) and gas emissions were gathered, 

leading to 25,540 recordings of a 25-variable database. Unfortunately, the 26th variable, CO was not included 

in the database, because it was truncated by the analyser’s range. 

 

3. Data pre-processing 
 

Data pre-processing can improve the quality of the data, having a significant effect on model performance or 

on data mining results. There are a number of pre-processing techniques, such as data cleaning, data 

transformation (nor- malisation), data reduction etc 

Table 1 

(A) 13 

8 (F)  10 

  4     3 

(B) 
14 

Zone 1 Zone 2 Zone 3 

  11 7 
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15 

16 
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Re-heating furnace monitoring parameters and their basic statistics: mean, standard deviation, minimum and maximum 

 
Location Parameter Symbol Statistics  

   Mean Standard deviation Minimum Maximum 

1/2/3 Temperature inside the T1 1110 42.3 870 1197 

 furnace (◦C) e zone 1/2/3 T2 1199 30.3 1017 1278 

  T3 1195 14.7 1089 1237 

1/2 Pressure inside the P1 9.64 1.13 1.30 14.32 

 furnace (mbar) e zone 1/2 P2 10.62 1.42 0.87 16.55 

4 Oxygen concentration O223 2.73 2.18 0.05 14.24 

 (%) e between      

 zone 2e3      

 Oxygen temperature TO2 1209 28.3 1070 1276 

 (◦C) e between      

 zone 2e3      

5/6/7 Gas flow burners Qg1 916 292.6 246 1190 

 (Nm3 h—1) zone 1/2/3 Qg2 961 435.8 304 1785 

  Qg3 194 103.4 63 4217 

8/9/10 Air flow burners Qa1 8118 2564 1080 10,920 

 (Nm3 h—1) zone 1/2/3 Qa2 8541 3841 2580 16,880 

  Qa3 1719 922 232 4217 

11 Temperature under the Tsf1 87 12.5 63 128 

 furnace (◦C) n◦1/n◦2 Tsf2 112 19.3 82 191 

12 Temperature of the combustion Tac 294 48 153 384 

 air after the heat      

 exchanger (◦C)      

 Fume temperature Tse 391 35 159 554 

 after the heat      

 exchanger (◦C)      

13 Fume temperature Tfsf 689 61 499 857 

 at surface outlet (◦C)      

 Oxygen in fume e concentration (%) O2 7.38 1.87 3.7 15.7 

 SO2 in fume e concentration 

(mg Nm—3) 

SO2 13.19 15.05 1 122 

 NO2 in fume e concentration 

(mg Nm—3) 

NO2 71.70 30.13 4.6 195.5 

 CO2 in fume e concentration (%) CO2 7.97 1.09 3.3 10.1 

14 Billet production CAD 49.5 11.98 29 99 

 time between two consecutive      

 billets (s)      

15 Motor intensity e     

16 Billet surface temperature (◦C) TB 860 103 800 1084 

 
Parameters at points 1e12 and 14e16 concern the process and they are measured continuously for the furnace control (process 

parameters). At point 13, measurements of emissions in fume are not traditionally realised, they were carried out during the monitoring 

campaign only. 

 

3.1. Data cleaning 

 
Determination of outliers is one of the first steps in cleaning the database. In the present study, some outliers were 

identi- fied to instrument calibration periods (characterised by abnor- mal peaks) or to instrument drift during the 

stand-by regime of the furnace (furnace is not working during the week-end). Data was checked also for other 

inconsistencies (discrep- ancies) which were also removed, resulting in more missing data in the initial database, 

which was already incomplete. 

 

 

3.2. Missing data handling 
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Almost all large empirical data sets suffer from periods of missing data caused by instrument failure or 

human error. A lot of attention has been given to this problem by researchers (Kolehmainen et al., 2001; Schlink 

et al., 2003; Elkamel et al., 2001; Abdul-Wahab and Al-Alawi, 2002; Andretta et al., 2000) and various treatments 

have been proposed to recon- struct missing data. These treatments always involve some modelling of the data. 

Thus, in order to minimise the effect of a priori assumptions on the results, in this work, a discrimination between 

short and long gaps was done according to the dynamics of the different variables. Short and long gaps were 

then treated differently. For short gaps (4 consecutive missing values at most), missing data were replaced by 

linear interpolation. For longer gaps, data was not reconstructed and the corre- sponding intervals were ignored. 

The working database, after cleaning outliers and ignoring the recordings containing at least one missing value, 

was reduced from 25,540 to 13,947 recordings, corresponding to a loss of 45.4%; there is one exception 

however, for the SO2 variable, where only 6763 values remained after data cleaning. 

 
3.3. Descriptive statistics 

 
In any model development process, familiarity with the data is of the utmost importance. A summary of all param- 

eters monitored during the campaign is given in Table 1. Their variability is further discussed according to the 

ratio (expressed in percentage) of the standard deviation to the mean. 

One can notice that the standard deviation is very low with respect to the mean (std/mean less than 5%) for some 

param- eters such as: T1, T2, T3, TO2 which are fixed to set-points, the most severely constrained being temperature 

in zone 3. Pres- sures (P1 and P2) are controlled too, but variations are more important than those for the 

temperatures (10%e15%). Gas and air flows are highly correlated; there are weaker variations in zone 1 (about 

30%), but they increase progressively to about 55% in zone 3, where the temperature is allowed very little variation. 

High variability can be noticed for the combustion oxygen (O223) (80%) and above all, for SO2 concentration 

in fume (114%).SO2 is not correlated to the furnace variables (correlation coefficients range between 0.11 and 

0.08). The high number of values not validated and this lack of correlation can be due to a measurement problem; 

arguably, SO2 levels are at or 

below the detectability of the analyser since natural gas does not contain appreciable sulphur (about 10 mg Nm—

3). In this context, there is no sense in trying to model SO2 emissions. 

 
4. Linear modelling of emissions 

 

Before using any non-linear model, it is judicious to test firstly the performance of a simple, linear one. If the 

model output can be satisfactorily explained by a linear combination of the inputs, there is no sense in using a 

more complicated non-linear model. 

 
4.1. Multiple Linear Regression 

 

Multiple linear regression MLR (see Saporta, 1990; Agirre- Basurko et al., 2006) was carried out to find the 

percentage of variance of the parameter to be estimated, explained by the best linear combination of the measured 

variables. A good in- dicator of the modelling quality is the root mean squared error which can be calculated. It 

appeared that CO2 can be satisfactorily estimated by a lin- ear regression (Fig. 2a); 83.4% of its variance can be 

explained linearly and the RMSE corresponding to this linear modelling is 0.45%; compared to the mean value 

of CO2, RMSE repre- sents a relative error of 5.58%. 

Meanwhile, for NO2 (Fig. 2b) only 51.6% of the variance can be explained linearly and the RMSE corresponding 
to this linear modelling is 20.55 mg Nm—3; compared to the mean value of NO2, RMSE represents a relative error 
of 28.66%. 

Thus, for CO2, the error estimation is below the instrument accuracy, but this is not the case for NO2. For the 

latter, a non- linear modelling is necessary for a better estimation. The previous results were obtained using all 

21 furnace process variables. 

When expressing CO2 by a linear combination of the pro- cess parameters, the number of explicative variables 

was varied from 1 to 21 and each time the best linear combination was selected. All the parameters are not 

(linearly) significant for the CO2 variability; starting from 10 variables, the R2 coefficient is rather constant. In 

addition, with only 5 parameters (oxygen concentration O223, air flow in the first zone Qa1, gas flow in the third 

zone Qg3, temperature in the first zone T1, and fume temperature Tfsf) one can explain the 80.6% obtained for the 

CO2 variance and 96% of the maximum linear variance, using all 21 parameters. The fume temperature at the 

furnace outlet (Tfsf) can explain by itself 66.9% of the CO2 variance. This means that the fume temperature best 
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characterises the combustion process from which the CO2 concentration is issued; however, the fume temperature 

is not a control param- eter, but only the final result of the combustion process; nevertheless, it can be considered 

as a raw indicator of CO2. Among the process parameters, those which are the most re- lated to CO2 emissions 

are O223, Qa1, Qg3 and T1. 

 

5. Neural networks modelling of emissions 

 

5.1. Neural network modelling 

 
Neural networks (NN) are capable of modelling highly non-linear relationships (Gardner and Dorling, 1999, 2000; 

Abdul-Wahab and Al-Alawi, 2002). The greatest advantage of a neural network is its ability to model a complex 

non-linear relationship without a priori assumptions on its nature (Bu- Hamra et al., 2003). 

In a comprehensive review of applications of artificial intel- ligence in combustion systems, Kalogirou (2003) 

presents a summary of 22 applications of NNs in combustion, pub- lished between 1995 and 2002. In two of them, 

the authors used this technique for emission monitoring; the application developed by Tronci et al. (2002) 

concerned the combustion chambers, while Ferretti and Piroddi (2001) estimated NOx. For function 

approximation, the most suitable architectures are considered to be the multilayer perceptron (MLP) (see 

Abdi, 1994; Fausett, 1994; Bishop, 1995; Ripley, 1996), which is also the most popular architecture for NN, and 

the Radial Basis Neural Networks. 

MLP neural networks are universal approximators (Hornik et al., 1989) i.e. they can approximate any smooth, 

measurable function. They also possess the remarkable property of parsi- mony, i.e. for a similar accuracy, NN 

require less fitting parameters than the universal approximators commonly used; more precisely, their number 

varies linearly with the number of degrees of freedom, while it varies exponentially for most other approximators 

(Hornik et al., 1994). 

MLP non-linearity is achieved by using a non-linear activa- tion function and by including at least one hidden 

layer in the network’s architecture. A good description of the MLP (sche- matic architecture and equations) is 

given by Agirre-Basurko et al. (2006). The nature of the functional relationship between inputs and outputs is 

learnt during a supervised training process directly from the data. 

 
5.2. Training algorithms 

 
During the supervised training procedure, series of input and associated output data are repeatedly presented to 

the network in order to learn to model the relationship and to ac- curately generalise when presenting new, unseen 

data. This learning phase corresponds mathematically to the optimisation of a cost function in the weights space; 

the weights character- ise the importance of each connection between neurons from different layers, and they 

represent the fitting parameters of the NN model. 

The cost function is chosen according to the performance criteria. If performance is estimated in terms of 

prediction accuracy, this corresponds to the minimisation of a function of the error signal, defined as the 

difference between the de- sired and the actual output of the network (Schlink et al., 2003), e.g. the sum of the 

squared errors. 

Prediction accuracy is affected by the optimisation algo- rithm. Unfortunately, the error surface is often complex 

and contains many local minima (Comrie, 1997); if the optimisa- tion algorithm is trapped in a local minimum, 

the final MLP model may be sub-optimal. Global methods of optimization are attractive, but their convergence 

is slow (Maier and Dandy, 1998) and their implementation in complex cases is rather difficult (Lu et al., 2003). 

Typically, local optimisation methods are preferred, al- though the global minimum is not reached; a good local 

one is usually treated as an acceptable solution (Gardner and Dorl- ing, 2000). In this study, several local 

optimisation algorithms were tested. 

 
5.2.1 Generalisation ability 

Generalisation ability is defined as the model’s potential to perform well on data that were not used to calibrate it 

(Cheng and Titterington, 1994). For the purpose of forecasting, the most important property of an algorithm is its 

ability to gener- alise and filter out the noise. Overtraining occurs when the model learns the noisy details in the 

training data, which results in the model having poor generalisation capabilities when presented with new data. 

In this study, the purpose is not to get a model reproducing as well as possible the measurements during the 

monitoring campaign, but a model able to predict plausible results when applied to other measurements of the 

furnace, thus becoming a reliable tool for emission estimation. 

Generalisation ability is a function of the ratio of the num- ber of training samples to the number of connection 
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weights (Maier and Dandy, 2000). Different ratios are proposed empir- ically by (Masters, 1993; Weigend et al., 

1990; Amari et al., 1997). If this ratio is too small, continued training can result in overfitting of the training 

data. Traditionally, optimal geom- etries have been found by trial and error, but a number of systematic approaches 

for determining optimal network geom- etry were also proposed, including pruning or constructive algorithms 

(Bebis and Georgiopoulos, 1994). 

In order to avoid overtraining, and to restrict model complexity, a regularisation technique, known as early stop- 

ping can be used. Early stopping (ES) is based on dividing the data into 3 subsets (Gardner and Dorling, 1999). 

The first subset is the training set used for computing the gradient and updating the network parameters; the second 

subset is the val- idation set. The error on the validation subset is monitored during the training process.  

5.2.2 Data pre-processing 

Generally, different variables span different ranges. In order to ensure that all variables receive equal attention 

during the training process, they should be standardised (Maier and Dandy, 2000). In addition, the variables have 

to be scaled in such a way to commensurate with the output range of the activation function (Fausett, 1994). It 

should be noted that if the transfer function in the output layer is unbounded (e.g. lin- ear), scaling is not strictly 

required, but it is still recommended (Maier and Dandy, 2000). 

The most common activation functions are the sigmoidal- type ones, such as the logistic and the hyperbolic 

tangent, ranging between 0 and 1, and 1 and   1, respectively. They are both monotonically increasing, and 

possess simple derivatives. Very often the identity function is used for the output layer, presenting a special 

interest when it is necessary to extrapolate beyond the range of the training data (Maier and Dandy, 2000). 

When using the logistic sigmoid, scaling between 0 and 1 is recommended. Data can be transformed by 

determining the minimum and the maximum values of each variable over the whole data period and calculate 

normalised variables using the formula (Elkamel et al., 2001): Hyperbolic tangent (tanh) ranges between 

between  -1 and 01. The gain of the hyperbolic tangent is greater than the sig- moidal one. As a result, one would 

expect training to be slower when the sigmoidal transfer function is used (Maier and Dandy, 1998). When 

using tanh, Gardner and Dorling (1999) propose calculating normalised variables.  
 
 
5.3 NO2 and CO2 modelling by NN 

 
In this study, input and output data were normalised (Maier and Dandy, 1998, 2000). The maximum absolute 

value of xnorm was 8 for NO2. Each normalised variable was then scaled, in order to range in an in- terval included 

in     1      1 ; scaling consisted in the division of each variable by an S-value determined. It is important to notice 

that only linear transformations were applied to data prior to the model identification and these transformations do 

not influence the results of a non-linear re- gression. Data were later returned to original units using the 

corresponding inverse formulae. 

Models selected for NO2 and CO2 prediction consisted of 3- or 4-layer feed-forward neural networks (MLP 

with one or two hidden layers). The first layer (the input layer) was composed of one neuron for each input (21 

neurons), the last one (the output layer), consisted of a single neuron, cor- responding to the output (NO2 or CO2 

values), while the hidden layers were composed of a variable number of neu- rons. The following activation 

functions have been selected: tanh for the hidden layers, and the unbounded identity func- tion (linear) for the 

output layer. Several training algorithms were tested for mainly two network architectures and the results are 

given in Table 2. To improve generalisation, the initial data set, after putting samples in a random order, was 

split in 3 data subsets: training (60%), validation (20%) and test (20%). Validation set could be used for early 

stopping. Bayesian regularisation (BR) combined with Levenberg-Marquardt (LM) algorithm was tested too for 

im- proving generalisation. 

The best results for NO2 correspond to the LM4 simula- tion (see Table 2) and they are presented in 

Fig. 3a,c,e. The network architecture consists of a 21-neuron input layer, 2 hidden layers with 40 and 

20 neurons respectively and an output layer consisting of a single neuron. 

 

 

 

 

Table 2 

NO2 modelling by different NN architectures and using different training algorithms 

Simulation Architecture Training Algorithm Regularisation Epochs RMSE 

Training  

GD2 21-40-20-1 GD e 10,000* 23.86
 24.04 24.32 
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GD3 21-40-1 GDM (momentum ¼ 0.6) e 10,000* 21.19

 21.67 21.16 

GD4 21-40-20-1 GDM (momentum ¼ 0.5) e 25,000* 18.08

 17.98 17.96 
GD5 21-40-1 GDA ES 557 26.3
 28.52 26.93 

GD6 21-40-20-1 GDA ES 155 22.12

 22.07 21.98 

GD7 21-40-1 GDX ES 3401 17.69
 17.99 17.65 

GD8 21-40-20-1 GDX ES 1588 18.58
 18.72 18.42 

GD9 21-40-1 RBP ES 978 14.32
 14.91 14.60 

GD10 21-40-20-1 RBP ES 716 12.55

 13.60 13.10 

CG1 21-40-1 CGB ES 277 14.69

 15.03 14.75 

CG2 21-40-20-1 CGB ES 242 14.23

 14.67 14.48 

CG3 21-40-1 CGF ES 246 15.84
 15.94 15.59 

CG4 21-40-20-1 CGF ES 276 14.46
 14.97 14.60 

CG5 21-40-1 CGP ES 146 17.64

 17.54 17.46 

CG6 21-40-20-1 CGP ES 288 14.45
 14.96 14.73 

CG7 21-40-1 SCG ES 100 18.94

 18.82 18.65 

CG8 21-40-20-1 SCG ES 74 18.72

 18.90 18.32 

CG9 21-60-30-1 SCG ES 171 15.93

 16.08 15.94 

QN1 21-40-1 BFGS ES 625 11.33

 12.55 12.09 

QN2 21-40-20-1 BFGS ES 212 12.21

 13.17 12.75 

QN3 21-40-1 OSS ES 592 15.86
 16.31 15.89 

QN4 21-40-20-1 OSS ES 334 15.73
 16.03 15.92 

LM1 21-40-1 LM ES 64 8.77
 10.96 11.15 

LM2 21-60-1 LM ES 53 9.12

 11.91 12.30 

LM3 21-40-20-1 LM ES 31 8.00

 11.20 11.10 

LM4 21-40-20-1 LM ES 30 7.48

 10.56 10.39 

LM5 21-60-30-1 LM ES 28 7.77
 11.69 11.62 

LM6 21-40-1 LM BR/ES 48 10.96
 11.94 11.79 

 LM7  21-40-20-1 LM   BR/ES               94               8.94 
 

Activation functions were: tanh for the hidden layers and unbounded identity (linear) for the output layer. *Maximum number of epochs 

chosen for training; ES: Early Stopping; BR: Bayesian Regularisation; GD: Gradient Descent; GDM: Gradient Descent with Momentum; 
GDA: Gradient Descent with Variable Learning Rate; GDX: Gradient Descent with Momentum and Variable Learning Rate; RBP: Resilient 

Backpropagation; CGB: Conjugate Gradient with Powell-Beale Restarts; CGF: Conjugate Gradient with Fletcher-Reeves Update; CGP: 

Conjugate Gradient with Polak-Ribiere Update; SCG: Scaled Conjugate Gradient; BFGS: Quasi-Newton (Broyden, Fletcher, Goldfarb and 
Shanno algorithm); OSS: One Step Secant (Quasi-Newton secant algorithm); LM: Levenberg- Marquardt. 

 

For CO2, the results obtained by MLR were already comparable to the measurement error (5.6%). In order to 

improve CO2 estimation, a NN model was tested; the NN architecture that gave the best results for NO2 was em- 

ployed. The results are presented in Fig. 3b,d,f; in terms of RMSE they showed: for the training set 0.24% 

(relative error compared to the CO2 mean 3%), for the validation set 0.31% (relative error 3.9%) and for the test 

set 0.29% (rel- ative error 3.6%). It results that the difference from 3.6% to 5.6% corresponds to a part of non-

linearity in the CO2 variation. 

A joint model for NO2 and CO2 simultaneous simulation using a 21-40-2 architecture and the Levenberg-

Marquardt algorithm with Early Stopping led to very  comparable results with the previous individual models; 
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the RMSE for NO2 was 9.04 mg Nm—3 for training, 11.25 mg Nm—3 for validation and 10.47 mg Nm—3 for 

the test, while for CO2, the results presented in the same order were 0.26%, 0.28% and 0.29%. 

 

6. Discussion and conclusions 

 

The most important point to discuss is the possibility and the advantages in using the methodology developed in 

this study, the so-called correlation method. It was assessed by neural networks modelling that: (i) the RMSE 

for NO2 modelling is about 14.5% of the NO2 mean (71 mg Nm—3), which is slightly higher than the measure- 

ment error 10e12% and (ii) the RMSE for CO2 modelling is about 3.6% of the CO2 mean (3%), sensibly 

lower than the measurement error. Unfortunately, the generalisation ability of the models could not be tested on 

other databases. One can suppose that if the working regime of the installa- tion does not change significantly, 

the model should give similar performances. It is important that the measuring campaign used for the model 

identification to be designed such as to include all the different working regimes. In theseconditions, the neural 

networks modelling can be considered a reliable correlation method as well for NO2 as for CO2. Moreover, in 

the case of CO2, a simple linear model gives less efficient results than the neural networks (5.6%), but is 

still comparable to the measurement error. 

The other two methods accepted by the French environ- mental legislation based on the global balance of the 
whole installation or on the emission factor are either too difficult to perform (the first case) or provide a very 
global estima- tion (the second one). An example of comparison is pro- posed here between NO2 measured 
emissions and those calculated using the emission factor. The emission factor proposed by the present legislation 
for NO2 in the case of a re-heating furnace in the steel industry is 170 g equivalent NO2 per ton of steel (BOMET, 
1991). Using the gas flow values and the combustion coefficients characteristic to the gas burnt here, one can 
calculate the fume flow and then, the total quantity of NO2 from their measured concentra- tions; it results in 
about 350 kg of NO2 emitted during 233 h when the furnace was working. From the billet pro- duction, the 
total mass of steel can be estimated, and consid- ering 170 g NO2/ton of steel, it results in about 1800 kg of NO2, 
which represents about 5 times more than the measure- ments. By comparison, over the same period, emissions 
cal- culated by the best available NN amounted to a result closer than 1% to measurements, because the algebraic 
mean errormonitoring-prediction is very low: 0.12 mg Nm—3 for the training set, 0.37 mg 
Nm—3 for the validation set, and 0.09 mg Nm—3 for the test set. The quasi-null value of the mean error 
reveals that this method is very successful for calculating global emitted amounts, i.e. emissions over a lon- 
ger period. 

One can notice that the modelling developed in this study was not parsimonious. Indeed, all the variables were 

used as inputs, for the following reasons: 

 

 all of them are permanently available (for the process control); 

 the main purpose was to achieve an estimation of the emis- sions as good as possible; 

 input selection was not crucial, as neural networks belong to the class of data-driven approaches (Maier 

and Dandy, 2000). 

 

However, this strategy also presents some drawbacks. The network’s size increases artificially; consequently, 

processing speed decreases and the amount of data required to estimate the connection weights efficiently 

becomes larger. Input selec- tion is important also for finding the most influential variables on the emissions and 

defining thus a more efficient control of the process. For this purpose, a post-modelling analysis can also be done. 

Indeed, neural network modelling permits to assess the importance of each of the input variables by using the 

network weights (Garson, 1991; Goh, 1995; Abdul-Wahab and Al-Alawi, 2002). Parameter selection before and 

after modelling in order to achieve a more efficient control on the installation and to reduce emissions is the subject 

for some future work. 

In conclusion, in the present work, a correlation method based on neural networks is proposed for CO2 and 

NO2 emis- sion estimation, with an error comparable to the measurement one. The method is simpler than the 

global balance of the whole installation, more precise than the emission factor method and requires a short, but 

well-designed monitoring campaign of emissions. 
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