

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-10 Issue-01 No. 01 January 2020

Page | 163 Copyright @ 2020 Authors

A BRIEF STUDY ON SOFTWARE RELIABILITY

Anil Kumar Mishra Prof. Einstein Academy of Technology and Management, Bhubaneswar, India

Manaswini Pattanayak Asst. Prof. Einstein Academy of Technology and Management,

Bhubaneswar, India

Ratiranjan Swain Student, Einstein Academy of Technology and Management, Bhubaneswar, India

Software's increasing role creates both requirements for being able to trust it more than before,

and for more people to know how much they can trust their software. A sound engineering

approach requires both techniques for producing reliability and sound assessment of the achieved

results. Different parts of industry and society face different challenges: the need for education and

cultural changes in some areas, the adaptation of known scientific results to practical use in others, and

in others still the need to confront inherently hard problems of prediction and decision-making, both to

clarify the limits of current understanding and to push them back. We outline the specific difficulties in

applying a sound engineering approach to software reliability engineering, some of the current trends

and problems and a set of issues that we therefore see as important in an agenda for research in

software dependability.

KEY WORDS: Reliability engineering and assessment, COTS reliability, diversity

INTRODUCTION:

We use "dependability" informally to designate those system properties that allows us to rely on a

system functioning as required. Dependability encompasses, among other attributes, reliability, safety,

security, and availability. These qualities are the ared concern of many sub-disciplines in software

engineering, of specialized fields like computer security, and of reliability and safety engineering. In this

area, an important factor is the diversity of "the software industry", or, rather, among the many industrial

sectors that produce or use software. The demand for software dependability varies widely between

industrial sectors, as does the degree of adoption of systematic approaches to it. From many viewpoints,

two extremes of the range are found in mass- marketed PC software and in safety-critical software for

heavily- regulated industries. A couple of decades ago there was a revolution in dependability of

consumer goods such as TV sets, VCRs and automobiles, when companies realized that there was

market advantage to be gained by demonstrating higher reliability than their competitors. There has not yet

been a similar movement in the corresponding sectors of the software industry.

RELIABILITY:

Software Reliability is defined as the probability of the failure free software operation for a specified period

of time in a specified environment. Unreliability of any product comes due to the failures or presence of

faults in the system. As software does not „ wear- out” or “ age” , as a mechanical or an electronic system

does, the unreliability of software is primarily due to bugs or design faults in the software. Reliability is a

probabilistic measure that assumes that the occurrence of failure of software is a random

phenomenon. Randomness means that the failure can't be predicted accurately. The randomness of

the failure occurrence is necessary for reliability modeling.

Overview of Software Reliability Prediction Models

These models are derived from actual historical data from real software projects. The user answers a

list of questions which calibrate the historical data to yield a software reliability prediction. The accuracy of

the prediction depends on how many parameters (questions) and datasets are in the model, how current the

data is, and how confident the user is of their inputs. One of the earliest prediction models was the

Rome Laboratory TR-92-52. It was developed in 1987 and last updated in 1992 and was geared

towards software in avionics systems. Due to the age of the model and data it's no longer recommended

but is the basis for several modern models such as the Shortcut model, Full-scale model, and Neufelder

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-10 Issue-01 No. 01 January 2020

Page | 164 Copyright @ 2020 Authors

assessment model. There are also lookup tables for software defect density based on the capability

maturity or the application type. These are very simple models but are generally not as accurate as the

assessment based models.

Model Number of

inputs

Industry

support ed

Effort required to

use the model

Relative

accuracy

Year develop ed/

Last updated

Industry tables 1 Several Quick Varies 1992,

2015

CMMI®

tables

1 Any Quick Low at low

CMMi®

1997,

2012

Shortcut model 23 Any Moderate Medium 1993,

2012

Full-scale model 94-299 Any Detailed Medium- High 1993,

2012

Metric based

models

Varies Any Varies Varies NA

Historical data A minimum

of 2

Any Detailed High NA

Rayleigh model 3 Any Moderate Medium NA

RADC TR- 92-

52

43-222 Aircraft Detailed Obsolete 1978,

1992

Neufelder model 156 Any Detailed Medium to

high

2015

Overview of Software Reliability Growth (Estimation) Models:

Model name Inherent defect

count

Effort

required

Requires exact time

between failures

Increasing fault rate

Weibull Finite/not fixed High Yes

Peak

Shooman Constant Defect Removal

Rate Model

Finite/fixed Low Yes

Decreasing fault rate

Shooman Constant Defect Removal

Rate Model

Finite/fixed Low Yes

Linearly Decreasing

eneral exponential models including:

· Goel-Okumoto (exponential)

· Musa Basic Model

· Jelinski-Moranda

Finite/fixed Medium Yes

Shooman Linearly Decreasing Model Finite/fixed Low Yes

Duane Infinite Medium No

RELIABILITY PROCESS:

The reliability process in generic terms is a model of the reliability- oriented aspects of software

development, operations and maintenance. The set of life cycle activities and artifacts, together with their

attributes and interrelationships that are related to reliability comprise the reliability process. The

artifacts of the software life cycle include documents, reports, manuals, plans, code configuration data

and test data. Software reliability is dynamic and stochastic. In a new or upgraded product, it begins at a

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-10 Issue-01 No. 01 January 2020

Page | 165 Copyright @ 2020 Authors

low figure with respect to its new intended usage and ultimately reaches a figure near unity in maturity. The

exact value of product reliability however is never precisely known at any point in its lifetime

SOFTWARE RELIABILITY ACTIVITIES:

The reliability process in generic terms is a model of the reliability- oriented aspects of software

development, operations, and maintenance. Quantities of interest in a project reliability profile include

artifacts, errors, defects, corrections, faults, tests, failures, outages, repairs, validation, and expenditures of

resources, such as CPU time, manpower effort and schedule time. The activities relating to reliability are

grouped into classes:

 Construction Generates new documentation and code artifacts Combination Integrates reusable

documentation and code components with new documentation and code components.

 Correction Analyzes and removes defects in documentation and code using static analysis of artifacts.

 Preparation Generates test plans and test cases, and readies them for execution.

 Testing Executes test cases, whereupon failure occurs

 Identification Makes fault category assignment. Each fault may be new or previously encountered.

 Repair Removes faults and possibly introduces new faults.

 Validation Performs inspections and checks to affirm that repairs are effective

 Retest Executes test cases to verify whether specified repairs are complete if not, the defective repair is

marked for repair. New test cases may be needed.

SOFTWARE RELIABILITY METRICS:

Software Reliability Measurement is not an exact science. Though frustrating, the quest of quantifying

software reliability has never ceased. Until now, we still have no good way of measuring software

reliability. Measuring software reliability remains a difficult problem because we don't have a good

understanding of the nature of software. There is no clear definition to what aspects are related to software

reliability. It is tempting to measure something related to reliability to reflect the characteristics, if we

cannot measure reliability directly. The current practices of software reliability measurement can be

divided into four categories: Product metrics: Software size is thought to be reflective of complexity,

development effort and reliability. Lines of Code, or LOC in thousands, is an intuitive initial approach to

measuring software size. But there is not a standard way of counting. Typically, source code is used

and comments and other non-executable statements are not counted. This method cannot faithfully

compare software not written in the same language. It is a measure of the functional complexity of the

program. It measures the functionality delivered to the user and is independent of the programming

language. It is used primarily for business systems; it is not proven in scientific or real-time

applications. Complexity is directly related to software reliability, so representing complexity is important.

Complexity-oriented metrics is a method of determining the complexity of a program's control structure,

by simplifying the code into a graphical representation.

Non-Linearly Decreasing
Musa-Okumoto (logarithmic) Infinite Low Yes

Shooman Exponentially Decreasing Model Finite/fixed High Yes

Log-logistic Finite/fixed High Yes
Geometric Infinite High No

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-10 Issue-01 No. 01 January 2020

Page | 166 Copyright @ 2020 Authors

Increasing and then decreasing

Yamada (Delayed) S-shaped Infinite High Yes

Weibull Finite/not fixed High

Project management metrics: Researchers have realized that good management can result in better

products. Research has demonstrated that a relationship exists between the development process and the

ability to complete projects on time and within the desired quality objectives. Costs increase when

developers use inadequate processes. Higher reliability can be achieved by using better development

process, risk management process, configuration management process, etc.

Process metrics: Based on the assumption that the quality of the product is a direct function of the

process, process metrics can be used to estimate, monitor and improve the reliability and quality of

software. ISO- 9000 certification, or "quality management standards", is the generic reference

for a family of standards developed by the ISO.

Fault and failure metrics: The goal of collecting fault and failure metrics is to be able to determine

when the software is approaching failure-free execution. Minimally, both the number of faults found

during testing and the failures reported by users after delivery are collected, summarized and analyzed to

achieve this goal. Test strategy is highly relative to the effectiveness of fault metrics, because if the testing

scenario does not cover the full functionality of the software, the software may pass all tests and yet be

prone to failure once delivered. Usually, failure metrics are based upon customer information regarding

failures found after release of the software. The failure data collected is therefore used to calculate failure

density, Mean Time between Failures or other parameters to measure or predict software reliability.

Besides the above metrics, other possible metrics are: Efficiency: The amount of computing time

and resources required by software to perform desired function it is an important factor in differentiating high

quality software from a low one.

Integrity: The extent to which access to software or data by unauthorized persons can be controlled

Integrity has become important in the age of hackers.

Flexibility: The effort required to transfer the program from one hardware to another. 6.8 Interoperability

The effort required to couple one system to another as indicated by the following sub- features:

adaptability, insatiability, conformance, replacebility.

Maintainability: It is the ease with which repair may be made to the software as indicated by the

following sub-feature: analyzability, changeability, stability, testability. If a software needs” less

mean time to change, it means it needs less maintainability

CONCLUSION:

Computers are playing very important role in our day-to-day life and there is always a need of high

quality software. Software reliability is the most measurable aspect of software quality. Unlike hardware,

software does not age, wear out or rust, unreliability of software is mainly due to bugs or design faults in

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-10 Issue-01 No. 01 January 2020

Page | 167 Copyright @ 2020 Authors

the software. Software reliability is dynamic & stochastic. The exact value of product reliability is never

precisely known at any point in its lifetime. The study of software reliability can be categorized into three

parts: Modeling, Measurement & improvement. Many Models exist, but no single model can capture a

necessary amount of software characteristics. There is no single model that is universal to all the

situations. Simulations can mimic key characteristics of the processes that create, validate & review

documents & code. Software reliability measurement is naive. It can’ t be directly measured, so other

related factors are measured to estimate software reliability. Software reliability improvement is necessary &

hard to achieve.

REFERENCES

1. S. Brocklehurst, B. Littlewood. New ways to get accurate reliability measures. IEEE Software 9, 4 (July

1992), 34-42.

2. R. C. Cheung. A User-Oriented Software Reliability Model. IEEE Transactions on Software

Engineering SE-6, 2 (March 1980), 118-125.

3. G. F. Clement, P. K. Giloth. Evolution of Fault Tolerant Switching Systems in AT&T. In A. Avizienis, H.

Kopetz and J.-C. Laprie (Eds.) The Evolution of FaultTolerant Computing, Springer-Verlag, 1987,

37-54.

4. FAA. Federal Aviation Administration, Advisory Circular AC 25.1309-1A, 1985.

5. J.-C. Fabre et al., Assessment of COTS microkernels by fault injection, in Proc. DCCA-7 (San Jose,

California, USA, January 1999), 25-44.

6. N. Fenton, M. Neil. Software Metrics: a roadmap", in this volume.

7. N. Fenton, S. L. Pfleeger, R. Glass. Science and Substance: A Challenge to Software Engineers. 1EEE

Software 11, 4 (July 1994), 86-95.

8. N. E. Fenton, M. Neil. A Critique of Software Defect Prediction Models. IEEE Transactions on

Software Engineering 25, 5 (September/October 1999), 675-689.

9. N. Fota et al., Safety analysis and evaluation of an air traffic control computing system, in Proc.

SAFECOMP '96 (Vienna, Austria, October 1996), 219-229.

10. M. J. Harrold. Testing: a roadmap", in this volume.

11. L. Hat-ton, Programming Languages and safety-Related Systems, in Proc. Safety- Critical Systems

Symposium (Brighton, U.K., 1995), 49-64.

