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Abstract 

Implicit discourse relation recognition concerning a serious challenge owing to the absenteeism 

of discourse connectives. In this paper, we propose a Shallow Convolutional Neural Network 

(SCNN) for implicit discourse relation recognition, which encompasses one hidden layer but is 

actual in relation recognition. The shallow structure improves the overfitting problem, while the 

convolution and nonlinear operations help preserve the recognition and generalization ability of 

our model. Experiments on the target data set show that our model achieves equivalent and even 

better presentation when com- paring against current state-of-the-art systems. 
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1 Introduction 

As a crucial task for discourse analysis, discourse relation recognition (DRR) aims to automatically 

identify the internal structure and logical relation- ship of coherent text (e.g., TEMPORAL, CONTIN- 

GENCY, EXPANSION, etc). It provides important information to many other natural language pro- cessing 

systems, such as question answering (Ver- berne et al., 2007), information extraction (Cimi- ano et al., 

2005), machine translation (Guzmán et al., 2014) and so on. Despite great progress in ex- plicit DRR 

where the discourse connectives (e.g., “because”, “but” et al.) explicitly exist in the text (Miltsakaki et 

al., 2005; Pitler et al., 2008), im- plicit DRR remains a serious challenge because of the absence of 

discourse connectives (Prasad et al., 2008). 

Conventional methods for implicit DRR di- rectly rely on feature engineering, wherein re- searchers 

generally exploit various hand-crafted features, such as words, part-of-speech tags and 

production rules (Pitler et al., 2009; Lin et al., 2009; Louis et al., 2010; Wang et al., 2012; Park and 

Cardie, 2012; McKeown and Biran, 2013; Lan et al., 2013; Versley, 2013; Braud and De- nis, 2014; 

Rutherford and Xue, 2014). Although these methods have proven successful, these man- ual features are 

labor-intensive and weak to cap- ture intentional, semantic and syntactic aspects that govern discourse 

coherence (Li et al., 2014), thus limiting the effectiveness of these methods. 

Recently, deep learning models have achieved remarkable results in natural language processing 

(Bengio et al., 2003; Bengio et al., 2006; Socher et al., 2011b; Socher et al., 2011a; Socher et al., 2013; 

Li et al., 2013; Kim, 2014). However, to the best of our knowledge, there is little deep learning work 

specifically for implicit DRR. The neglect of this important domain may be due to the follow- ing two 

reasons: (1) discourse relation distribution is rather unbalanced, where the generalization of deep 

models is relatively insufficient despite their powerful studying ability; (2) training dataset in implicit 

DRR is relatively small, where overfitting problems become more prominent. 

In this paper, we propose a Shallow Convolu- tional Neural Network (SCNN) for implicit DRR, with 

only one simple convolution layer on the top of word vectors. On one hand, the network structure is 

simple, thereby overfitting issue can be alleviated; on the other hand, the convolution operation and 

nonlinear transformation help pre- serve the recognition ability of SCNN. This makes our model able to 

generalize better on the test dataset. We performed evaluation for English im- plicit DRR on the 

PDTB-style corpus. Experi- mental results show that the proposed method can obtain comparable even 

better performance when compares against several baselines. 

2 Model 

In Penn Discourse Treebank (PDTB) (Prasad et al., 2008), implicit discourse relations are anno- 
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Figure 1: SCNN model architecture visualized with an instance. 

 

tated with connective expressions that best convey 

implicit relations between two neighboring argu- 

ments, e.g. 

Arg1: (But) our competitions say we overbid 

them 

Arg2: who cares 

the connective “But”, which is annotated manu- 

ally, is used to express the inferred COMPARISON 

relation. 

We learn a classifier for implicit DRR based on 

convonlutional neural network. The overall model 

architecture is illustrated in Figure 1.1 In our 

model, each word in vocabulary V corresponds to 

a d-dimensional dense, real-valued vector, and all 

words are stacked into a word embedding matrix 

 

cmax = max (Xr,1, Xr,2, . . . , Xr,n) (4) 

In this way, SCNN is able to capture almost all im- 

portant information inside X (one with the 

highest, lowest and average values). Besides, 

each convo- lution operation naturally deals with 

variable argu- ment lengths (Note that c Rd). 

Back to Figure 1, we present cavg, cmin and cmax 

with red, purple and green color respectively. 

After obtaining the features of both arguments, 

we concatenate all of them into one vector, and 

then apply tanh transformation and length nor- 

malization successively to generate the hidden lay- 

ers: 

a = 
h

cavg  ; cmin  ; cmax ; cavg   ; cmin  ; cmax 
i
 

Given an ordered list of n words in an argument,   tanh (a) (5) 
we retrieve the i-th word representation xv ∈ Rd

 
 

h = ǁtanh ( 
)ǁ 

(6) 

from L with its corresponding vocabulary 
index 

vi. All word vectors in the argument produce the 
following output matrix: 

X = (xv1 , xv2 , . . . , xvn ) (1) 

Following previous work (Collobert et al., 2011; 

Socher et al., 2011a), for each row r in X, we 

explore three convolutional operations to obtain 

three convolution features average, min and max 

as follows: 
n 

a 

where h     R6d is the hidden layer representa- 

tion. The normalization operation scales the com- 

ponents of a feature vector to unit length. This, to 

some extent, eliminates the manifold differences 

among different features. 

Upon the hidden layer, we stack a Softmax layer 

for relation recognition, 

y = f (Wh + b) (7) 

cavg = 
1 Σ 

X (2) where is the softmax function, ∈ Rl×6d is the 
i 

cmin = min (Xr,1, Xr,2, . . . , Xr,n) (3) 
 

 

1For better illustration, we assume that the dimension of 
word vectors is 4 throughout this paper. 

parameter matrix, b Rl is the bias term, and l is 
the relation number. 

To assess how well the predicted relation y rep- 

resents the real relation, we supervise it with the 

L ∈ Rd×|V |, where |V | is the vocabulary size. 

i 

r,i f W 
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2 

gold relation g in the annotated training corpus us- 

ing the traditional cross-entropy error, 

l 

E(y, g) = − gj × log (yj) (8) 
j 

Combined with the regularization error, the joint 

training objective function is 

 

Relation 
Positive/Negative Sentences 
Train Dev Test 

COMP. 1942/1942 197/986 152/894 
CONT. 3342/3342 295/888 279/767 
EXP. 7004/7004 671/512 574/472 

TEMP. 760/760 64/1119 85/96l 

Table 1: Statistics of positive and negative in- 

stances in training (Train), development (Dev) 

1 Σ λ 

J(θ) = E(y , g ) + ǁθǁ2 (9) 
 

 

and test (Test) sets. COMP.=COMPARISON, 

CONT.=CONTINGENCY, EXP.=EXPANSION and 

   

where m is the number of training instances, yt is 

the t-th predicted distribution, λ is the regulariza- 

tion coefficient and θ is parameters, including L, 

W and b.2 

To train SCNN, we first employ the toolkit 

Word2Vec3 (Mikolov et al., 2013) to initialize the 

word embedding matrix L using a large-scale 

un- labeled data. Then, L-BFGS algorithm is 

applied to fine-tune the parameters θ. 

3 Experiments 

We conducted a series of experiments on English 

implicit DRR task. After a brief description of 

the experimental setup and the baseline systems, 

we further investigated the effectiveness of our 

method with deep analysis. 

3.1 Setup 

For comparison with other systems, we formu- 

lated the task as four separate one-against-all bi- 

nary classification problems: one for each top 

level sense of implicit discourse relations (Pitler 

et al., 2009). 

We used the PDTB 2.0 corpus4 (Prasad et al., 

2008) for evaluation. The PDTB corpus contains 

discourse annotations over 2,312 Wall Street Jour- 

nal articles, and is organized in different sections. 

Following Pitler et al. (2009), we used sections 2- 

20 as training set, sections 21-22 as test set, and 

sections 0-1 as development set for parameter op- 

timization. For each relation, we randomly ex- 

tracted the same number of positive and negative 

instances as training data, while all instances in 

sections 21 and 22 are used as our test set. The 

statistics of various data sets is listed in Table 1. 

We tokenized PDTB corpus using Stanford NLP 

Tool5. For all experiments, we empirically set 
 

 

2The bias terms b is not regularized. We preserve it in the 
equation just for clarity. 

3https://code.google.com/p/word2vec/ 
4http://www.seas.upenn.edu/ pdtb/ 
5http://nlp.stanford.edu/software/corenlp.shtml 

 
d=128 and λ=1e−4. Besides, the unlabeled data 
for word embedding initialization contains 1.02M 
sentences with 33.5M words. 

3.2 Baselines 

We compared our model against the following 

baseline methods: 

SVM: This method learns a support vector 

machine (SVM) classifier with the labeled 

data. 

TSVM: This method learns a transductive 

SVM (TSVM) classifiers given the labeled 

data and unlabeled data. We extracted unla- 

beled data from above-mentioned 1.02M sen- 

tences. After filtering the noise ones, we 

finally obtained 0.11M unlabeled instances, 

each of which contains only two clauses. 

RAE: This method learns a recursive autoen- 

coder (RAE) classifier with the labeled data. 

We first utilized standard RAEs to represent 

arguments, and then stacked a Softmax layer 

upon them. The hyperparameters were set as 

follows: word dimension 64, balance factor 

for reconstruction error 0.10282 and regular- 

ization factor 1e−5. Word embeddings are 

initialized via Word2Vec. 

Rutherford and Xue (2014) show that Brown 

cluster pair feature is very impactful in implicit 

DRR (Rutherford and Xue, 2014).   This feature 

is superior to one-hot representation for the in- 

teractions between two arguments, such as cross- 

argument word pair features in our baseline meth- 

ods. We therefore conducted two additional exper- 

iments for comparison: 

Add-Bro: This method learns an SVM clas- 

sifier using baseline system features along 

with the Brown cluster pair feature. 

No-Cro: This method learns an SVM clas- 

sifier on Add-Bro’s features without cross- 

t=1 T EMP.=T EMPORAL 

• 

• 

• 

• 

• 

http://www.seas.upenn.edu/
http://nlp.stanford.edu/software/corenlp.shtml
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Relation Model Precision Recall Accuracy MacroF1 

COMP. vs Other 
SVM 22.22 60.53 63.48 32.51 

TSVM 20.53 66.45 57.74 31.37 
Add-Bro 22.79 64.47 63.10 33.68 
No-Cro 22.89 67.76 62.14 34.22 

RAE 18.38 62.50 54.21 28.40 
SCNN-No-Norm 21.07 54.61 63.67 30.40 

SCNN 22.00 67.76 60.42 33.22 

CONT. vs Other 
SVM 39.70 67.03 64.05 49.87 

TSVM 38.72 67.03 62.91 49.08 
Add-Bro 39.14 72.40 62.62 50.82 
No-Cro 39.50 74.19 62.81 51.56 

RAE 37.55 68.10 61.28 48.41 
SCNN-No-Norm 39.02 71.33 62.62 50.44 

SCNN 39.80 75.29 63.00 52.04 

EXP. vs Other 
SVM 66.35 60.10 61.38 63.07 

TSVM 66.48 61.15 61.76 63.70 
Add-Bro 65.89 58.89 60.71 62.19 
No-Cro 66.73 61.15 61.95 63.82 

RAE 58.24 70.29 56.02 63.67 
SCNN-No-Norm 59.39 74.39 58.03 66.05 

SCNN 56.29 91.11 56.30 69.59 

TEMP. vs Other 
SVM 15.76 68.24 67.78 25.61 

TSVM 16.26 77.65 65.68 26.88 
Add-Bro 15.10 68.24 66.25 24.73 
No-Cro 13.89 64.71 64.53 22.87 

RAE 10.02 60.00 52.96 17.17 
SCNN-No-Norm 18.26 67.06 72.94 28.71 

SCNN 20.22 62.35 76.95 30.54 
 

Table 2:  Performance comparison of different systems on the test set. 
 

argument word pair features. 

In addition, to further verify the effectiveness of 

normalization, we also compared against SCNN 

model without normalization (SCNN-No-Norm). 

Throughout our experiments, we used the 

toolkit SVM-light6 (Joachims, 1999) in all  the 

SVM-related experiments. Following previous 

work (Pitler et al., 2009; Lin et al., 2009), we 

adopted the following features for baseline meth- 

ods: 

Bag of Words: Three binary features that check 

whether a word occurs in Arg1, Arg2 and both ar- 

guments. 

Cross-Argument Word Pairs: We group all 

words from Arg1 and Arg2 into two sets W1,W2 

respectively, then extract any possible word pair 

(wi, wj)(wi      W1, wj      W2) as features. 

Polarity: The count of positive, negated positive, 

negative and neutral words in Arg1 and Arg2 ac- 

cording to the MPQA corpus (English). Their 

cross products are used as features. 

First-Last, First3: The first and last words of 

each argument, the pair of the first words in two 

arguments, the pair of the last words in two argu- 

ments, and the first three words of each argument 
 

6http://svmlight.joachims.org/ 

are used as features. 

Production Rules: We extract all production 

rules from syntactic trees of arguments. We de- 

fined three binary features for each rule to check 

whether this rule appear in Arg1, Arg2 and both 

arguments. 

Dependency Rules: We also extracted all de- 

pendency rules from dependency trees of argu- 

ments. Similarly, we defined three binary features 

for each rule to check whether this rule appear in 

Arg1, Arg2 and both arguments. 

In order to collect bag of words, production 

rules, dependency rules, and cross-argument word 

pairs, we used a frequency cutoff of 5 to remove 

rare features, following Lin et al. (2009). 

3.3 Results and Analysis 

All models are evaluated by assessing the accuracy 

and F1 scores on account of the imbalance in test 

set. Besides, for better analysis, we also provided 

the precision and recall results. 

Table 2 summarizes the performance of dif- 

ferent models. On the whole, the F1 scores 

for implicit DRR are relatively low on average: 

COMP., CONT., EXP.   and TEMP.   about 32%, 

50%, 65% and 28% respectively. This illustrates 

the difficulty in implicit DRR. Although we ex- 

http://svmlight.joachims.org/
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pected unlabeled data could obtain improvement, 

we observed negative results appeared in TSVM: 

COMP. and CONT. dropped 1.14% and 0.79% re- 

spectively7. The F1 scores of TEMP. and EXP. are 

improved (1.27% and 0.63% respectively). The 

main reason may be that our unlabeled data is not 

strictly from the discourse corpus. 

Incorporating Brown cluster pair features en- 

hances the recognition of COMP. and CONT.. Par- 

ticllarly, No-Cro achieves the best result in COMP. 

34.22%. But we found no consistent improve- 

ment in EXP. and TEMP.: No-Cro loses 2.74% in 

TEMP.; Add-Bro loses 0.88% and 2.12% in EXP. 

and TEMP. respectively. This result is inconsistent 

with the finding of Rutherford and Xue (2014). 

The reason may lie in the training strategy, where 

we used sampling to solve the problem of unbal- 

anced dataset while they reweighted training sam- 

ples. 

Compared with SVM-based models, RAE per- 

forms poorly in three relations, except EXP. which 

has the largest training dataset. Maybe RAE 

needs more labeled training data for better re- 

sults. However, SCNN models perform remark- 

ably well, producing comparable and even bet- 

ter results. Without normalization, SCNN-No- 

Norm gains 0.57%, 2.98% and 3.1% F1 scores for 

CONT., EXP. and TEMP. respectively, but loses 

2.11% for COMP.. We obtain further improvement 

using SCNN with normalization: 0.71%, 2.17%, 

6.52% and 4.93% for COMP., CONT., EXP. and 

TEMP. respectively. This suggests that normaliza- 

tion is useful for generalization of shallow models. 

From Table 2, we found that our models do not 

achieve consistent improvements in precision, but 

benefit greatly from the gains of recall. Besides, 

our model works quite well for small dataset (Both 

accuracy and F1 score are improved in TEMP.). 

All of these demonstrate that our model is suitable 

for implicit DRR. 

4 Conclusion and Future Work 

In this paper, we have presented a convolutional 

neural network based approach to learn better 

DRR classifiers. The method is simple but effec- 

tive for relation recognition. Experiment results 

show that our approach achieves satisfactory per- 

formance against the baseline models. 

In the future, we will verify our model on other 
 

7Without special illustration, all improvements and de- 
clines are against SVM. 

languages, for example, Chinese and Arabic. Be- 

sides, since our model is general to classification 

problems, we would like to investigate its effec- 

tiveness on other similar tasks, such as sentiment 

classification and movie review classification, etc. 

Acknowledgments 

The authors were supported by National Nat- 

ural Science Foundation of China (Grant Nos 

61303082 and 61403269), Natural Science 

Foundation of Jiangsu Province (Grant No. 

BK20140355), Natural Science Foundation of Fu- 

jian Province of China (Grant No. 2013J01250), 

the Special and Major Subject Project of the 

Industrial Science and Technology in Fujian 

Province 2013 (Grant No.   2013HZ0004-1), 

and 2014 Key Project of Anhui Science and 

Technology Bureau (Grant No. 1301021018). We 

thank the anonymous reviewers for their insightful 

comments. We are also grateful to Kaixu Zhang 

for his valuable suggestions. 

 
References 
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