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Abstract: Multipliers are essential components of digital hardware, ranging from deeply 

embedded system on-chip (SoC) cores to GPU-based accelerators. As they are often 

critical for system performance, a great emphasis was placed on their performance 

improvement in the past few decades. The Radix-4 modified Booth encoding (MBE) 

scheme is often preferred in high-performance multipliers due to its minimized delay and 

silicon area. Booth encoding reduces the number of partial products required to be added 

by approximately twofold compared to non-Booth versions. Digital media and signal 

processing applications are usually dominated by integer addition and multiplication. 

Prior approaches have proposed several solutions supported the radix-4 Booth recoding. 

This technique makes it possible to diminish the peak of a multiplier by half, this being 

the foremost widespread option when designing multipliers, as only easy multiples are 

required. The proposed algorithm uses reconfigurable nature of VLSI systems. The 

proposed structure utilizes low power and that would be compared in terms of power, 

area utilization, logic utilization etc. In the proposed system, design of low power Radix- 

4 booth multiplier is being implemented using adjustable path selection routine that 

enable the Multiplier to save the carry path adjustable and finally combines both the 

result in the sum part. 
 

1. INTRODUCTION 

Multipliers are essential components of 

digital hardware, ranging from deeply 

embedded system-on-chip (SoC) cores 

to GPU-based accelerators. As they are 

often critical for system performance, a 

great emphasis was placed on their 

performance improvement in the past 

few decades [1]–[7]. While performance 

remains important, the high demand for 

battery-powered ubiquitous systems has 

promoted low-power operation to a 

primary design goal [8]. However, the 

majority of proposed high-performance 

multipliers suffers from increased 

capacitive loads and spurious activities 

due to their complex combinatorial 

modules and unbalanced reconvergent 

paths which could turn the multiplier to 

be the dominant source of power 

dissipation. 

The Radix-4 modified Booth encoding 

(MBE) scheme is often preferred in 

high-performance multipliers due to its 

minimized delay and silicon area. Booth 

encoding reduces the number of partial 

products required to be added by 

approximately twofold compared to non- 

Booth versions. Moreover MBE is 

incorporated with various adder-tree- 

reduction schemes such as Wallace, 

optimized Wallace-tree (OWT), Dadda, 

Braun’s and three-dimensional 

minimization (TDM) to speed up the 
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partial product addition. OWT scheme 

along with carry-save prop- agation is 

known for logarithmic delay reduction 

of the adder-tree which is composed of 

either full-adders or 4-to-2 compressors 

[18]–[20]. The latter is preferred for a 

regular adder-tree implementation. 

Despite faster operation, the fitness of 

MBE for energy efficiency has been 

questioned due to its complex encoding– 

decoding circuity and higher spurious 

activities. This fact is especially 

prominent when the input operands are 

in 2’s complement notation and have a 

smaller dynamic range. Therefore, 

alternative multiplier schemes such as 

Baugh-Wooley, sign magnitude (SM) , 

and gray coding (GC) have been 

proposed. The Baugh-Wooley 

implementation utilizes a 2-input AND 

array for partial product generation 

(PPG), which is simpler in logic and was 

shown to be ∼25% more power efficient 

at a slightly higher delay when compared 

to Booth version. SM and GC, on the 

other hand, leverage the number 

representation to lower the signal 

transitions at the expense of a format 

conversion logic at both ends of the 

multiplier. SM implementations have 

reported up to 90% and 50% reduction 

in switching activity whereas GC reports 

45% of power reduction compared to 

MBE. However, the applications where 

the input operands rapidly change across 

the entire word length scarcely benefit 

from these techniques. Besides, when 

the timing constraints are stringent, the 

conversion circuits in the critical path 

make these implementations slower and 

even more power-hungry due to the gate 

upsizing. The Booth multiplier has also 

been subjected to structural and gate- 

level optimizations in literature. 

A more regular partial product array 

was proposed to minimize the extra 

adder rows for carry summation. The 

approach in has improved the multiplier 

performance by 25% when compared 

with the conventional implementations. 

Kang and Gaudiot presents a fast 2’s 

complement generation circuit to 

reorganize the partial product array by 

removing the subsequent carry-in terms. 

The work in proposes a less hardware- 

intensive mechanism to achieve the 

same goal. These approaches have 

achieved up to 5%–9.1% improvements 

in performance while reporting 15%– 

33% of power savings for an 8-bit 

version, respectively. As alternatives to 

OWT, leap-frog (LFR, and left-to-right 

structures were proposed to alleviate the 

sum-carry imbalance. Despite their 

feasible layouts, the incurred area and 

delay overhead is not negligible. 

Alternatively, the optimized circuits 

presented demonstrate more balanced 

data paths and an efficient partial- 

product array structure that out- perform 

other higher level implementations. Row 

and column bypassing, dynamic operand 

interchanges were also considered to 

exploit the multiplier input asymmetry 

for low power. These techniques are 

questionable in general cases as the extra 

circuit overhead is a heavy burden. More 

recent approaches exploit the accuracy 

and the number representation for 

energy efficiency. Among them, only 

can be found relevant to the scope of this 

work, and it employs the same circuits 

presented in. 

However, the fact remains that the area 

and speed are two conflicting 

performance constraints. Hence, 

innovating increased speed always 

results in larger area. The proposed 

architecture enhances the speed 

performance of the widely 

acknowledged Wallace tree multiplier 

when implemented on a FPGA. The 
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structural optimization is performed on 

the conventional Wallace multiplier, in 

such a way that the latency of the total 

circuit reduces considerably. A truncated 

multiplier with constant correction has 

the maximum error if the partial 

products in the n-k least significant 

columns are all ones or all zeros. A 

variable correction truncated multiplier 

has been proposed. This method changes 

the correction term based on column n- 

k-1. If all partial products in column n-k- 

1 are one, then the correction term is 

increased. Similarly, if all partial 

products in this column are zero, the 

correction term is decreased. In a 

simplified 22 multiplier block is 

proposed for building larger multiplier 

arrays. In the design of a fast multiplier, 

compressors have been widely used to 

speed up the partial product reduction 

tree and decrease power dissipation. 

Kelly et al. and Ma et al. have also 

considered compression for approximate 

multiplication. An approximate signed 

multiplier has been proposed for use in 

arithmetic data value speculation 

(AVDS); multiplication is performed 

using the Baugh Wooley algorithm. 

However no new design is proposed for 

the compressors for the inexact 

computation. 

 

2. LITERATURE SURVEY 

A signed binary multiplication technique 

by A. D. Booth 

The advances of digital arithmetic 

techniques permit computer designers to 

implement high speed application 

specific chips. The currently produced 

digital circuits have demonstrated high 

performance in terms of several criteria, 

such as, high clock rate, short 

input/output delay, small silicon area, 

and low power dissipation. In this paper, 

we implement several sinusoidal 

generation methods to optimize their 

performance and output using advanced 

digital arithmetic techniques. In this 

paper, the implementations of advanced 

digital oscillator structures with and 

without pipelining are proposed. The 

synthesis results of the implementation 

with pipelining have proven that it is 

superior to other sinusoidal generation 

methods in terms of the maximum 

frequency and signal resolution. Hence, 

this method is used in the design of the 

proposed digital oscillator chip. 

A two’s complement parallel array 

multiplication algorithm by C. R. Baugh 

and B. A. Wooley 

An algorithm for high-speed, two's 

complement, m-bit by n-bit parallel 

array multiplication is described. The 

two's complement multiplication is 

converted to an equivalent parallel array 

addition problem in which each partial 

product bit is the AND of a multiplier bit 

and a multiplicand bit, and the signs of 

all the partial product bits are positive. 

High-performance low-power left-to- 

right array multiplier design by Z. 

Huang and M. D. Ercegovac 

We present a high-performance low- 

power design of linear array multipliers 

based on a combination of the following 

techniques: signal flow optimization in 

[3:2] adder array for partial product 

reduction, left-to-right leapfrog (LRLF) 

signal flow, and splitting of the 

reduction array into upper/lower parts. 

The resulting upper/lower LRLF 

(ULLRLF) multiplier is compared with 

tree multipliers. From automatic layout 

experiments, we find that ULLRLF 

multipliers have similar power, delay, 

and area as tree multipliers for n/spl 

les/32. With more regularity and 

inherently shorter interconnects, the 

ULLRLF structure presents a 

competitive alternative to tree structures 
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in the design of fast low-power 

multipliers implemented in deep 

submicron VLSI technology. 

 

3. EXISTING SYSTEM 

 

 
Fig.1-4x4 WALLACE Algorithm 

Steps involved in WALLACE TREE 

multipliers Algorithm 

Multiply (that is - AND) each bit of one 

of the arguments, by each bit of the 

other, yielding N results. Depending on 

position of the multiplied bits, the wires 

carry different weights. 

Reduce the number of partial products to 

two layers of full adders. Group the 

wires in two numbers, and add them 

with a conventional adder.. Product 

terms generated by a collection of AND 

gates. 

 
Fig 2 Product terms generated by a 

collection of AND gates. 

Ripple Carry Adder is the method used 

to add more number of additions to be 

performed with the carry in sand carry 

outs that is to be chained. Thus multiple 

adders are used in ripple carry adder. It 

is possible to create a logical circuit 

using several full adders to add multiple- 

bit numbers. Each full adder inputs a 

Cin, which is the Cout of the previous 

adder. This kind of adder is a ripple 

carry adder, since each carry bit 

"ripples"   to   the   nextThfeulallgaodrditehrm.   TofhWe 

proposed architecture of WALLACE 

multiplier algorithm using RCA is 

shown in Figs.9 to 11 Take any 3 values 

with the same weights and gives them as 

input into a full adder. The result will be 

an output wire of the same weight. 

Partial product obtained after 

multiplication is taken at the first stage. 

The data's are taken with 3 wires and 

added using adders and the carry of each 

stage is added with next two data‟s in 

the same stage. Partial products reduced 

to two layers of full adders with same 

procedure. At the final stage, same 

method of ripple carry adder method is 

performed and thus product terms p1 to 

p8 is obtained. 

 
4. PROPOSED SYSTEM 

Radix-4 Booth algorithm is the 

multiplier. This computes x × y where x 

and y are the n bit two’s complement 

numbers (the multiplicand and multiplier 

respectively); producing a 2n two’s 

complement value in the product p. The 

multiplication algorithm considers 

multiple digits of Y at a time and is 

computed in N partitions where 
 

1 

An equation describing the computation 

is given by 

2 

Y indicates the length-N digit vector of 

the multiplier y. The radix-4 Booth 

calculation considers three digits of the 

 

 

 

 
 

ALLACE mu 
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multiplier Y at a time to create an 

encoding e given by 

 
3 

 

TABLE I BOOTH ENCODING 

 

where I indicates the I th digit. As 

outlined in Table I, separated from 

Yi+2Yi+1Yi = 000 and Yi+2Yi+1Yi = 

111 which results in a 0, the 

multiplicand is scaled by one or the 

other 1, 2, −2, or −1 contingent upon the 

encoding. 

This encoding ei is utilized to work out 

an incomplete item Partial Product i by 

working out 

 4. 

This Partial Product is adjusted utilizing 

a left shift (22i−1) and the summation is 

performed to compute the end-product p. 

Since the Y−1 digit is nonexistent, the 

0th halfway item PartialProduct0 = (Y1 

+Y0)x. A sequential (consecutive) 

rendition of the augmentation is 

performed by figuring every incomplete 

item in N cycles 

 

 
 

5 

Two improvements are performed to 

take into account better equipment 

usage. In the first place, the item p is 

doled out the multiplier y (p = y), this 

eliminates the need to store y in a 

different register and uses the n LSBs of 

the p register. Subsequently, as the item 

p is moved right ( p = sra(p, 2)), the 

following encoding ei can be determined 

from the three LSBs of p. The 

subsequent improvement eliminates the 

realignment left shift of the fractional 

item (2n) by aggregating the Partial 

Product to the n generally huge pieces of 

the item p (P[2_ B−1 : B]+ = Partial 

Product). 
 

 

Fig. 3. n bit TSM. This contains an 

added control circuit for skipping and 

operating with two different delay paths 

 

As observed in earlier research, a proper 

choice of inter-mediate signals in the 

interface between Booth encoding and 

decoding offers opportunities for logic 

optimization. Fig. 2(a)–(d) illustrates the 

traditional implementations of MBE 

circuits found in the literature. Note that 

only the full-swing circuit topologies 

were considered in this study. Fig. 2(a) 

(BED13) depicts a hybrid 

implementation of encoder–decoder 

circuits which require 36 and 10 

transistors [46], respectively. This non- 

CMOS implementation reports the least 

number of transistors for the decoder 

block among the presented. However, 

there are a few issues that emanate from 

this implementation. First, the 

unbuffered selector circuit which is 

denoted by SEL (composed of four pass 

transistors), forms cascaded resistive 

paths from decoder inputs to the outputs 
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as highlighted in Fig. 3(a). This results 

in an asymmetry in the driving loads to 

the SEL blocks for different input 

combinations and therefore different 

arrival times. Secondly, the routing 

congestion across the decoding blocks in 

Fig. 2(a) is relatively higher and 

increases the interconnects parasitic 

across the PPG. 

 

Fig.4. Various Booth encoder–decoder 

implementations. (a) BED13 [46]. (b) 

BED20 [27]. (c) BED22 [7], [16], [41]. 

(d) Erroneous Booth circuits in [17]. (e) 

6T-XOR/XNR circuits of this work 

(WM1−M8 = 0.15μ). (f) Proposed 

encoder–decoder circuits (BED18). (g) 

AO22 (J3) of the decoder (WM1−M4 = 

0.16 μ, WM5−M8 = 0.15 μ). 

 

The circuits shown in Fig. 2(b) (BED20) 

[27] uses transmission gate pairs for 

encoders leading to a faster operation in 

PPG. However the unbuffered encoder 

outputs become 

transparent to the hazards induced by the 

circuit itself. The additional wiring and 

higher capacitive loading at the decoder 

leads to a higher power consumption in 

PPG at the same time. The arrangement 

in Fig. 2(c) (BED22) is the most 

optimized version in terms of transistor 

count and signal synchronization. The 

XORs which produce ny j −1–ny j are 

shared among the decoders and the 

AOI22 cell provides balanced loads to 

the encoder signals. Therefore, it was 

also preferred for the truncated 

multiplication in [41]. The unique Booth 

circuits presented are not considered for 

the evaluation due to functional failures 

when all the encoder inputs (b2i −1–b2i 

+1) are at logic “1”. 

The proposed MBE circuits in this work 

are     shown     in     Fig.      2(e)–(g). 

The essential leaf cell of the proposed 

circuitry is depicted in Fig. 2(e). This 

XOR/XNR arrangement results in fewer 

number of gate capacitances when 

compared to any other full-swing 

implementations. Despite this merit, it 

suffers from the delay asymmetry 

between the signal paths. If, for 

example, in the circuit of Fig. 2(e), when 

both inputs change from 0 → 1, M1 of 

the XOR drives the output for a short 

period of time due to the inertial and 

propagation delays of the inverter and as 

a result, a glitch appears at the XOR 

output. The inversely proportional 

relationship between the inertial and 

propagation delays limits the liberty of 

device sizing. As such, the direct 

interfacing of these XOR/XNR outputs 

to high fan-out nets could only worsen 

the spurious activities in PPG. 

 
Fig. 5. Various low-power, full-swing 

full adders. (a) RFL22 [50]. (b) TFA22 

[51]. (c) BFA22 [52]. (d) HFA26 [49]. 

(e) CMOS28 [44]. (f) Proposed 

(PBFA26). 

 

Full adders are the basic building blocks 

of the multiplier adder-tree. The most 

prevalent, rail-to-rail static full adder 
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implementations are shown in Fig. 3(a)– 

(e). For a fair comparison, the buffered 

versions of the original implementation 

are considered. The blue arrow line 

indicates the critical path of each full 

adder. Fig. 3(a)–(c) requires a minimum 

of 22 transistors (including the inverters 

for the input signals that have not been 

drawn). The numbers for Fig. 3(d)–(f) 

are respectively. Fig. 3(a) utilizes a 

simultaneous, six transistors XOR-XNR 

circuit which is delimited by a dashed 

line in 3(a). Despite its compactness, the 

regenerative feedback paths introduced 

by this circuit results in slower 

transitions. In addition, the cascaded 

transmission gates worsen the sum-carry 

generation (SCG), thereby making the 

outputs more susceptible to glitches. In 

Fig. 3(b) (TFA22), the Sum output (S) is 

produced faster when input C = “1,” 

compared to other input combinations. 

Besides, the late arrival of XOR-XNR 

signals to the SCG could introduce 

glitches at output S. By contrast, the 

control signals to the transmission gates 

in Fig. 3(c) (BFA22) are reasonably 

synchronized except its input signals, i.e. 

early arrival of input C when XOR0→1 

is a potential scenario for glitch 

generation at output S. Similar to RFL22 

and TFA22, HFA26 in Fig. 3(d) [49] 

suffers from asymmetric path delays 

despite its faster operation. Fig. 3(e) 

(CMOS28) [44] represents the 

traditional CMOS full adder which is 

reasonably immune to glitches. The 

proposed full adder (PBFA26) is 

illustrated in Fig. 3(f). This arrangement 

differs from the others in two aspects. 

First, the internal signals are capacitively 

terminated at the SCG stage and the gate 

capacitances of the transmission gate 

pairs in SCG absorb possible glitches 

similar to Booth circuits. Secondly, the 

synchronization of all signals to SCG is 

achieved by incorporating a low- 

overhead intracell delay element [44] 

depicted by M1–M4 of Fig. 3(f). M1 and 

M4 provide the required delay to the 

input C through their drain–source 

parasitic Cd /Cs which are smaller than 

C g . Since C g of both M1 and M4 are 

not switched, its parasitic contribution to 

the full adder dynamic power is 

significantly lower when compared to an 

inverter-based delay elements. Hence, 

the arrival of C can be independently 

controlled without a significant 

overhead. 

 
5. SIMULATION RESULT OF 

MULTIPLIER: 

 
Fig 6 Simulation Result of Multiplier 

Here we can give the inputs as A=63, 

B=62, then the final output is 3906. 
 
 

Table 2 Comparison between power 

and delay 

 

6. CONCLUSION 

This article has proposed and 

investigated glitch-optimized circuit 

blocks for high-performance Booth 

multipliers aiming to reduce the dynamic 

power dissipation caused by the 
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parasitics and spurious activities. The 

proposed strategy incorporates circuit- 

level techniques with a PASR to achieve 

this goal. Therefore, the proposed 

approach is an excellent choice for high- 

performance, energy-constrained 

multiplication at the expense of a 

slightly higher delay. Two versions of 

the multiplier structures (Prop-W, Prop- 

LFR) comprising these circuit blocks, 

have been compared to highly optimized 

array and tree versions of the multipliers 

comprised of the state-of-the-art building 

blocks in literature. From the postlayout 

simulations, it was concluded that the 

proposed versions are on average 10%– 

30% more power efficient compared to 

the baselines. 

7. FUTURE SCOPE 

This multipliers plays a very important 

role in our day to day life. In future the 

multipliers are going to play a major 

role. The speed of the multipliers is 

increased by using carry save adders, 

carry look ahead adder, and so on. 

Rounding patterns will be optimized 

based on required accuracy and different 

compression techniques. The area and 

delay can be reduced in future by using 

advanced technology. 
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