

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-05 No. 01 May 2020

Page | 69 Copyright @ 2020 Authors

Software Defect Prediction Approach for Software
Engineering

Submitted by:Ranjit Kumar Patra, Asst.Professor in Raajdhani Engineering
College,Bhubaneswar

 Sushree Madhusmita Behera,Asst.Professor in Aryan Institute of Engineering
and Technolog,.Bhubaneswar

 DR.Bright Anand,Asst.Professor in NM Institute of Engineering and
Technology,Bhubaneswar

 Ashis Acharya,Asst. Professor in Capital Engineering College,Bhubaneswar. .

ABSTRACT

Software defect prediction is a major issue for the industry and software

professionals. It requires previous experience of faults while detecting

the software defects inside an application. Machine learning techniques

can be used to predict faults. This makes the software to run more

effectively and reduce the faults, time and cost. In this paper, we

propose a software defect detection model using machine learning

techniques to predict fault. The model performance is evaluated using

ten-fold cross-validation techniques, precision, recall, specificity, f1

measure, and accuracy. This study shows a significant classification

performance of 98-100% using SVM on three defect datasets in terms

of f1 measure.

Keywords

Software engineering; Software fault; Machine learning; Defect

prediction.

1. INTRODUCTION
The vast area of software development and different applications

makes it challenging for software developers and also

customers to observe, maintains and manage software

applications. Moreover, the fourth industrial revolution

employs artificial intelligence by software industry is one of the

promising sectors of modern times that observe a constant

transformation in its practices because of the automating large

quantities of software technologies [1]. The size and

complexity of current software is increasing day by day. As a

result, software engineers are struggling continuously with

faults from the beginning of the development phase.

The classification of the software faults is important in real-

time, otherwise, the effort and cost of finding defects hiding in

an application are also rising fast. This inspires the

development of automated fault prediction models for software

fault prediction that can forecast the software defects. If

software defects are identified before the release of software

that can help the developer to allocate and fix those defect

modules easily.

Software fault prediction through machine learning techniques

are being the most prominent use case among the researchers

and the software community [2]. State of the art machine

learning algorithms have been applied to find the defect

modules from the software applications for research and make

effective solutions for consumers [3]. In this study, we have

used the six most popular of the machine learning classifiers

which are suggested in the most recent systematic literature

study [4]. All selected classification techniques are applied over

different real application datasets related to the software fault

prediction of the applications. However, we have to consider

particular features in terms of their quality of data but that

cannot be validated in terms of correctness. Therefore, the state

of the art [5] machine learning approaches have been applied to

the fault datasets to enhance the prediction by reducing

unnecessary features through several feature selection

techniques and imbalance to balancing data methods.

Many of the studies examined fault recovery methods into

software with their focus on combining the automated recovery

model inside the application [6][7][8]. The goal of this study is

examined with six classifiers' performance and recommends an

automated approach to solve software faults inside software.

We used three data sets (i.e. JM1, CM1, and PC1) from

PROMISE

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-05 No. 01 May 2020

Page | 70 Copyright @ 2020 Authors

Software Engineering Repository and 22 attributes such as McCabe,

Halstead, and some other metrics including defect information [9].

We preprocessed our selected data for allocating correlated columns

and we also examined data imbalance issues by using different

computational techniques such as PCA, Resample and SMOTE [10].

Hence, this paper presents a comparative analysis of six machine

learning techniques for the software fault prediction inside software.

The remainder of the paper is organized as follows as the data sets;

classification techniques, performance measure, and experimental

Setup are presented in section 3. The analysis results are described in

Section 4. And finally, conclusions and thoughts for future work are

illustrated in Section 5.

2. RELATED WORK
Software fault localization and maintainability are defined as a

software system or modules can be adapted to correct faults, improve

performance or software and system testing, software development

techniques or modify to a changed platform [11]. A software defect

predictive model enables organizations to help to reduce the

maintenance effort, time and cost overall on a software project [12]

[13]. To ensure the quality of good software must be reliable, and it can

occur a smaller number of failures during the software run time [14].

Hence, classification of defects on software modules has a large impact

during software development process. But the real scenario would

become hard, because when developer changes his program inside an

application and it is related to other modules including failed to updated

version of this application. Therefore, it is very possible case for the

software become faulty and not stable [15].

The number of literatures in software fault proneness is increasing day

by day for demand for automated services [16]. Ruchita Malhutra [17]

presented a comparative study between ANN, SVM, DT, CCN, GMDH

and GEP to predict software fault modules. The author have taken of 3

NASA project data from PROMISE Software Engineering Repository.

Form the performance analysis of this study, DT has achieved the

highest accuracy than other classifiers and the study used 21 CK

metrics, McCabe metrics, and HalStead metrics. Zhou Xu et al. [18]

introduced a defect prediction framework which is called KPWE. And

it combines two approaches, i.e. Kernel Principal Component Analysis

(KPCA) and Weighted Extreme Learning Machine (WELM). The

contribution of this study is used to 44 software projects data and that

indicates KPWE is an excellent technique to the baseline methods in

utmost cases. Moeyersoms et al. [19] has presented a comparative study

on RF, SVM, C4.5 (DT) and Regression Tree to predict the software

defect modules. The experimental result shows that RF has the highest

accuracy among classifiers. Qiao Yu et al. [20] developed a new feature

subset selection and feature classifying techniques to investigate the

effectiveness of feature selection for cross-project defect prediction

(CPDP). Their experiment shows that the CPDP feature selection

approaches can improve the performance of software defect analysis.

Hotzkow et al. [21] described that the application can automatically

learning user expectations from the semantic contexts over multiple

applications.

Many researchers are enthusiastic about their works in the discipline of

automated fault tolerance inside a software system [22]. Montani et al.

[23] described Case-based reasoning (CBR) methods that provided

abilities to the software for fault prediction in software systems appears

to be very suitable for distributed

software applications. A study [24] mentioned that the

approaches in the article” A New Way to Find Bugs in Self-

Driving AI Could Save Lives”. Two studies stated that the

machine learning-based approaches are better than statistical-

based models for software fault prediction [25] [26]. Therefore,

it is very important to using open-source datasets because of

their reliability, consistency, and verifiability [27] [28].

3. MATERIALS AND METHODS

 Data Collection
In this experiment, we have used 3 open source publicly

available data from PROMISE Software Engineering Database.

These datasets Tim Menzies et al. have been used in their

research paper [29]. In another study, Jureczko et al. [30] have

been assembled a software fault prediction model to predict the

software defects using machine learning algorithms. They have

discussed in their paper about 8 projects (PROMISE

Repository) data and by taking 19 CK metrics and McCabe

metrics for constructed a predictive model. In our study, we

have used 22 attributes for building our automated fault predict

model. Table 1 shows 22 different attributes from software

defect datasets including 21 independent metrics and one is

outcome information. i.e. which is faulty and no-fault.

Table 1. List of the metrics
No Metrics name Type

1 Line of code McCabe

2 Cyclomatic complexity McCabe

3 Essential complexity McCabe

4 Design complexity McCabe

5 Halstead operators and
operands

Halstead

6 Halstead volume Halstead

7 Halstead program length Halstead

8 Halstead difficulty Halstead

9 Halstead intelligence Halstead

10 Halstead effort Halstead

11 Halstead time estimator Halstead

12 Halstead line count Halstead

13 Halstead comments count Halstead

14 Halstead blank line count Halstead

15 IO code and comments Miscellaneous

16 Unique operators Miscellaneous

17 Unique operands Miscellaneous

18 Total operators Miscellaneous

19 Total operands Miscellaneous

20 Branch count Miscellaneous

21 b: numeric Halstead

22 Defects False or true

The present study used JM1, CM1, PC1 datasets which were

implemented in C language. Table 2 depicted details about

detail of all datasets with their features.

Table 2: Details about datasets

No Dataset Missing Instance Class distribution

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-05 No. 01 May 2020

Page | 71 Copyright @ 2020 Authors

 attribute True False

1 JM1 None 10885 8779
(80.65%)

2106
(19.35%)

2 CM1 None 498 49
(9.83%)

449
(90.16%)

3 PC1 None 1109 1032
(93.05%)

77
(6.94%)

Classification Techniques
Machine learning algorithm has been creating a significant role in

software engineering fields. In recent years, machine learning

techniques are one of the most operational techniques what are gained

significantly high performance in real-world problems for

The proposed SDPD model is developed during the initial stage

of the software development life cycle. This model suggests

that the integrated software development process and its uses

of the implementation as an input when the requirement

analysis given into the predictive model for software

development. In SDPD development, the high-level diagram

and detail level diagram are mandatory to build a scalable

SDPD model. The main phase of the SDPD development is

physical design and testing phase, analyzes defect modules to

provide knowledge-based automated fault recovery of the

software systems. And it is lead to predict defects and contain

all the required data about faulty modules of the application.

Figure 1. SDPD shown the main components of proposed

SDPD approach.

the research and technical community. Harshita et al. [31] discussed in

their review, there are common use of machine learning techniques for

constructing software fault prediction models such as fuzzy logic-based

software defect prediction, Naïve Bayes (NB), neural network (NN),

random forest (RF), support vector machine (SVM), P-SVM, k-nearest

neighbors (KNN), etc. Ruchita Malhotra [3] described in her systematic

mapping study, the top five machine learning techniques were used to

software defect analysis such as DT (46%), NB (74%), MLP in NN

(85%), RF (59%), SVM (27.7%), etc.

In this study, 6 machine learning (ML) techniques have been considered

to construct the defect model: Decision Tree (DT), k- nearest neighbors

(KNN), Logistics Regression (LR), Naïve Bayes (NB), Random Forest

(RF), and Support Vector Machine (SVM).

Performance Measurement
Once the predictive model has been built, it can be applied to perform

a test to predict the fault modules inside the software fault datasets. In

this work, we examined the ML prediction models, utilizing six

classification algorithms, based on different statistical techniques [32]

such as confusion matrix (True Positive

= TP, True Negative = TN, False Positive = FP, False Negative = FN),

recall, precision, F1 measure, etc. Table 3 shows a quality measure of

predictive model based on confusion matrix as below [33],

Figure 1. Proposed Software Defect Predictive

Development Model

In this experiment, 3 defects datasets have been considered to

build the software defect model. Then, we performed data

preprocessing approach on defect datasets [34], such as

covariance analysis to find high correlation inside data, to find

the missing value, feature extraction, min-max normalization,

resample, PCA, etc. Details workflow of our defect model for

SDPD based application is presented in Figure 2.

Table 3. Performance measurement criteria

Metrics Mathematical formula

Accuracy (𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

Recall = TPR 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

F1 measure 2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

Specificity = TNR 𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)

Experimental Setup
This section represents the proposed software defect predictive

development (SDPD) model and procedure of the experiment.

Physical Design

HLD (High Level Diagram) DLD

(Detail Level Diagram)

Requirement Analysis

Re

quirement

Specificatio

n

L

o

g

i

c

a

l

D

e

s

i

g

n

T

estin

g

Deployment

Software Defect

Predictive

Development

S

tart
3 Defect
Datasets

Applying 6 classifers

Data Pre-processing

Split the datasets
(Training 80% & Testing 20%)

Approve the Outperform Model

Analyze Model
Performance

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-05 No. 01 May 2020

Page | 72 Copyright @ 2020 Authors

Figure 2. Workflow of the defect

model

4. Results and Discussion
In this study, we focused on automated fault recovery inside

software through a predictive model, besides we also

observed

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-05 No. 01 May 2020

Page | 73 Copyright @ 2020 Authors

both defective and not faulty classes. Especially, defective modules are

very crucial than not faulty modules. In our experiment, we used 10-

fold cross-validation technique to evaluate the performance of six

classification techniques. To determine the parameters for the software

defect model, we used the different data preprocessing methods that

have been increased the accuracy and consistency of the classification

model. Table 4 shows the performance evaluation of six supervised

classification techniques for software fault prediction. With respect to

the precision: DT and SVM achieved the highest performance (i.e.

100%) on JM1 datasets; DT, NB, SVM, and RF achieved the best

performance on CM1 datasets, (it’s respectively 100%); DT, SVM, and

RF obtained the highest performance (i.e. 97%) on PC1 datasets.

Relatively, all of the classifiers have shown good performance in terms

of precision. However, considering the recall of the analysis, SVM and

RF achieved the highest performance on JM1 datasets; LR and NB

attained the lowest performance on CM1 and PC1 datasets. Not that all

of the classifiers achieved very similar scores in terms of recall. Another

measure for classification is F1 measure. With respect to F1 measure:

SVM achieved the highest value (i.e. 100%) on JM1 datasets and NB

obtained the lowest score (i.e. 93%). By Looking CM1 datasets, we can

monitor that the f1 scores are mostly similar (i.e. NB, DT, SVM, RF =

100% and KNN = 97%, LR =

95%). Moreover, RF achieved the best score (i.e. 99%) and KNN

performed lowest (86%) on PC1 datasets. In addition, all of the

classifiers have achieved utmost performance on JM1, CM1, and PC1

datasets, in terms of accuracy. This indicates that all of the classifiers

are very effective in their classification performance to predict software

defect modules.

Table 4. Classification performance of ml techniques

 Recall 0.97 1.0 .88

Accuracy 0.99 .99 .95

F1 0.95 .97 .86

LR Precision 0.94 .95 .94

Recall 0.96 .95 .92

Accuracy 0.98 .98 .97

F1 0.94 .95 .92

Figure 3. Shows the negative predictive value (NPV) and false

positive rate (FPR) based on three software defect datasets.

Figure 3. NPV and FPR for six ML classifiers

5. CONCLUSION
In this paper, we proposed an automated software engineering

approaches for defect prediction model development (SDPD)

on software development life cycle. After that, the main

objective of our study was to evaluate the abilities of six

supervised based the machine learning classifications

techniques to predict the software defect modules using 3

NASA datasets. The results (i.e. accuracy: 98-100%) of the

experiment with different attributes showed the capability and

efficiency of the SDPD model to identify the fault and improve

software quality. In addition, this SDPD model can be able to

early detection of software faults by collecting real-time

software development data from the target applications. The

proposed approach can be used for software fault recovery

inside a system and enhanced by applying machine learning

techniques to construct SDPD more effective in software fault

retrieval.

For future work, we will implement more classification algorithms,

such as hybrid or ensemble model to verify the performance of the

software fault prediction.

6. REFERENCES
[1] H. B. Bolat, G. T. Temur, and IGI Global, Agile approaches

for successfully managing and executing projects in the fourth

industrial revolution.

[2] G. P. Bhandari and R. Gupta, “Machine learning based

software fault prediction utilizing source code metrics,” in

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-05 No. 01 May 2020

Page | 74 Copyright @ 2020 Authors

2018 IEEE 3rd International Conference on Computing,

Communication and Security (ICCCS), 2018, pp. 40–45.

[3] R. Malhotra, “A systematic review of machine learning techniques

for software fault prediction,” Appl. Soft Comput., vol. 27, pp.

504–518, Feb. 2015.

[4] L. Son et al., “Empirical Study of Software Defect Prediction: A

Systematic Mapping,” Symmetry (Basel)., vol. 11, no. 2, p. 212,

Feb. 2019.

[5] C. W. Yohannese and T. Li, “A Combined-Learning Based

Framework for Improved Software Fault Prediction,” Int. J.

Comput. Intell. Syst., vol. 10, no. 1, p. 647, Dec. 2017.

[6] A. Hudaib et al., “ADTEM-Architecture Design Testability

Evaluation Model to Assess Software Architecture Based on

Testability Metrics,” J. Softw. Eng. Appl., vol. 08, no. 04, pp. 201–

210, Apr. 2015.

[7] S. Elmidaoui, L. Cheikhi, and A. Idri, “Towards a Taxonomy of

Software Maintainability Predictors,” Springer, Cham, 2019, pp.

823–832.

[8] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of

software maintainability prediction and metrics,” in 2009 3rd

International Symposium on Empirical Software Engineering and

Measurement, 2009, pp. 367–377.

[9] “PROMISE DATASETS PAGE.” [Online]. Available:

http://promise.site.uottawa.ca/SERepository/datasets- page.html.

[Accessed: 01-Jul-2019].

[10] R. Malhotra and S. Kamal, “An empirical study to investigate

oversampling methods for improving software defect prediction

using imbalanced data,” Neurocomputing, vol. 343, pp. 120–140,

May 2019.

[11] 610.12-1990 IEEE Standard Glossary of Software Engineering

Terminology. .

[12] P. Oman and J. Hagemeister, “Construction and testing of

polynomials predicting software maintainability,” J. Syst. Softw.,

vol. 24, no. 3, pp. 251–266, Mar. 1994.

[13] T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R. Moulding,

“Software Fault Tolerance: An Evaluation,” IEEE Trans. Softw.

Eng., vol. SE-11, no. 12, pp. 1502–1510, Dec. 1985.

[14] I. U. Nisa and S. N. Ahsan, “Fault prediction model for software

using soft computing techniques,” in 2015 International

Conference on Open Source Systems & Technologies (ICOSST),

2015, pp. 78–83.

[15] S. N. Ahsan and F. Wotawa, “Fault Prediction Capability of

Program File’s Logical-Coupling Metrics,” in 2011 Joint

Conference of the 21st International Workshop on Software

Measurement and the 6th International Conference on Software

Process and Product Measurement, 2011, pp. 257– 262.

[16] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič,

“Software fault prediction metrics: A systematic literature

review,” Inf. Softw. Technol., vol. 55, no. 8, pp. 1397–1418, Aug.

2013.

[17] R. Malhotra, “Comparative analysis of statistical and machine

learning methods for predicting faulty modules,” Appl. Soft

Comput., vol. 21, pp. 286–297, Aug. 2014.

[18] Z. Xu et al., “Software defect prediction based on kernel PCA and

weighted extreme learning machine,” Inf. Softw. Technol., vol.

106, pp. 182–200, Feb. 2019.

[19] J. Moeyersoms, E. Junqué de Fortuny, K. Dejaeger, B.

Baesens, and D. Martens, “Comprehensible software fault

and effort prediction: A data mining approach,” J. Syst.

Softw., vol. 100, pp. 80–90, Feb. 2015.

[20] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, “An

Empirical Study on the Effectiveness of Feature Selection

for Cross-Project Defect Prediction,” IEEE Access, vol. 7,

pp. 35710–35718, 2019.

[21] J. Hotzkow and Jenny, “Automatically inferring and

enforcing user expectations,” in Proceedings of the 26th

ACM SIGSOFT International Symposium on Software

Testing and Analysis - ISSTA 2017, 2017, pp. 420–423.

[22] A. A. Hudaib, H. N. Fakhouri, A. A. Hudaib, and H. N.

Fakhouri, “An Automated Approach for Software Fault

Detection and Recovery,” Commun. Netw., vol. 08, no. 03,

pp. 158–169, Jul. 2016.

[23] S. Montani and C. Anglano, “Achieving self-healing in

service delivery software systems by means of case-based

reasoning,” Appl. Intell., vol. 28, no. 2, pp. 139–152, Apr.

2008.

[24] “A New Way to Find Bugs in Self-Driving AI Could

Save Lives - IEEE Spectrum.”

 [Online]. Available: https://spectrum.ieee.org/tech-

talk/robotics/artificial- intelligence/better-bug-hunts-in-

selfdriving-car-ai-could- save-lives. [Accessed: 02-Jul-

2019].

[25] C. Catal and B. Diri, “A systematic review of software

fault prediction studies,” Expert Syst. Appl., vol. 36, no. 4,

pp. 7346–7354, May 2009.

[26] V. U. B. CHALLAGULLA, F. B. BASTANI, I.-L. YEN, and

R. A. PAUL, “EMPIRICAL ASSESSMENT OF

MACHINE LEARNING BASED SOFTWARE DEFECT

PREDICTION TECHNIQUES,” Int. J. Artif. Intell. Tools,

vol. 17, no. 02, pp. 389–400, Apr. 2008.

[27] E. Shihab et al., “Studying re-opened bugs in open source

software,” Empir. Softw. Eng., vol. 18, no. 5, pp. 1005–

1042, Oct. 2013.

[28] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data Quality:

Some Comments on the NASA Software Defect Datasets,”

IEEE Trans. Softw. Eng., vol. 39, no. 9, pp. 1208–1215,

Sep. 2013.

[29] T. Menzies, J. Distefano, A. O. S, and R. M. Chapman,

“Assessing Predictors of Software Defects.”

[30] M. Jureczko and L. Madeyski, “Towards identifying

software project clusters with regard to defect prediction,”

in Proceedings of the 6th International Conference on

Predictive Models in Software Engineering - PROMISE

’10, 2010, p. 1.

[31] H. Tanwar and M. Kakkar, “A Review of Software Defect

Prediction Models,” Springer, Singapore, 2019, pp. 89–97.

[32] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and

P. Thambidurai, “Object-oriented software fault prediction

using neural networks,” Inf. Softw. Technol., vol. 49, no.

5, pp. 483–492, May 2007.

[33] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to

data mining. Pearson Addison Wesley, 2005.

S. Garcaí , J. Luengo, and F. Herrera, Data Preprocessing in

Data Mining, vol. 72. Cham: Springer International Publishing,

2015.

http://promise.site.uottawa.ca/SERepository/datasets-

