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ABSTRACT 

Software defect prediction is a major issue for the industry and software 

professionals. It requires previous experience of faults while detecting 

the software defects inside an application. Machine learning techniques 

can be used to predict faults. This makes the software to run more 

effectively and reduce the faults, time and cost. In this paper, we 

propose a software defect detection model using machine learning 

techniques to predict fault. The model performance is evaluated using 

ten-fold cross-validation techniques, precision, recall, specificity, f1 

measure, and accuracy. This study shows a significant classification 

performance of 98-100% using SVM on three defect datasets in terms 

of f1 measure.  
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1. INTRODUCTION 
The vast area of software development and different applications 
 

makes it challenging for software developers and also 

customers to observe, maintains and manage software 

applications. Moreover, the fourth industrial revolution 

employs artificial intelligence by software industry is one of the 

promising sectors of modern times that observe a constant 

transformation in its practices because of the automating large 

quantities of software technologies [1]. The size and 

complexity of current software is increasing day by day. As a 

result, software engineers are struggling continuously with 

faults from the beginning of the development phase. 

The classification of the software faults is important in real-

time, otherwise, the effort and cost of finding defects hiding in 

an application are also rising fast. This inspires the 

development of automated fault prediction models for software 

fault prediction that can forecast the software defects. If 

software defects are identified before the release of software 

that can help the developer to allocate and fix those defect 

modules easily. 

Software fault prediction through machine learning techniques 

are being the most prominent use case among the researchers 

and the software community [2]. State of the art machine 

learning algorithms have been applied to find the defect 

modules from the software applications for research and make 

effective solutions for consumers [3]. In this study, we have 

used the six most popular of the machine learning classifiers 

which are suggested in the most recent systematic literature 

study [4]. All selected classification techniques are applied over 

different real application datasets related to the software fault 

prediction of the applications. However, we have to consider 

particular features in terms of their quality of data but that 

cannot be validated in terms of correctness. Therefore, the state 

of the art [5] machine learning approaches have been applied to 

the fault datasets to enhance the prediction by reducing 

unnecessary features through several feature selection 

techniques and imbalance to balancing data methods. 

Many of the studies examined fault recovery methods into 

software with their focus on combining the automated recovery 

model inside the application [6][7][8]. The goal of this study is 

examined with six classifiers' performance and recommends an 

automated approach to solve software faults inside software. 

We used three data sets (i.e. JM1, CM1, and PC1) from 

PROMISE
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Software Engineering Repository and 22 attributes such as McCabe, 

Halstead, and some other metrics including defect information [9]. 

We preprocessed our selected data for allocating correlated columns 

and we also examined data imbalance issues by using different 

computational techniques such as PCA, Resample and SMOTE [10]. 

Hence, this paper presents a comparative analysis of six machine 

learning techniques for the software fault prediction inside software. 

The remainder of the paper is organized as follows as the data sets; 

classification techniques, performance measure, and experimental 

Setup are presented in section 3. The analysis results are described in 

Section 4. And finally, conclusions and thoughts for future work are 

illustrated in Section 5. 

2. RELATED WORK 
Software fault localization and maintainability are defined as a 

software system or modules can be adapted to correct faults, improve 

performance or software and system testing, software development 

techniques or modify to a changed platform [11]. A software defect 

predictive model enables organizations to help to reduce the 

maintenance effort, time and cost overall on a software project [12] 

[13]. To ensure the quality of good software must be reliable, and it can 

occur a smaller number of failures during the software run time [14]. 

Hence, classification of defects on software modules has a large impact 

during software development process. But the real scenario would 

become hard, because when developer changes his program inside an 

application and it is related to other modules including failed to updated 

version of this application. Therefore, it is very possible case for the 

software become faulty and not stable [15]. 

The number of literatures in software fault proneness is increasing day 

by day for demand for automated services [16]. Ruchita Malhutra [17] 

presented a comparative study between ANN, SVM, DT, CCN, GMDH 

and GEP to predict software fault modules. The author have taken of 3 

NASA project data from PROMISE Software Engineering Repository. 

Form the performance analysis of this study, DT has achieved the 

highest accuracy than other classifiers and the study used 21 CK 

metrics, McCabe metrics, and HalStead metrics. Zhou Xu et al. [18] 

introduced a defect prediction framework which is called KPWE. And 

it combines two approaches, i.e. Kernel Principal Component Analysis 

(KPCA) and Weighted Extreme Learning Machine (WELM). The 

contribution of this study is used to 44 software projects data and that 

indicates KPWE is an excellent technique to the baseline methods in 

utmost cases. Moeyersoms et al. [19] has presented a comparative study 

on RF, SVM, C4.5 (DT) and Regression Tree to predict the software 

defect modules. The experimental result shows that RF has the highest 

accuracy among classifiers. Qiao Yu et al. [20] developed a new feature 

subset selection and feature classifying techniques to investigate the 

effectiveness of feature selection for cross-project defect prediction 

(CPDP). Their experiment shows that the CPDP feature selection 

approaches can improve the performance of software defect analysis. 

Hotzkow et al. [21] described that the application can automatically 

learning user expectations from the semantic contexts over multiple 

applications. 

Many researchers are enthusiastic about their works in the discipline of 

automated fault tolerance inside a software system [22]. Montani et al. 

[23] described Case-based reasoning (CBR) methods that provided 

abilities to the software for fault prediction in software systems appears 

to be very suitable for distributed 

software applications. A study [24] mentioned that the 

approaches in the article” A New Way to Find Bugs in Self-

Driving AI Could Save Lives”. Two studies stated that the 

machine learning-based approaches are better than statistical-

based models for software fault prediction [25] [26]. Therefore, 

it is very important to using open-source datasets because of 

their reliability, consistency, and verifiability [27] [28]. 

3. MATERIALS AND METHODS 

 Data Collection 
In this experiment, we have used 3 open source publicly 

available data from PROMISE Software Engineering Database. 

These datasets Tim Menzies et al. have been used in their 

research paper [29]. In another study, Jureczko et al. [30] have 

been assembled a software fault prediction model to predict the 

software defects using machine learning algorithms. They have 

discussed in their paper about 8 projects (PROMISE 

Repository) data and by taking 19 CK metrics and McCabe 

metrics for constructed a predictive model. In our study, we 

have used 22 attributes for building our automated fault predict 

model. Table 1 shows 22 different attributes from software 

defect datasets including 21 independent metrics and one is 

outcome information. i.e. which is faulty and no-fault. 

Table 1. List of the metrics 
No Metrics name Type 

1 Line of code McCabe 

2 Cyclomatic complexity McCabe 

3 Essential complexity McCabe 

4 Design complexity McCabe 

5 Halstead operators and 
operands 

Halstead 

6 Halstead volume Halstead 

7 Halstead program length Halstead 

8 Halstead difficulty Halstead 

9 Halstead intelligence Halstead 

10 Halstead effort Halstead 

11 Halstead time estimator Halstead 

12 Halstead line count Halstead 

13 Halstead comments count Halstead 

14 Halstead blank line count Halstead 

15 IO code and comments Miscellaneous 

16 Unique operators Miscellaneous 

17 Unique operands Miscellaneous 

18 Total operators Miscellaneous 

19 Total operands Miscellaneous 

20 Branch count Miscellaneous 

21 b: numeric Halstead 

22 Defects False or true 

 
The present study used JM1, CM1, PC1 datasets which were 

implemented in C language. Table 2 depicted details about 

detail of all datasets with their features. 

 
Table 2: Details about datasets 

No Dataset Missing Instance Class distribution 
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  attribute  True False 

1 JM1 None 10885 8779 
(80.65%) 

2106 
(19.35%) 

2 CM1 None 498 49 
(9.83%) 

449 
(90.16%) 

3 PC1 None 1109 1032 
(93.05%) 

77 
(6.94%) 

 

 

Classification Techniques 
Machine learning algorithm has been creating a significant role in 

software engineering fields. In recent years, machine learning 

techniques are one of the most operational techniques what are gained 

significantly high performance in real-world problems for 

The proposed SDPD model is developed during the initial stage 

of the software development life cycle. This model suggests 

that the integrated software development process and its uses 

of the implementation as an input when the requirement 

analysis given into the predictive model for software 

development. In SDPD development, the high-level diagram 

and detail level diagram are mandatory to build a scalable 

SDPD model. The main phase of the SDPD development is 

physical design and testing phase, analyzes defect modules to 

provide knowledge-based automated fault recovery of the 

software systems. And it is lead to predict defects and contain 

all the required data about faulty modules of the application. 

Figure 1. SDPD shown the main components of proposed 

SDPD approach.

the research and technical community. Harshita et al. [31] discussed in 

their review, there are common use of machine learning techniques for 

constructing software fault prediction models such as fuzzy logic-based 

software defect prediction, Naïve Bayes (NB), neural network (NN), 

random forest (RF), support vector machine (SVM), P-SVM, k-nearest 

neighbors (KNN), etc. Ruchita Malhotra [3] described in her systematic 

mapping study, the top five machine learning techniques were used to 

software defect analysis such as DT (46%), NB (74%), MLP in NN 

(85%), RF (59%), SVM (27.7%), etc. 

In this study, 6 machine learning (ML) techniques have been considered 

to construct the defect model: Decision Tree (DT), k- nearest neighbors 

(KNN), Logistics Regression (LR), Naïve Bayes (NB), Random Forest 

(RF), and Support Vector Machine (SVM). 

Performance Measurement 
Once the predictive model has been built, it can be applied to perform 

a test to predict the fault modules inside the software fault datasets. In 

this work, we examined the ML prediction models, utilizing six 

classification algorithms, based on different statistical techniques [32] 

such as confusion matrix (True Positive 

= TP, True Negative = TN, False Positive = FP, False Negative = FN), 

recall, precision, F1 measure, etc. Table 3 shows a quality measure of 

predictive model based on confusion matrix as below [33], 

 

  
 

 
 

Figure 1. Proposed Software Defect Predictive 

Development Model 

In this experiment, 3 defects datasets have been considered to 

build the software defect model. Then, we performed data 

preprocessing approach on defect datasets [34], such as 

covariance analysis to find high correlation inside data, to find 

the missing value, feature extraction, min-max normalization, 

resample, PCA, etc. Details workflow of our defect model for 

SDPD based application is presented in Figure 2.

Table 3. Performance measurement criteria 
 

Metrics Mathematical formula 

Accuracy (𝑇𝑃 + 𝑇𝑁) 
 

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 

Precision 𝑇𝑃 
 

(𝑇𝑃 + 𝐹𝑃) 

Recall = TPR 𝑇𝑃 
 

(𝑇𝑃 + 𝐹𝑁) 

F1 measure 2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 
 

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

Specificity = TNR 𝑇𝑁 
 

(𝑇𝑁 + 𝐹𝑃) 

 

Experimental Setup 
This section represents the proposed software defect predictive 

development (SDPD) model and procedure of the experiment. 
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Figure 2. Workflow of the defect 

model 

4. Results and Discussion 
In this study, we focused on automated fault recovery inside 

software through a predictive model, besides we also 

observed
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both defective and not faulty classes. Especially, defective modules are 

very crucial than not faulty modules. In our experiment, we used 10-

fold cross-validation technique to evaluate the performance of six 

classification techniques. To determine the parameters for the software 

defect model, we used the different data preprocessing methods that 

have been increased the accuracy and consistency of the classification 

model. Table 4 shows the performance evaluation of six supervised 

classification techniques for software fault prediction. With respect to 

the precision: DT and SVM achieved the highest performance (i.e. 

100%) on JM1 datasets; DT, NB, SVM, and RF achieved the best 

performance on CM1 datasets, (it’s respectively 100%); DT, SVM, and 

RF obtained the highest performance (i.e. 97%) on PC1 datasets. 

Relatively, all of the classifiers have shown good performance in terms 

of precision. However, considering the recall of the analysis, SVM and 

RF achieved the highest performance on JM1 datasets; LR and NB 

attained the lowest performance on CM1 and PC1 datasets. Not that all 

of the classifiers achieved very similar scores in terms of recall. Another 

measure for classification is F1 measure. With respect to F1 measure: 

SVM achieved the highest value (i.e. 100%) on JM1 datasets and NB 

obtained the lowest score (i.e. 93%). By Looking CM1 datasets, we can 

monitor that the f1 scores are mostly similar (i.e. NB, DT, SVM, RF = 

100% and KNN = 97%, LR = 

95%). Moreover, RF achieved the best score (i.e. 99%) and KNN 

performed lowest (86%) on PC1 datasets. In addition, all of the 

classifiers have achieved utmost performance on JM1, CM1, and PC1 

datasets, in terms of accuracy. This indicates that all of the classifiers 

are very effective in their classification performance to predict software 

defect modules. 

Table 4. Classification performance of ml techniques 

 

 Recall 0.97 1.0 .88 

Accuracy 0.99 .99 .95 

F1 0.95 .97 .86 

LR Precision 0.94 .95 .94 

Recall 0.96 .95 .92 

Accuracy 0.98 .98 .97 

F1 0.94 .95 .92 

 
Figure 3. Shows the negative predictive value (NPV) and false 

positive rate (FPR) based on three software defect datasets. 
 

 

Figure 3. NPV and FPR for six ML classifiers 

5. CONCLUSION 
In this paper, we proposed an automated software engineering 

approaches for defect prediction model development (SDPD) 

on software development life cycle. After that, the main 

objective of our study was to evaluate the abilities of six 

supervised based the machine learning classifications 

techniques to predict the software defect modules using 3 

NASA datasets. The results (i.e. accuracy: 98-100%) of the 

experiment with different attributes showed the capability and 

efficiency of the SDPD model to identify the fault and improve 

software quality. In addition, this SDPD model can be able to 

early detection of software faults by collecting real-time 

software development data from the target applications. The 

proposed approach can be used for software fault recovery 

inside a system and enhanced by applying machine learning 

techniques to construct SDPD more effective in software fault 

retrieval.

For future work, we will implement more classification algorithms, 

such as hybrid or ensemble model to verify the performance of the 

software fault prediction. 
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