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Abstract  

A Semiring R With identity is  Called  “clean semiring” if for every element Rr , there exist an 

idempotent ‘e’ and ‘a’ unit I  in R  such that  r = i + e. Let C(R) denote the center  of a  semiring R 

and f(x) be a polynomial in C(R) [x]. An element Ra  is called ‘f (x ) – clean “  if sua   where 

‘f(s)=0 and ‘u’ is a unit of R and R is f(x) –clean if  where  every element is f(x) –clean. In this paper 

we define a semiring to be a weakly f(x)-clean if each element of R can be written as either the sum 

or difference of a unit and a root of g(x).  

Keywords :- Clean  semiring ,  Weakly f(x) clean semiring, Strongly clean semiring. 

1. Introduction 

Throughout this paper, R is an associative semiring with identity .                A  semiring R  is called 

clean semiring if for every element Ra   , there exist an idempotent ‘e’ and ‘a’ unit I in R such that 

r = i+e and R is called strongly clean semiring if  in addition, eu = ue.  Let C(R) denote the center of 

a semiring R  and f(x) be a polynomial in C (R)[x]. Following camillo and simon , an element Rr  

is called f(x) – clean if r = x + s where   f(s)= 0  and u is a unit of R and R is f(x)- clean  if  every 

element in R is f(x) – clean . It is clear that the (x2  -x) – clean semirings are precisely the clean 

semirings.  

Definition 2.1:  A semiring  R is called clean semiring if for every a𝜖 R there exist an idempotent ‘ 

e’ and   a  unit u in R such that  a = e + u.  

Definition 2.2:  A semiring R is called strongly clean if for every a𝜖R there exist an idempotent ‘e’ 

and  a unit u in R such that  a = e + u and eu =ue. 

Definition 2.3: Let f(x) be a fixed polynomial in C(R)[x]. An element   r 𝜖R  is called weakly f(x)- 

clean semiring  if r = u +s or r = u - s  where g(s) =0 and u ∈U( R). We say that R is weakly f(x)-

clean semiring if every element is weakly f(x)- clean semirng. 

Proposition 2.4: Let g: R→ S be a semiring epimorphism. If R is weakly f(x)-clean then S is weakly 

f(x)-clean. 

Proof: Let f(x) be a nth degree polynomial.  

f(x) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2+ …………𝑎𝑛𝑥𝑛 ∈ 𝐶( 𝑅)[𝑥]. Then g(f(x)) = g( 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2+ 

…………𝑎𝑛𝑥𝑛) ∈ 𝐶(𝑠)[𝑥].  As  s ∈ 𝑆 there exist  u ∈ U(R)  and 𝑠0 ∈ 𝑅  such that r = u ± s0  and  f( 

s0 ) = 0. Then S = g(r ) = g( u ± 𝑠0) = g( u) ± g( s0 ); g (u) ∈U(S). 

But 𝑔′ (𝑓(𝑔(𝑠0))) = 𝑔(𝑎0) + 𝑔(𝑎1)𝑔(𝑠0) + ⋯ 𝑔(𝑎𝑛)𝑔(𝑠0
𝑛). 
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                                 = g (𝑎0 + 𝑎1𝑠0 + 𝑎2𝑠0
2+ …………𝑎𝑛𝑠0

𝑛) 

                                 =g (f (𝑠0)) 

                                = g (0) 

                               = 0.  

 We have S is weakly 𝑔′(f(x)) − clean.Therefore S  is weakly 𝑔′(f(x))- clean semiring. 

Proposition 2.5: Let f(x) ∈ Z(x) and {𝑅𝑖}𝑖 ∈ 𝐼 be a family of semirings .Then 𝜋𝑖∈𝐼 𝑅𝑖 is weakly f(x)-

clean semiring if and only if for all 𝑖 ∈ 𝐼, 𝑅𝑖  is weakly f(x)- clean semiring. 

Proof:  Let us define a mapping 𝜋𝑗 : 𝜋𝑖∈𝐼 𝑅𝑖 → 𝑅𝑗 by 𝜋𝑗(𝑎𝑖)𝑖 ∈ 𝐼) =  𝑎𝑗∀𝑗 ∈ 𝐼. 𝜋𝑗    is a smiring 

epimorphism for every  𝑖 ∈ 𝐼, each 𝑅𝑖 is a weakly f(x)- clean semiring. 

For the converse, Let 𝑥 = {𝑥𝑖}𝑖 ∈ 𝐼 ∈ 𝑅 =  𝜋𝑖∈𝐼𝑅𝑖.  In  𝑅𝑖0, We can write, 𝑥𝑖 =  𝑢𝑖0 + 𝑠𝑖0 or 𝑥𝑖 =

 𝑢𝑖0 − 𝑠𝑖0  where 𝑢𝑖0 ∈ 𝑈(𝑅𝑖0) and 𝑔(𝑠𝑖0)= 0. If 𝑥𝑖0 =  𝑢𝑖0 + 𝑠𝑖0 for 𝑖 ≠  𝑖0, Let 𝑥𝑖 =  𝑢𝑖 + 𝑠𝑖 where 

𝑢𝑖 ∈ 𝑈(𝑅𝑖), 𝑔(𝑠𝑖)= 0 while if  𝑥𝑖0 =  𝑢𝑖0 − 𝑠  for 𝑖 ≠  𝑖0.                      Let 𝑥𝑖 =  𝑢𝑖 − 𝑠𝑖 where 𝑢𝑖 ∈

𝑈(𝑅𝑖), 𝑔(𝑠𝑖)= 0.  

Then 𝑢 = {𝑢𝑖}𝑖 ∈ 𝐼 and 𝑔(𝑠) = {𝑠𝑖}𝑖 ∈ 𝐼 

                                                  = 𝑎0{1}𝑖∈𝐼+  𝑎1{𝑠𝑖}𝑖∈𝐼 +  ………+ 𝑎𝑛{𝑠𝑖
𝑛

𝑖
} 𝑖∈𝐼 

                                                  =  { 𝑎0}𝑖∈𝐼+  {𝑎1𝑠𝑖}𝑖∈𝐼 +  ………+ {𝑎𝑛𝑠𝑖
𝑛

𝑖
}𝑖∈𝐼 

                                                  =  { 𝑎0+  𝑎1𝑠𝑖+  ………+ 𝑎𝑛𝑠𝑖
𝑛

𝑖
}𝑖∈𝐼. 

                                                  = {f (𝑠𝑖)}𝑖 ∈ 𝐼. 

                                                  = 0. 

That is 𝜋𝑖∈𝐼 𝑅𝑖 is wealy f(x) – clean semiring. 

Theorem 2.6: Let R be a semiring f(x)∈ 𝐶( 𝑅)[𝑥] and 𝑛 ∈ 𝑁.Then R is weakly f(x)- clean if and 

only if the upper triangular matrix semiring𝑇𝑛( 𝑅)  is weakly f(x) –clean. 

Proof:  Let R be a weakly f(x)-clean and A = ( 𝑎𝑖𝑗) ∈  𝑇𝑛( 𝑅) with  𝑎𝑖𝑗 = 0 for 𝑖 ≤ 𝑗 ≤ 𝑛.  Since R  

is weakly f(x)- clean for any 1 ≤ 𝑖 ≤ 𝑛. Then there exist 𝑠𝑖𝑖 ∈ 𝑅 and 𝑢𝑖𝑖 ∈ 𝑈(𝑅).  Such that 𝑎𝑖𝑖 =

 𝑢𝑖𝑖 ± 𝑠𝑖𝑖   with 𝑔(𝑠𝑖𝑖)= 0. So we have. 
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In R for any 0 ≤ 𝑖 ≤ 𝑛,We can write 𝑎𝑖𝑖 =  𝑢𝑖𝑖 + 𝑠𝑖𝑖or 𝑎𝑖𝑖 =  𝑢𝑖𝑖 − 𝑠𝑖𝑖where 𝑢𝑖𝑖 ∈ 𝑈(𝑅), 𝑔(𝑠𝑖𝑖)= 0. If  

𝑎𝑖𝑖 =  𝑢𝑖𝑖 + 𝑠𝑖𝑖for 𝑗 ≠  𝑖. Let 𝑎𝑗𝑗 =  𝑢𝑗𝑗 + 𝑠𝑗𝑗 where   𝑢𝑗𝑗 ∈ 𝑈(𝑅), 𝑔(𝑠𝑗𝑗)= 0. While if 𝑎𝑖𝑖 =  𝑢𝑖𝑖 −

𝑠𝑖𝑖  for 𝑗 ≠  𝑖.  Let 𝑎𝑗𝑗 =  𝑢𝑗𝑗 − 𝑠𝑗𝑗 where 𝑢𝑗𝑗 ∈ 𝑈(𝑅), 𝑔(𝑠𝑗𝑗)= 0. Then by the elementary row and 

column operations we can see that 
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 So, )(RTn  is weakly f(x) – clean . 

Now let  )(RTn  be weakly  f(x)- clean. 

Define  𝜃 : Tn (R) →R by θ(A ) = a11 
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. Then θ is a semiring  epimorphsm . For any  a∈ 𝑅, let B be the 

diagonal matrix  diag(a11, a22, ……..ann).  Then a = θ(B) = θ(U±S) = θ(U) ± θ(S) where U ∈ GLn(R) 

and  

 g(θ(S)= a0+a1θ(S)+…………………..+ anθ(Sn) 

            = θ (B0)+θ(B1)θ(S)+………….+θ(Bn) θ(Sn) 

             = θ (B0+B1S+………………..+BnS
n) 

            = θ (a0In+(a1In)S+…………..+(anIn)S
n) 

           = θ(g(S)) 

          = 0 

Thus a is weakly f(x)- clean i.e R is a weakly f(x) –clean semiring. 

Preposition 2.7: Let R be a semiring and g(x) ∈ C(R)[x].Then the formal power series . Semiring 

R[[t]] is weakly f(x) –clean semiring if and only if R is weakly f(x)- clean. 

Proof: Let R be weakly f(x)- clean and g=∑ aii≥0 ti ∈ R[[t]]. Since R is weakly f(x)-clean   a0= u ± s 

for some s∈ R, u∈ U(R) and g(S) = 0.  Then f = ( u + ∑ 𝑎𝑡𝑡𝑖
𝑖≥1

) ± 𝑆,  u+ ∑ 𝑎𝑡𝑡𝑖
𝑖≥1

∈ U(R[[t]]. So 

g is weakly f(x) –clean i.e. R[t] be weakly f(x) –clean.For the converse, let R[[t]] be weakly f(x) – 

clean. Since θ:𝑅[[𝑡]] → 𝑅 with θ(f) = a0 is a semiring epimorphism. Where g =∑ 𝑎𝑡𝑡𝑖
𝑖≥1

∈ R[[t]]. R 

is weakly f(x)- clean semiring. 

Remark 2.8: Generally, the polynomial semiring R[t] is not weakly f(x)- Clean semiring for non-

zero polynomial f(x) ∈ C(R)[x]. For example , Let R be a commutative semiring and also let f(x)=x. 

We show that t is not weakly f(x)- clean. If t = u ± 𝑠 then it must be that S=0 and so t = u. clearly t ∉

𝑈(𝑅[𝑈]). Therefore R [t] is not weakly. 

Theorem 2.9: Let R be a commutative semiring , M an R-module and g(x)= ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0
∈ R[x]. If R 

is a weakly f(x) –clean semiring, then the idealization R(M) of R and M is weakly f(x) – clean 

semiring. 

Proof: Let (r,m) ∈ R(M). Since R is a weakly f(x)- clean semiring, we have r=u±s where u ∈ U(R) 

and g(s)=0.So (r,m)=(u±s, m)=(u,m)±(s,0).we have 

(u,m)(𝑢−1, −𝑢−1𝑚𝑢−1)=(u𝑢−1, 𝑢(−𝑢−1𝑚𝑢−1)+m𝑢−1)=(1,0). 

Therefore (u,m)∈ U(R(M)).Also we have g((s,0))= 𝑎0(1,0)+𝑎1(s,0)+……………+)+𝑎𝑛(s,0)n 

                                                                                = 𝑎0(1,0)+𝑎1(s,0)+……………+)+𝑎𝑛(sn, 0) 

                                                                                =( 𝑎0,0)+(𝑎1s,0)+……………+)+𝑎𝑛(sn, 0) 

                                                                                 = (𝑎0+𝑎1s+……………++𝑎𝑛sn , 0 ) 



Dogo Rangsang Research Journal                                                        UGC Care Group I Journal 

ISSN : 2347-7180                                                                                   Vol-08 Issue-14 No. 03: 2021 

Page | 74                  DOI : 10.36893.DRSR.2021.V08I14.70-75           Copyright @ 2021 Authors 

                                                                                   = (g(s)), 0) 

                                                                                    = (0, 0)  

Thus (r, m) is weakly f(x) –clean and so R(M) is a weakly f(x)- clean semiring. 

3. Weakly (xn-x)- Clean semirings. 

In this section we consider the weakly ( 𝑥𝑛 –x)-clean semirings. 

Theorem 3.1: Let R be a semiring , n∈ N and a,b ∈ R. Then R is weakly (𝑎𝑥2𝑛     − 𝑏𝑥)-clean if and 

only if R is weakly (𝑎𝑥2𝑛     + 𝑏𝑥)-clean. 

Proof: Suppose R is weakly (𝑎𝑥2𝑛     − 𝑏𝑥) – clean semiring. Then for any r ∈ 𝑅, -r = u±𝑠 where  

(𝑎𝑠2𝑛     − 𝑏𝑠)=0 and u ∈ U(R). So r=(-u)±(-s) where (-u)∈ 𝑈(𝑅) and .0)()( 2   sbsa n Hence r 

is weakly  (𝑎𝑥2𝑛     + 𝑏𝑥)-cleansemiring. Therefore, R is weakly C(𝑎𝑥2𝑛     + 𝑏𝑥)-cleansemiring. 

Now suppose R is weakly ( 𝑎𝑥2𝑛     + 𝑏𝑥)-clean.     Let r ∈ 𝑅. Then there exist s and u such that  -r = 

u±𝑠, 02  bsas n and u ∈ U(𝑅). 𝑆𝑜        𝑟 = (−𝑢) ± −(𝑠) satisfies 𝑎𝑠2𝑛     − 𝑏𝑠 = 0. 

Hence, R is weakly (𝑎𝑥2𝑛     − 𝑏𝑥)-clean semiring. 

Proposition 3.2: Let R be a weakly  )( xxn clean semiring where n≥2 and a∈ R.Then either (i) 

a=u±𝑣 where u∈ U(𝑅) and vn-1=1  (ii) both aR and Ra contain nontrivial idempotents. 

Proof: Since R is weakly  )( xxn clean semiring, write a=u+e where u∈ U(𝑅) and en=e. Then 

aen-1=uen-1±e. So ).1()1( 11   nn euea Since )1( 1 nea  is an idempotent. fweu n   )1( 1

where  𝑤 ∈ U(R) and f2=f∈ 𝑤. So aRweaf n   11)1( . 

Suppose (i) does not hold. Then 0)1( 1  ne , hence 0f . Thus aR contains a nontrivial 

idempotent. Similarly, Ra contains a nontrivial idempotent. 

Definition 3.3: An element r∈ 𝑤 is called weakly n-clean if euuur n  ......21 with 

Ree 2 and niforRUui  1)( and R is called weakly n-clean if every element of R is weakly 

n-clean semiring. 

Definition 3.4: An element a∈ 𝑤  is called right π- regular if it satisfies the following equivalent 

conditions. 

i. Raa nn 1 for some integer n≥1; 

ii. RaRa nn 1 for some integer n≥1; 

iii. The chain ....2  RaaR terminates. The left π-regular elements are defined 

analogously. An element a∈ R is called strongly π-regular if it is both left and right π-

regularand R is called strongly π-regular if every element is strongly π-regular. 

Proposition 3.5: Let n ∈N, if the ring R is weakly  )( xxn clean semiring, then R is weakly 2-

clean semiring. 

Proof: Let  r ∈ R. Then r = u±𝑤 for some Rtt n  and u ∈ U(R). Since t is a strongly π-regular  

element and strongly π-regular  elements are strongly clean semirings, t = v ± e  for some Ree 2

and 𝑢 ∈ U(R). Then r = u ± v ± e  is weakly 2-clean semiring. Hence  R is weakly-2 clean semiring. 
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