
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 03: 2021

Page | 404 Copyright @ 2021 Authors

MALWARE DETECTION IN ANDROID APP STORE USING ROBUST

ATTRIBUTE GENERATION

Shivani Y M1 , Dr. Ch Ramesh2

Computer Network and Information Security, Jawaharlal Nehru Technological University
1 Department of Information Technology, GNITS, Telangana, Hyderabad, yalalashivani@gmail.com

2 Assistant Professor, Department of Information Technology, GNITS, Hyderabad

chramesh23@gmail.com

ABSTRACT: Now a days usage of android devices is becoming quite more due to day-to day increasing the

number of active users. With the first-class platform for create gaming and applications android as gained

admiration among all other smartphone. It will also allow users to sell and distribute apps instantly and also offers

ample free third-party download and install application from the Google play store and third-party play store.

Today more the 350,000 sample of new malware are found per every day and 5.2% increase compared to last

year.

Mobile devices can control and track the Internet of Things (IOT) services and make them prone to

attacks by various malicious application. Conventional methods fail to detect malicious application because of the

growth in numbers, variants, and advancement of the malware. Moreover, android allows to installation and

downloading apps from unverified sources. For detecting malware application current solution are not appropriate

with the rise of the malware and there are limited by low detection accuracy, advanced implementation and heigh

computational cost and power. Therefore, android malware become a real-world challenge. To solve this problem

an automatic intelligence technique is required for detecting malware apps with the use of real-word datasets

which analyses the source code. To show the uniformities in apps which hold malware content we proposed API

calls and use Chi- square for SelectKbest best feature selection and examined combination with six supervised

machine-learning algorithms (Random Forest, Decision Tree, K-Neighbours, AdaBoost, SVM Linear, and Naïve

Bayes). The detection accuracy of these six algorithms is analyse to identify the most effective classifier for

detecting malware.

key words: malware, android devices, machine learning, android features, Feature extraction, features

selections, Random Forest, Decision Tree, K-Neighbours, AdaBoost, SVM Linear, Naïve Bayes and chi-

square

I. Introduction:

Android has become the most common

operation system for tablets, MacBook and

smartphone with an estimated market share of 70%

to 80%. Android has overtaken many other mobile

operating systems to become one of the most

popular mobile platforms in the world. Recognition

of smartphone and other kind of mobile devices has

drop down significantly. Android has gained huge

admiration among all other smartphone it is the first-

class platform for creating gaming and application

which allows to distribute and also offer free third

party's apps to install and download from Google

play store for selling and distributing android apps.

The Internet of Things (IoT) is an attractive

system that connects several logical objects and

physical devices with networks to enlarge their

communication capabilities. In previous years, the

IoT has gained popularity owing to technological

advancements in areas like artificial intelligence,

cloud computing, machine learning, deep learning,

application system, and smart home devices. Now a

days mobile users are interested in using online

transaction for example using smartphone for paying

bills, online shopping, trading, booking tickets etc.

such portable device is targeted by hacking and

become vulnerable to attack more and more.

Malware refer to malicious code which

harms user integrity, availability, and

confidentiality. Malicious activity is hidden in the

background and appear as a clean application. Some

examples of the android malware are stealing user

personal information (e.g., bank account number,

bank credentials, contact number, passwords),

tracking user location, send premium SMS messages

that cost more than the standard ones, streaming

videos from users' cameras, send SMS or mails

which contain malware links, and encrypting

personal information such as video, images, SMS

and contact.

The shared report by IDC for smartphone

increases 25.5% global share market in the 1rd

quarter of the year 2021[1], the total market share of

Android was 72.83% [2] and more than 3.8 billion

active users around the world in 2021.

Android is one of the most popularly used

mobile device in the world, because of its

framework, compatibility, technological impact,

open-source, higher success ratio, inter app

mailto:yalalashivani@gmail.com
mailto:ramesh23@gmail.com

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 03: 2021

Page | 405 Copyright @ 2021 Authors

integration, high level multitasking, user friendly

development environment, etc. On the other hand, it

also has risk in installing and downloading

applications from unauthorize web site or third-

party. Because of the open -source applications

android is getting more prone to attack. It has

become target to malware, even though it provides

security mechanisms.

To prevent malware attacks, developers

and researchers are working in different security

solution by applying data science, artificial

intelligence, machine learning and deep learning.

We can analysis android malware with two

techniques static analysis and dynamic analysis

approaches. In static analysis we get information

about software which are going to analyses without

executing it but ware as in dynamic analysis is doing

during time of execution.

II. RELATED WORK

Table1: Related Work

5 The authors [7]

proposed to

combine

permission and

API to use

machine learning

classifiers to

detect malware.

Detected 1200 malware

apps and 1200 benign

apps

6 The authors [8]

proposed

extracted feature

vector

from Android

Manifest file and

combines PI and

CI

Results shows better

against other traditional

permission.

7 The authors [9]

use state-of-the-

art work which

different features

to charactering

behaviour to

detects malware

applications

Features are available

for State-of-the-art,

deep learning technique

are used to detect

malware.

8 The authors [10]

use lightweight

for metadata

Mmda to statically

analyse.

Random forest gives

94%of accuracy.

9 The authors [11]

evaluated

effective android

internet for feature

for identifying

malware apps

Detection rate for

android internet is 91%

against android

permission with 83%

10 The author [12]

use traditional

way of Principal

Component

Analysis and

feature are

extracted from

DEX

Detection accuracy of

state-of-the-art is

88.24%

SN

O
Description Result

1 The authors [3]

introduce SIGPID

and use 3 level

pruning to identify

signification

permission

SIGPID can detect

93.63%of malware in

the dataset and 91.4%

unknown malware

2 The authors [4]

proposed network

traffic and

consider seven

feature extractions

Drebin feature

extraction get heigh

accuracy rate we can to

other six feature

extraction

3 The authors
[5] used TF-IDF

to calculate PV

and SVOA

The proposed

approached get more

accuracy against other

state-of-art.

4 The authors [6]

use Chi-square

test for permission

feature in machine

learning

classifiers.

Rate of missing

malware detection is

10.33% and overall

detecting accuracy is

88.9%

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 03: 2021

Page | 406 Copyright @ 2021 Authors

III. PROPOSED SYSTEM

In this project, we are focusing on analysing the

malware using supervise machine learning

algorithms

and comparing accuracy rate of each classifier. Fig

1 show the android malware detection modules.

1. Dataset

2. Feature extraction

3.Feature vector

4.Feature selection

5. Training/Testing

6.Algorithm classification

7. Malware detection

8.Algoritham comparison

Fig 1: Models for Android Malware Detection

by using apktool[13]. AndroidManifest.xml content

features which are used in static analysis

Table 3 shows the permissions supplied in the

Android manifest for each clean app

Dataset:

In the first module we collected real-world

malware from android security and AndroZoo

which are in the form of binary (0 and 1).in the

dataset 0 means clean and 1 means malware feature.

Table 1 gives a brief about the dataset used for

experiments.

Table 2: Dataset Description

Fig 2: Dataset

Feature extraction:

In this module we convert android package

(.APK) to AndroidManifest.xml and then to csv file

Table 4 shows the permissions supplied in the

Android manifest for each malware app.

Feature vector:

In feature extraction module we consider V

as vector which contain set of android permission

𝑣𝑖 = 𝑣1, 𝑣2 … 𝑣𝑗
1, when permission exist.

𝑣𝑖 = {
0, otherwise.

Feature selection:

In this feature selectin module, we will

compare feature selection algorithms with different

method for reduce the feature-vector.

Training/Testing:

In testing and training module first, we

train the model with feature train the 300 datasets

SNO Application

type

Total number of

application
1 Malware 199

2 Benign 250

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 03: 2021

Page | 407 Copyright @ 2021 Authors

with features to detected malware and then test the

500 datasets for more accuracy.

Algorithm classification and Malware detection:
In this model we study about detailed

implementations of supervised machine learning

algorithms such as

• Random Forest

• Decision Tree

• K-Neighbours

• AdaBoost,

• SVM Linear, and

• Naïve Bayes.

Using this classification, we detected malware.

Random Forest classifiers:

The random forest is a classification

technique that uses multiple decision trees to

classify data. When developing each individual tree,

it employs bagging and feature randomization in

order to produce an uncorrelated forest of trees

whose committee prediction is more accurate than

that of any one tree.

Decision Tree:

The classification model is built using the

decision tree method in the form of a tree structure.

It employs if-then principles, which are both

exhaustive and mutually exclusive when it comes to

categorization. The process continues with the data

being broken down into smaller structures and

finally being linked to an incremental decision tree.

The finished product resembles a tree with nodes

and leaves. The rules are learnt one by one, one by

one, utilising the training data. The tuples that cover

the rules are deleted each time a rule is learnt. On the

training set, the procedure continues until the

termination point is reached.

K-Nearest Neighbour:

The K-Nearest Neighbour (KNN) method is

a supervised learning technique that may be used to

solve regression and classification issues. It's most

commonly used in machine learning for

categorization issues. KNN is based on the premise

that every data point that is close to another belongs

to the same class. In other words, it uses similarity

to classify a new data point. It’s an n-dimensional

space-based lazy learning method that saves all

instances corresponding to training data. It's a lazy

learning method since it focuses on keeping

instances of training data rather than building a

broad internal model.

AdaBoost Classifier:

Adaptive Boosting, short for Adaptive

Boosting, is a Boosting approach used in Machine

Learning as an Ensemble Method. The weights are

reallocated to each instance, with greater weights to

erroneously categorised occurrences. This is termed

Adaptive Boosting. In supervised learning, boosting

is used to decrease bias and variation. It is based on

the idea of successive growth of learners. Each

succeeding student, with the exception of the first, is

produced from previously grown learners. In other

words, weak students are transformed into strong

students. Although the Adaboost algorithm works

on the same concept as boosting, there is a little

variation in how it operates.

Support Vector Machine:

SVM (Support Vector Machine) is a

supervised machine learning method that may be

used to solve classification and regression

problems. It is, however, mostly employed to

solve categorization issues. The value of each

feature is the value of a specific coordinate in this

technique, which plots each data item as a point

in n-dimensional space (where n is the number of

characteristics you have). Following that, we do

classification by locating the hyper-plane that

best distinguishes the two classes. Individual

observation co-ordinates are what Support

Vectors are. The Support Vector Machine is a

frontier that separates the two classes (hyper-

plane and line) the best.

Algorithm:

Step1: Initialization

F: a set of features

A: a set of Android applications

C: a set of classifiers ∈ {Naïve Bayes, Random

Forest, k-NN, SVM, decision tree, AdaBoos.}

TSD: a set of testing datasets

TRD: a set of training datasets

B*: Boolean score // 0 or 1

Labels: L = {Malicious, Clean}

Step 2: Extract features F

For each feature Fi in F

Count_freq Fi ();

Freq [Fi] + = Freq [Fi]

PF ← Pf/|A|

End for

For each PF :

Step 3: Select top selected features F using Chi-

Square

k

∑ ni Yi − Y 2 / (K − 1)

i=1

For each classifier Ci in C*:

Step 4: Test classifier (Ci , tsdi)

End for

For each classifier Ci in C*:

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 03: 2021

Page | 408 Copyright @ 2021 Authors

Step 5: Train classifier (Ci , trdi)

ri = classify (Ci , VDi)

Step 6: Application label. Add (labeli)

End for

Algorithm comparison:

In this module we compare above mention six

classification and analysis most effective classifier

for given dataset.

IV. RESULTS:

In this section, we discuss our results and the

main aim of this project is to compare the results

which are obtained from six algorithms used in

project. Fig 2 show the brief discussion about

algorithm and detection accuracy of Naïve Bayes

88%, 91% for K-Neighbours, 93% for AdaBoost,

93% for SVM Linear,93% for Decision Tree and

95% for Random Forest. Among all classification

we get best score for random forest classifier.

FIGER 2: Algorithm comparation

We also calculate confusion matrix which

compares the active target value with those

predicted values by the machine learning model

confusion matrix which of four values such as True

positive, true negative, false positive and false

negative Fig 3 show the confusion matrix

FIGER 3: Confusion matrix

Chi2 Testing:

There are two kinds of chi-square testing.

For distinct purposes, both employ the chi-square

statistic and distribution. The chi-square goodness of

fit test assesses whether or not sample data is

representative of the population. In a contingency

table, a chi-square test for independence examines

two variables to discover if they are linked. In a

broader sense, it examines whether categorical

variable distributions differ from one another.
(𝑂 − 𝐸)2

𝑥2 = ∑
𝐸

Where 𝑥2 denotes freedom of degree.

O denotes the observed value.

E denotes the expected value.

Chi-Square uses:

1. Estimation of a population standard deviation of a

normal distribution from a sample standard

deviation using confidence intervals.

2. Two categorization criteria for qualitative

variables are independent.

3. Categorical variables and their relationships.

4. When the underlying distribution is normal,

sample variance analysis is used.

V. CONCLUSION:

In this project we proposed permissions,

API calls, and a malware detection model that is

capable of quick, generalised, accurate, and efficient

detection of Android malware in Android

applications in android platforms. To achieve this

goal, we've created a set of modules that address the

problems of detecting Android malware. The

datasets we work with are highly class balanced,

machine learning models should be able to train well

on them.

We analysed the usefulness of many kinds

of data, including as permissions, APIs, Intents, and

App Components, in detecting Android malware.

SelectKBest feature selection approaches were used

to identify the relevant characteristics that are the

most informative and crucial for malware detection.

Detection accuracy of Naïve Bayes 90%, 94% for K-

Neighbours, 93% for AdaBoost, 95% for SVM

Linear, 94% for Decision Tree and 96% for Random

Forest. We analysed to identify the most effective

classifier for detecting malware is random forest.

VI. Future Work:

We have only looked at

characteristics derived via static analysis in this

paper. Dynamic analysis may also be used to extract

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 03: 2021

Page | 409 Copyright @ 2021 Authors

more features, resulting in a more useful feature set.

Furthermore, in the future, we will be able to test this

malware detection in a variety of ways based on our

technological advancements.

We intend to decrease false positives and

negatives in the future by analysing samples that

were incorrectly categorised and determining the

causes for the misclassification.

VII. REFERENCES

[1] IDC smartphone market share
https://www.idc.com/getdoc.jsp

[2] Android share market:

https://gs.statcounter.com/os-market-

share/mobile/worldwide

[3] Lichao Sun; Zhiqiang Li; Qiben Yan; Witawas

Srisa-an; Yu Pan: “SigPID: significant permission

identification for android malware detection”,2016.

https://ieeexplore.ieee.org/document/7888730/aut
hors

[5] Hongli Yuan;Yongchuan Tang; Wenjuan Sun; Li

Liu: “A detection method for android application

security based on TF-IDF and machine

learning”,2020.

[12]

Luiza Sayfullina;Emil Eirola;Dmitry Komashinsky:

“Android Malware Detection: Building Useful

Representations. In Machine Learning and

Applications”,2016

[13] Virustotal, Retrieved from

https://www.virustotal.com

[14] Android OS market share of smartphone sales

to end users from 2009 to 2020; https://www.

statista.com/statistics/216420/global-market-share-

forecast-of-smartphone-operating-systems/.

[15] Zhang R, Yang J. Android malware detection

based on permission correlation. Journal of

Computer Applications. 2014;

[16] Yang G, Huang J, Gu G. Automated Generation

of Event-Oriented Exploits in Android Hybrid Apps.

In: Network and Distributed System Security

Symposium; 2018.

[17] Malware statistics and trends report 2021

https://www.av-test.org/en/statistics/malware/

[18] cyber security statement 2021:

https://purplesec.us/resources/cyber-security-

statistics/

[19] Scikit learning machine learning-python:

https://scikit-learn.org/stable/

[20] Machine learning master:

https://machinelearningmastery.com/types-of-

classification-in-machine-learning/

[7] Naser Peiravian; Xingquan Zhu: “Android

malware detection using machine learning using

permission and API call”,2013.

[8] Xiang Li; Jianyi Liu; Yanyu Huo; Ru

Zhang; Yuangang Yao : “An Android malware

detection method based on Android Manifest

file”,2016.

[9] Wei Wang; Meichen Zhao; Zhenzhen

Gao; Guangquan Xu; Hequn Xian; Yuanyuan

Li; Xiangliang Zhang: “Constructing Features for

Detecting Android Malicious Applications: Issues,

Taxonomy and Directions”,2019.

[10] Kun Wang; Tao Song; Alei Liang:“Metadata

based malware detection on android. in

computational intelligence and security”,2016.

[11] AliFeizollah; Nor BadrulAnuar; Rosli Salleh;

Guillermo Suarez-Tangil; Seteven

Furnell:“AndroDialysis: Analysis of Android Intent

Effectiveness in Malware Detection”,2017.

[6] R Zhang; J Yang; “Android malware detection

based on permission correlation”,2014.

[4] Aqil Zulkifli;Isredza Rahmi A. Hamid;

Wahidah Md Shah; Zubaile Abdullah: “Android

Malware Detection Based on Network Traffic

Using Decision Tree Algorithm”,2018.

http://www.idc.com/getdoc.jsp
https://ieeexplore.ieee.org/author/37086033099
https://ieeexplore.ieee.org/author/37086032455
https://ieeexplore.ieee.org/author/37085665301
https://ieeexplore.ieee.org/author/38276900500
https://ieeexplore.ieee.org/author/38276900500
https://ieeexplore.ieee.org/author/37086033465
https://ieeexplore.ieee.org/document/7888730/authors
https://ieeexplore.ieee.org/document/7888730/authors
https://www.researchgate.net/scientific-contributions/Luiza-Sayfullina-2122217254
https://www.researchgate.net/scientific-contributions/Luiza-Sayfullina-2122217254
https://www.researchgate.net/profile/Emil-Eirola
https://www.researchgate.net/scientific-contributions/Dmitry-Komashinsky-2076052674
https://www.researchgate.net/scientific-contributions/Dmitry-Komashinsky-2076052674
https://www.virustotal.com/
http://www/
https://www.av-test.org/en/statistics/malware/
https://purplesec.us/resources/cyber-security-statistics/
https://purplesec.us/resources/cyber-security-statistics/
https://scikit-learn.org/stable/
https://ieeexplore.ieee.org/author/37086757389
https://ieeexplore.ieee.org/author/37086730214
https://ieeexplore.ieee.org/author/37086142565
https://ieeexplore.ieee.org/author/37086021152
https://ieeexplore.ieee.org/author/37086146010
https://ieeexplore.ieee.org/author/37533624600
https://ieeexplore.ieee.org/author/37533624600
https://ieeexplore.ieee.org/author/37086145450
https://ieeexplore.ieee.org/author/37292860000
https://ieeexplore.ieee.org/author/37086402725
https://ieeexplore.ieee.org/author/37086401376
https://ieeexplore.ieee.org/author/37086401376
https://ieeexplore.ieee.org/author/37628254900
https://ieeexplore.ieee.org/author/37086855155
https://ieeexplore.ieee.org/author/37086169938
https://ieeexplore.ieee.org/author/37086169938
https://ieeexplore.ieee.org/author/38486203900
https://ieeexplore.ieee.org/author/37086003341
https://ieeexplore.ieee.org/author/37086003370
https://ieeexplore.ieee.org/author/37086002542

