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ABSTRACT: Now a days usage of android devices is becoming quite more due to day-to day increasing the 

number of active users. With the first-class platform for create gaming and applications android as gained 

admiration among all other smartphone. It will also allow users to sell and distribute apps instantly and also offers 

ample free third-party download and install application from the Google play store and third-party play store. 

Today more the 350,000 sample of new malware are found per every day and 5.2% increase compared to last 

year. 

Mobile devices can control and track the Internet of Things (IOT) services and make them prone to 

attacks by various malicious application. Conventional methods fail to detect malicious application because of the 

growth in numbers, variants, and advancement of the malware. Moreover, android allows to installation and 

downloading apps from unverified sources. For detecting malware application current solution are not appropriate 

with the rise of the malware and there are limited by low detection accuracy, advanced implementation and heigh 

computational cost and power. Therefore, android malware become a real-world challenge. To solve this problem 

an automatic intelligence technique is required for detecting malware apps with the use of real-word datasets 

which analyses the source code. To show the uniformities in apps which hold malware content we proposed API 

calls and use Chi- square for SelectKbest best feature selection and examined combination with six supervised 

machine-learning algorithms (Random Forest, Decision Tree, K-Neighbours, AdaBoost, SVM Linear, and Naïve 

Bayes). The detection accuracy of these six algorithms is analyse to identify the most effective classifier for 

detecting malware. 
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I. Introduction: 

Android has become the most common 

operation system for tablets, MacBook and 

smartphone with an estimated market share of 70% 

to 80%. Android has overtaken many other mobile 

operating systems to become one of the most 

popular mobile platforms in the world. Recognition 

of smartphone and other kind of mobile devices has 

drop down significantly. Android has gained huge 

admiration among all other smartphone it is the first- 

class platform for creating gaming and application 

which allows to distribute and also offer free third 

party's apps to install and download from Google 

play store for selling and distributing android apps. 

 

The Internet of Things (IoT) is an attractive 

system that connects several logical objects and 

physical devices with networks to enlarge their 

communication capabilities. In previous years, the 

IoT has gained popularity owing to technological 

advancements in areas like artificial intelligence, 

cloud computing, machine learning, deep learning, 

application system, and smart home devices. Now a 

days mobile users are interested in using online 

transaction for example using smartphone for paying 

bills, online shopping, trading, booking tickets etc. 

such portable device is targeted by hacking and 

become vulnerable to attack more and more. 

 

Malware refer to malicious code which 

harms user integrity, availability, and 

confidentiality. Malicious activity is hidden in the 

background and appear as a clean application. Some 

examples of the android malware are stealing user 

personal information (e.g., bank account number, 

bank credentials, contact number, passwords), 

tracking user location, send premium SMS messages 

that cost more than the standard ones, streaming 

videos from users' cameras, send SMS or mails 

which contain malware links, and encrypting 

personal information such as video, images, SMS 

and contact. 

 

The shared report by IDC for smartphone 

increases 25.5% global share market in the 1rd 

quarter of the year 2021[1], the total market share of 

Android was 72.83% [2] and more than 3.8 billion 

active users around the world in 2021. 

 

Android is one of the most popularly used 

mobile device in the world, because of its 

framework, compatibility, technological impact, 

open-source, higher success ratio, inter app 
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integration, high level multitasking, user friendly 

development environment, etc. On the other hand, it 

also has risk in installing and downloading 

applications from unauthorize web site or third- 

party. Because of the open -source applications 

android is getting more prone to attack. It has 

become target to malware, even though it provides 

security mechanisms. 

 

To prevent malware attacks, developers 

and researchers are working in different security 

solution by applying data science, artificial 

intelligence, machine learning and deep learning. 

We can analysis android malware with two 

techniques static analysis and dynamic analysis 

approaches. In static analysis we get information 

about software which are going to analyses without 

executing it but ware as in dynamic analysis is doing 

during time of execution. 

 
 

II. RELATED WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table1: Related Work 

5 The authors [7] 

proposed  to 

combine 

permission and 

API to use 

machine learning 

classifiers to 

detect malware. 

Detected 1200 malware 

apps and 1200 benign 

apps 

6 The authors [8] 

proposed 

extracted feature 

vector 

from Android 

Manifest file and 

combines PI and 

CI 

Results shows better 

against other traditional 

permission. 

7 The authors [9] 

use state-of-the- 

art work which 

different features 

to charactering 

behaviour to 

detects malware 

applications 

Features are available 

for State-of-the-art, 

deep learning technique 

are used to detect 

malware. 

8 The authors [10] 

use lightweight 

for metadata 

Mmda to statically 

analyse. 

Random forest gives 

94%of accuracy. 

9 The authors [11] 

evaluated 

effective android 

internet for feature 

for identifying 

malware apps 

Detection rate for 

android internet is 91% 

against android 

permission with 83% 

10 The author [12] 

use traditional 

way of Principal 

Component 

Analysis and 

feature are 

extracted from 

DEX 

Detection accuracy of 

state-of-the-art is 

88.24% 

 

SN 

O 
Description Result 

1  The authors [3] 

introduce SIGPID 

and use 3 level 

pruning to identify 

signification 

permission 

SIGPID can detect 

93.63%of malware in 

the dataset and 91.4% 

unknown malware 

 

2 The authors [4] 

proposed network 

traffic and 

consider seven 

feature extractions 

Drebin feature 

extraction get heigh 

accuracy rate we can to 

other six feature 

extraction 

3 The authors 
[5] used TF-IDF 

to calculate PV 

and SVOA 

The proposed 

approached get more 

accuracy against other 

state-of-art. 

4 The authors [6] 

use Chi-square 

test for permission 

feature in machine 

learning 

classifiers. 

Rate of missing 

malware detection is 

10.33% and overall 

detecting accuracy is 

88.9% 
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III. PROPOSED SYSTEM 

 
In this project, we are focusing on analysing the 

malware using supervise machine learning 

algorithms 

and comparing accuracy rate of each classifier. Fig 

1 show the android malware detection modules. 

1. Dataset 

2. Feature extraction 

3.Feature vector 

4.Feature selection 

5. Training/Testing 

6.Algorithm classification 

7. Malware detection 

8.Algoritham comparison 

 
 

Fig 1: Models for Android Malware Detection 

by using apktool[13]. AndroidManifest.xml content 

features which are used in static analysis 

 

 
Table 3 shows the permissions supplied in the 

Android manifest for each clean app 

 

Dataset: 

In the first module we collected real-world 

malware from android security and AndroZoo 

which are in the form of binary (0 and 1).in the 

dataset 0 means clean and 1 means malware feature. 

Table 1 gives a brief about the dataset used for 

experiments. 

 

 

 

 
 

 

 
Table 2: Dataset Description 

 

 
Fig 2: Dataset 

Feature extraction: 

In this module we convert android package 

(.APK) to AndroidManifest.xml and then to csv file 

Table 4 shows the permissions supplied in the 

Android manifest for each malware app. 

 

Feature vector: 

In feature extraction module we consider V 

as vector which contain set of android permission 

𝑣𝑖 = 𝑣1, 𝑣2 … 𝑣𝑗 
1, when permission exist. 

𝑣𝑖 = { 
0, otherwise. 

 

Feature selection: 

In this feature selectin module, we will 

compare feature selection algorithms with different 

method for reduce the feature-vector. 

 

Training/Testing: 

In testing and training module first, we 

train the model with feature train the 300 datasets 

SNO Application 

type 

Total number of 

application 
1 Malware 199 

2 Benign 250 
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with features to detected malware and then test the 

500 datasets for more accuracy. 

 

Algorithm classification and Malware detection: 
In this model we study about detailed 

implementations of supervised machine learning 

algorithms such as 

• Random Forest 

• Decision Tree 

• K-Neighbours 

• AdaBoost, 

• SVM Linear, and 

• Naïve Bayes. 

Using this classification, we detected malware. 

 

Random Forest classifiers: 

The random forest is a classification 

technique that uses multiple decision trees to 

classify data. When developing each individual tree, 

it employs bagging and feature randomization in 

order to produce an uncorrelated forest of trees 

whose committee prediction is more accurate than 

that of any one tree. 

 
Decision Tree: 

The classification model is built using the 

decision tree method in the form of a tree structure. 

It employs if-then principles, which are both 

exhaustive and mutually exclusive when it comes to 

categorization. The process continues with the data 

being broken down into smaller structures and 

finally being linked to an incremental decision tree. 

The finished product resembles a tree with nodes 

and leaves. The rules are learnt one by one, one by 

one, utilising the training data. The tuples that cover 

the rules are deleted each time a rule is learnt. On the 

training set, the procedure continues until the 

termination point is reached. 

 
 

K-Nearest Neighbour: 

The K-Nearest Neighbour (KNN) method is 

a supervised learning technique that may be used to 

solve regression and classification issues. It's most 

commonly used in machine learning for 

categorization issues. KNN is based on the premise 

that every data point that is close to another belongs 

to the same class. In other words, it uses similarity 

to classify a new data point. It’s an n-dimensional 

space-based lazy learning method that saves all 

instances corresponding to training data. It's a lazy 

learning method since it focuses on keeping 

instances of training data rather than building a 

broad internal model. 

 
AdaBoost Classifier: 

Adaptive Boosting, short for Adaptive 

Boosting, is a Boosting approach used in Machine 

Learning as an Ensemble Method. The weights are 

reallocated to each instance, with greater weights to 

erroneously categorised occurrences. This is termed 

Adaptive Boosting. In supervised learning, boosting 

is used to decrease bias and variation. It is based on 

the idea of successive growth of learners. Each 

succeeding student, with the exception of the first, is 

produced from previously grown learners. In other 

words, weak students are transformed into strong 

students. Although the Adaboost algorithm works 

on the same concept as boosting, there is a little 

variation in how it operates. 

 
Support Vector Machine: 

SVM (Support Vector Machine) is a 

supervised machine learning method that may be 

used to solve classification and regression 

problems. It is, however, mostly employed to 

solve categorization issues. The value of each 

feature is the value of a specific coordinate in this 

technique, which plots each data item as a point 

in n-dimensional space (where n is the number of 

characteristics you have). Following that, we do 

classification by locating the hyper-plane that 

best distinguishes the two classes. Individual 

observation co-ordinates are what Support 

Vectors are. The Support Vector Machine is a 

frontier that separates the two classes (hyper- 

plane and line) the best. 

 

Algorithm: 

 

Step1: Initialization 

F: a set of features 

A: a set of Android applications 

C: a set of classifiers ∈ {Naïve Bayes, Random 

Forest, k-NN, SVM, decision tree, AdaBoos.} 

TSD: a set of testing datasets 

TRD: a set of training datasets 

B*: Boolean score // 0 or 1 

Labels: L = {Malicious, Clean} 

 

Step 2: Extract features F 

For each feature Fi in F 

Count_freq Fi (); 

Freq [Fi ] + = Freq [Fi ] 

PF ← Pf/|A| 

End for 

For each PF : 

 

Step 3: Select top selected features F using Chi- 

Square 

k 

∑ ni Yi − Y 2 / (K − 1) 

i=1 

For each classifier Ci in C*: 

 

Step 4: Test classifier (Ci , tsdi ) 

End for 

For each classifier Ci in C*: 
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Step 5: Train classifier (Ci , trdi ) 

ri = classify (Ci , VDi ) 

 

Step 6: Application label. Add (labeli ) 

End for 

 
 

Algorithm comparison: 

 

In this module we compare above mention six 

classification and analysis most effective classifier 

for given dataset. 

 
 

IV. RESULTS: 

 
In this section, we discuss our results and the 

main aim of this project is to compare the results 

which are obtained from six algorithms used in 

project. Fig 2 show the brief discussion about 

algorithm and detection accuracy of Naïve Bayes 

88%, 91% for K-Neighbours, 93% for AdaBoost, 

93% for SVM Linear,93% for Decision Tree and 

95% for Random Forest. Among all classification 

we get best score for random forest classifier. 

 

FIGER 2: Algorithm comparation 

 
We also calculate confusion matrix which 

compares the active target value with those 

predicted values by the machine learning model 

confusion matrix which of four values such as True 

positive, true negative, false positive and false 

negative Fig 3 show the confusion matrix 

 

 
 

 
FIGER 3: Confusion matrix 

Chi2 Testing: 

There are two kinds of chi-square testing. 

For distinct purposes, both employ the chi-square 

statistic and distribution. The chi-square goodness of 

fit test assesses whether or not sample data is 

representative of the population. In a contingency 

table, a chi-square test for independence examines 

two variables to discover if they are linked. In a 

broader sense, it examines whether categorical 

variable distributions differ from one another. 
(𝑂 − 𝐸)2 

𝑥2 = ∑ 
𝐸 

 

Where 𝑥2 denotes freedom of degree. 

O denotes the observed value. 

E denotes the expected value. 

 

Chi-Square uses: 

 

1. Estimation of a population standard deviation of a 

normal distribution from a sample standard 

deviation using confidence intervals. 

2. Two categorization criteria for qualitative 

variables are independent. 

3. Categorical variables and their relationships. 

4. When the underlying distribution is normal, 

sample variance analysis is used. 

 
 

V. CONCLUSION: 

In this project we proposed permissions, 

API calls, and a malware detection model that is 

capable of quick, generalised, accurate, and efficient 

detection of Android malware in Android 

applications in android platforms. To achieve this 

goal, we've created a set of modules that address the 

problems of detecting Android malware. The 

datasets we work with are highly class balanced, 

machine learning models should be able to train well 

on them. 

 

We analysed the usefulness of many kinds 

of data, including as permissions, APIs, Intents, and 

App Components, in detecting Android malware. 

SelectKBest feature selection approaches were used 

to identify the relevant characteristics that are the 

most informative and crucial for malware detection. 

Detection accuracy of Naïve Bayes 90%, 94% for K- 

Neighbours, 93% for AdaBoost, 95% for SVM 

Linear, 94% for Decision Tree and 96% for Random 

Forest. We analysed to identify the most effective 

classifier for detecting malware is random forest. 

 
 

VI. Future Work: 

We have only looked at 

characteristics derived via static analysis in this 

paper. Dynamic analysis may also be used to extract 
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more features, resulting in a more useful feature set. 

Furthermore, in the future, we will be able to test this 

malware detection in a variety of ways based on our 

technological advancements. 

 
We intend to decrease false positives and 

negatives in the future by analysing samples that 

were incorrectly categorised and determining the 

causes for the misclassification. 
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