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Abstract 

Rainstorms can be geographically and temporally characterised with the help of weather radars. Correctly describing 

rainfall over time and space advances hydrological modelling and design, ultimately leading to better water management. 

Frontal rain systems over Belgium (Western Europe) are examined to offer a stochastic rainfall model with an accurate 

parameterization. The movement of rainstorms is examined in this work along with various structures within them and their 

respective spatial placements. Distribution functions are also created to statistically characterise various rainstorm 

characteristicsTo ascertain the direction and speed of the translation of storms, a correlation technique is used. Radar scans 

isolate well-developed rainstorms, which can then be examined for size and shape. Three approaches to describing the 

rainstorms' dimensions are suggested and contrasted. Probability distributions for rainfall dimensions, perimeter, area, 

velocity, and direction are provided through statistical analysis. In addition, the spatial distribution of clusters during a 

downpour is investigated. It is demonstrated that a straightforward Poisson process works effectively to represent this spatial 

distribution. In 1D and 2D, two approaches to calculating the single parameter in a Poisson process are suggested and 

contrasted.. 
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1. Introduction 
 

A crucial component of the hydrological cycle is 

rainfall. its significance in the generation of floods, 

erosion, the creation of biomass, biochemistry, and 

the distribution of energy

There is no denying the effects climate change will 

have on water quality (indirectly by its effect on soil 

moisture). In numerous study fields, including 

agriculture, hydrology, meteorology, climatology, 

and environmental engineering, the significance of 

rainfall variability is becoming increasingly clear. 

Classical measure- ments of rainfall by rain gauges 

give good estimates of temporal variation of rainfall, 

but estimates of spatially averaged rainfall based on 

rain gauge data do not fully take into account the 

spatial variability of 
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rainfall, unless high densities of rain gauges are 

installed (Shih, 1982; Peters-Lidard and Wood, 1994). 

Ever since rainstorms were first observed as noise 

with early military radars, hydrologists have held out 

hope that radars could reliably estimate rainfall. 

Today’s weather radar images provide researchers 

with large amounts of spatial and temporal infor- 

mation on rainfall to overcome the current obstacle of 

poorly defined rainfall characteristics. During last 

decades, several studies have shown that hydrological 

models give better results when the spatial variability 

of the rainfall input is taken into account (De Troch et 

al., 1990; Krajewski et al., 1991; Obled et al., 1994; 

Shah et al., 1996; Willems and Berlamont, 1999; 

Chaubey et al., 1999; Arnaud et al., 1999). When 

performing a hydrological simulation using uniform 

rainfall over the catchment, the peak discharges might 

be overestimated, if occasionally the rain gauge 

measures a high intensity in a storm, since in reality 

the highest rainfall intensities will not occur over the 

whole catchment at the same time. As a consequence 

rainfall generators, which preserve the spatial organ- 

ization of rainfall patterns, are necessary for simulat- 

ing long time series of spatial rainfall that can be used 

in hydrological engineering studies. Improved hydro- 

logical forecasting and water resources management 

are expected, once accurate descriptions of rainfall 

patterns are implemented. 

In general the pattern of rainfall is depending on 

the type of rainfall, typically classified (Bergeron, 

1960; Bruce and Clark, 1996) as convective rainfall, 

orographic or relief rainfall, convergent rainfall and 

frontal or cyclonic rainfall. Austin (1960) and Austin 

and Houze (1972) described a consistent structure in 

rainfall patterns, based on the dimensions and lifetime 

of subsynoptic-scale rain areas (see Fig. 1). Synoptic 

areas are larger than 104 km2 and have a lifetime of 

one to several days. The largest subsynoptic areas 

within a synoptic area are called large mesoscale areas 

(LMSA) which range between 103 and 104 km2 and 

last for several hours. They are also named ‘bands’ by 

Amorocho and Wu (1977), because of their shape in 

the events studied. Next, small mesoscale areas 

(SMSA) are identified which cover 100–400 km2 

and have a life span of approximately an hour. 

Convective cells, which are generally clustered, are 

the smallest structural units. They range from 10 to 

30 km2 in extent and last only a few minutes to about 

 

 
 

Fig. 1. Hierarchical structure of rainfall patterns. 
 
 

half an hour. Although the short lifetime and the 

relative small extent of SMSAs and convective cells 

seem to make these subsynoptic areas relatively 

unsignificant within the complete synoptic event, 

their existance should be considered, as the smaller 

the scale, the higher the rainfall intensity will be. 

Heylen and Maenhout (1994) indicated that the scale 

of magnitude or the extent L (in meters), and the 

lifetime l (in seconds) of atmospheric events are 

related to each other by the approximate expression 

log(L)/log(l)y1.   Several   authors   report   on   the 

quantification of geometric characteristics of struc- 

tural units within rain patterns (Mason, 1970; Hobbs 

and Locatelli, 1978; Gupta and Waymire, 1979; 

Niemczynowicz   and   Jö nsson.,   1981;   Krajewski 

et al.,  1993; Jinno et al., 1993; Berndtsson et al., 

1994; Mellor and O’Connell, 1996; Bacchi et al., 

1996; Kawamura et al., 1997; Willems, 2001). 

The consistent occurrence and structure of sub- 

synoptic-scale rain areas with similar characteristics 

and behavior is widely accepted and used in several 

attempts to model spatial rainfall (Waymire and 

Gupta, 1981a; Amorocho and Wu, 1977; Le Cam, 

1961; Bras and Rodr´ıguez-Iturbe, 1976; Eagleson, 

1984;   Rodr´ıguez-Iturbe,   1986;   Waymire,   1984; 

Váldes et al., 1985; Kavvas and Puri, 1983; Krajewski 

et al., 1993; Mellor, 1996; Rodr´ıguez-Iturbe and 

Eagleson, 1987; Willems, 2001). Evidently, the 

accuracy of such models is completely dependent on 

the correct parameterization and quantification of 

rainfall structures. 
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The objective of this study is to get an accurate 

description of some rainfall characteristics at the 

mesoscale. The results are of direct use in spatial 

rainfall generators, especially for the one being 

developed for the Flanders region (Belgium) (Will- 

ems, 2001). The velocity of rainfall events, the 

direction in which they move and the dimensions of 

rainstorms are studied thoroughly. The velocity of 

rain events and the direction of movement are best 

calculated using the correlation technique (Zawadski, 

1973). This technique was applied with success by 

several authors during the last decades (Bonser and 

Wong, 1987; Mellor and O’Connell, 1996; Tsanis 

et al., 2002; Upton, 2002). 

Besides the characterization of individual rain- 

storms, the positions of structures relative to each 

other within a rainstorm are of major importance and 

are therefore also studied in this paper. A wide range 

of point process rainfall generators are developed 

during the last decades (Waymire and Gupta, 1981a, 

b). A description of the temporal rainfall process is 

often based on Poisson processes: examples of well 

known models are the Poisson White Noise model 

(Gelfand and Vilenkin, 1964), the Independent 

Poisson Marks model (Eagleson, 1972), the Poisson 

Rectangular Pulses model (Rodr´ıguez-Iturbe, and 

Eagleson, 1987) and cluster Poisson models such as 

the Neyman-Scott White Noise model (Obeysekera 

et al., 1987), the Neyman-Scott Rectangular Pulses 

model (Rodr´ıguez-Iturbe, 1986) and the Bartlett- 

Lewis Rectangular Pulses model (Cox and Isham, 

1980). An example of the extent of the clustered point 

process models in space are the models described by 

Cowpertwait (1995) and Cowpertwait et al. (2002). 

Based on the Taylor hypothesis (Taylor, 1938; 

Zawadski, 1973; Gupta and Waymire, 1987; Kumar 

and Foufoula-Georgiou, 1993), stating that rainfall 

fields are statistically homogeneous in time, spatial 

characteristics can be deduced from temporal charac- 

teristics in rainfall. This explains why Poisson fields 

are also often assumed to represent the spatial 

distribution of cells and clusters in many existing 

time-space rainfall generators. 

The spatial rainfall model of Willems (2001), 

which also makes use of these Poisson fields, has been 

developed for application in urban hydrological 

problems. Therefore they made use of data obtained 

from a dense tipping bucket raingauge network, in 

order to parameterize the spatial properties of rain- 

storms up to the spatial level of small mesoscale areas. 

As their model can also describe the large mesoscale 

areas, additional analysis based on weather radar 

imagery, as described in this paper, is needed for their 

model. A complete explanation on the construction of 

the model can be found in Willems (2001). 

This paper is structured as follows: after a 

description of the data (Section 2), the movement of 

rainy areas on radar images is studied (Section 3), a 

definition for fully developed rainstorms is formulated 

(Section 4) and methods to calculate geometric 

characteristics of rainstorms are proposed (Section 

5). Finally, the spatial distribution of clusters (Section 

6) is evaluated. Statistical descriptors and distri- 

butions (Section 7) of rainfall characteristics, deter- 

mined in this study, can be used as an input for a 

stochastic spatial rainfall generator, such as the one 

currently being developed for the Flanders region 

(Belgium) (Willems, 2001). 

 

 

 
2. Data description 

 

Pseudo Constant Altitude Plan Position (pseudo- 

CAPPI) radar images, provided by the Royal 

Meteorological Institute of the Netherlands (KNMI), 

are used for the analyses presented in this paper. 

These images are covering the Netherlands, the 

western part of Germany and the northern part of 

Belgium. The images are produced by a combination 

of raw data from two C-band Doppler weather radars 

in De Bilt (52.10278 NW, 5.1788 EL) and in Den 

Helder (52.95388 NW, 4.79098 EL) in the Nether- 

lands. Both radars operate at four elevations (0.3, 1.1, 

2.0 and 3.08) with an identical frequency of 5.6 GHz. 

The antenna heights of the weather radars in De Bilt 

and Den Helder are, respectively, 44 and 51 m a.s.l.. 

The reflectivity images of both radars are combined 

into a common grid in order to minimize noise and 

clutter echoes. The resulting product is a square image 

parallel to the meridian of Greenwich, with a 200X 

200 pixel grid with pixel size 2.4X2.4 km2. To 

transform the reflectivity values Z (mm6 mK3) into 

rainfall rates R (mm hK1) the Marshall–Palmer 

formula, ZZ200R1.6 (Marshall and Palmer, 1948), is 

used. The resulting rainfall rates are then grouped into 
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Fig. 2. Preprocessing of the radar data. (a) Class values are replaced by the average intensity value of the class. (b) Increase of image dimensions 

and resampling by averaging over a 2X2 window. (c) Splines interpolation of resampled intensities to the original grid. 
 

eight classes, to facilitate visual interpretation. This 

product is delivered by the KNMI. 

Preprocessing of these images includes reconvert- 

ing class values to intensity values, resampling and 

splines interpolation as illustrated in Fig. 2. By this 

preprocessing algorithm the absolute values of the 

intensities may not always be retrieved perfectly (a 

separate study showed an R2 of more than 0.85 

between original and retrieved images), but it does not 

change the results in this paper, as only the position of 

clusters is of importance and not their absolute 

intensities. 

Every 15 min an instantaneous radar observation is 

available, so for one complete day there are 96 images 

in one series. Due to problems in data acquisition or 

processing, some radar images are missing, resulting 

in gaps in the time series. The gaps most frequently 

consist in consecutive missing images. 

Twenty series of radar images with at least 45 

images per series are selected over the period 1998– 

2000 and a total of 1632 images are analyzed. To 

include possible seasonal variation, rainfall events are 

chosen throughout the year. Only rain events 

(excluding frozen precipitation) are selected and 

days with a relatively high amount of total daily 

rainfall are chosen. The dates, the number of images 

and the total amount of rain for every selected day are 

given in Table 1. Based on information provided by 

the Royal Meteorological Institute of Belgium (KMI, 

1998–2000), we can conclude that all studied rainfall 

events are part of frontal weather systems. Most of 

these fronts are related to low pressure systems over 

the Atlantic Ocean causing maritime air mass move- 

ments over the studied region. 

3. Movement of rain events 
 

R(x,y,t) is the rainfall intensity R in function of 

space (x,y) in a Cartesian coordinate system and time 

(t). The x-axis is chosen along the East–West direction 

of the radar images, whereas the y-axis corresponds 

with the North–South direction. Methods to monitor 

rain events R(x, y) through time are mainly developed 

for forecast purposes (Chen and Kavvas, 1992; 

Brémaud  and  Pointin,  1993;  Bellon  and  Zawadski, 

1994; Burlando et al., 1996). A treatment of 

translation and rotation separately is rather excep- 

tional and most reported methods are restricted to a 

monitoring of the translation. Methodologies to track 

the movement of rainstorms can be divided into 

‘pattern matching’ and ‘correlation’ (Bonser and 

Wong, 1987). Once rainstorms are isolated, the 

simplest way to find the vector of translation is to 

 
Table 1 

Overview of selected days, number of images N and total amount of 

rainfall 
 

Date 

(d/m/y) 

N Total 

rainfall 

(mm/day) 

Date 

(d/m/y) 

N Total 

rainfall 

(mm/day) 

06/03/98 96 23.2 31/10/98 96 32.6 

07/04/98 96 30.6 26/11/98 45 10.5 

27/04/98 59 6.9 15/12/98 60 3.1 

23/08/98 96 35.0 30/05/99 96 33.0 

25/08/98 76 1.6 04/06/99 96 30.0 

01/08/98 53 0.7 04/07/99 96 57.4 

02/09/98 94 7.3 26/12/99 96 33.5 

13/09/98 96 93.6 16/05/00 74 6.9 

24/10/98 96 19.3 03/06/00 82 18.2 

27/10/98 80 2.5 02/07/00 49 13.6 
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iZimin jZjmin i j t i x j y d tCtd 
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determine the movement of the centers of the storms. 

In this study the translation of the mass centers of 

individual rainstorms as well as the mass centers of 

the whole rainy areas in radar images are followed. 

In order to find the direction and the velocity of 

rainstorm translation for all pairs of radar images, a 

procedure is developed to find the movement vector 

for which the largest overlap between consecutive 

images is obtained and thus for which the correlation 

is maximal. A practical expression for the compu- 

tation of the correlation coefficient r for the rain- 

storms on radar images is given by: 

suggested here. The technique consists in translating 

the first image over all possible movement vectors (for 

all possible lengths and angles). Each time, the first 

image is resampled to the grid of the second image by 

calculating new pixels as weighted averages, where 

the weights correspond to the portions of the 

translated pixels covering a new pixel. There is 

always a smoothing or filtering of the first image, 

except for movements that are an integer multiple 

of the pixel size in as well the x- as the y-direction. 

The increments can be chosen as small as desired, 
 

 

Pimax 
Pjmax ½Rðx ; y ; tÞ Km ]½Rðx C k ; y C k ; t Ct Þ Km ] 

rðkx; kyÞ Z qffiPffiffiffiffiffiffiffiffiffiffiffiffi ffiffiPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiqPffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiPffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffi ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffi (1) 
 

 

with 

imax 

iZimin 

jmax 

jZjmin ½Rðxi; yj; tÞ Kmt ]
2
 

imax 

iZimin 

jmax 

jZjmin ½Rðxi C kx; yj C ky; t Ctd Þ KmtCt  ]
2

 

Pimax 
P 

max Rðxi; yj; tÞ evidently at the cost of computation time. 

mt Z iZimin 

 

 
Pi 

jZjmin 

Nðkx; kyÞ 

Pj 

(2) The translation (kx, ky) corresponding to the highest 

correlation (Eq. 1) between consecutive images, 

yields direct information on the angle of the direction 

mtCtd   
Z 

max 

iZimin 

max 

jZjmin 
Rðxi C kx; yj C ky; t CtdÞ 
Nðk ; k Þ 

q (rad) in which the rainfall event is moving relative to 
the x-axis and on the velocity uxy 

x     y 

(3) 

with i and j, respectively, the row and column 

numbers of the pixels in the radar images. N is the 

number of pixels in the overlapping area of two 

consecutive images. The lower left corner of this 

overlapping area is indicated with coordinates (imin, 

q Z arctan 
ky

 

kx 

qffiffiffiffiffiffiffiffiffiffiffiffi ffiffi 
k2 C k2 

uxy Z 
d 

 
(4) 

 

 
 

(5) 

jmin), whereas the upper right corner is given by the 

coordinate couple (imax, jmax). kx and ky, the spatial 

horizontal and vertical lag, are allowed to have all 

possible real values. However, because a minimum 

overlap of images is needed to calculate a representa- 

tive value for the correlation, the spatial lags are 

limited to a maximum of 30 pixels. As will be shown, 

the velocity to cross 30 pixels in 15 min (i.e. 

288 km hK1) will never be reached in the studied 

time series. 

As an accurate determination of the velocity and 

the direction of the movement is desirable, minor 

increments in movement lags are needed. In order to 

allow small movement lags, Mellor and O’Connell 

(1996) for example performed a mesh refinement 

followed by a parabolic interpolation of the surface. 

Then they investigated the movement over integer 

numbers of smaller pixels. An alternative approach is 

with td the 15 min time lag between consecutive radar 
images. 

 

 
4. Determination of rainfall structures in radar 
images 

 
Methods to isolate rainfall structures in radar 

images are developed in order to quantify their 

geometric characteristics. Rainy areas in an image 

are defined as groups of pixels receiving rainfall, 

while a rain event covers all rainy areas in an image. A 

rainstorm is defined as the largest connected rainy 

area in a radar image. For the analysis only well 

developed rainstorms are selected, while rainstorms in 

development or decay are excluded. Furthermore, 

only rainstorms which are completely (or at least for 

the largest part) situated within the image boundaries 

j 

t 
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are useful. Therefore, a new concept, namely the 

APratio (km) is introduced: 
P 

Area A 

(intensityO0 mm hK1) (see Fig. 3 in which the dashed 

horizontal lines represent these thresholds). Finally, in 

each selected image the largest connected area with 

APratio Z P iZ0 i (6) rainfall is selected as the rainstorm (Fig. 4). From the 
N 
iZ0 Perimeter Pi 1632 available radar images, only 934 were considered 

with N the number of individual rainy areas within the 

radar image. When a rainstorm is growing or 

dissipating, typically several small rainy areas can 

be detected in the image. This results in a relatively 

low APratio, because of the high total perimeter. 

Comparison of the time series of the APratio with the 

actual radar images also reveals that the APratio 

increases and decreases, when a rain event is entering 

or leaving the image box, because of a varying 

fractional coverage. 

The temporal evolution of the APratio is plotted for 

every series of radar images and windows with 

information of interest, i.e. high APratio and well 

developed rainstorms, are selected (e.g. for October 

24, 1998, Fig. 3). The APratio shows a similar 

temporal pattern for rainfall areas above different 

levels of intensity. The thresholds for the APratio, 

above which the rainy area can be considered to be 

fully developed, are different for each time series and 

are based on visual interpretation of the plots. 

However, as a general guideline, thresholds are chosen 

halfway the increasing and decreasing limbs of the 

curves for the APratios calculated for all rainfall areas 

for further treatment, as they contained rainstorms that 

are (i) well developed and (ii) completely or at least for 

the largest part situated within a radar image. 

Clusters and SMSAs are defined as groups of cells 

and are recognizable in radar images by the locally 

increased intensity of rainfall. Because the resolution 

of the images is too coarse to distinguish between 

clusters and SMSAs, both are named clusters in the 

remainder of this paper. The difficulty in automated 

determination of clusters is that the increased rainfall 

intensity is dependent on the position of the cluster in 

the rainstorm. The overall rainfall intensity changes 

within a rainstorm and therefore a fixed threshold 

cannot be used. A fixed threshold could exclude 

clusters located in a low intensity area, while it does 

not allow to distinguish between cluster centers within 

a high intensity area of the rainstorm. To deal with this 

problem, a level slicing method with variable 

thresholds is proposed. Therefore, only values within 

each image, larger than a threshold are maintained. In 

the resulting image, all groups of connected pixels are 

identified and an isolated group of minimal 8 pixels 

(or 46 km2) is identified as a cluster of cells, only if its 

 

 

 
 

Fig. 3. APratio for the rainfall event at October 24, 1998 for rainy areas with intensities above the level of 0 mm hK1: the APratio is calculated 

for all rainy areas. Only images with rainy areas characterized by Apratios above the dashed horizontal lines are assumed to show well 

developed rainstorms. 

N 
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Fig. 4. Processing steps to select the rainstorm. (a) Original radar image for July 5, 1999 at 4:15 a.m. local time. (b) The different groups of 

connected pixels with rain are identified, and (c) only the largest group is selected as the rainstorm. 

 

size becomes smaller than 8 pixels when, in a next 

step, the image is level sliced with a slightly higher 

threshold. The level slicing with increasing thresholds 

is repeated until no connected groups larger than 8 

pixels are longer present in the resulting image. In that 

way, all clusters of cells in the image could be 

identified. The value of 46 km2 was chosen in 

correspondence to literature (Mason, 1970; Niemczy- 

nowicz and Jönsson, 1981; Berndtsson and Niemczy- 

nowicz, 1986; Mellor and O’Connell, 1996). 

 

 
 

5. Geometric description of rainfall structures 
 

Different methods to characterize rainfall struc- 

tures on radar images have been reported, mainly for 

statistical analyses and in procedures for forecasting 

(Collier, 1989). Well-known are descriptions using 

contour vectors, Fourier series expansions as applied 

by Blackmer and Duda (1972) or descriptions by a 

certain surface shape, e.g. a not-normalized bivariate 

distribution (Wiggert et al., 1976), which allows a 

description of the internal distribution of rainfall 

intensities. In this study a geometric approach is 

developed, which allows a straightforward implemen- 

tation of the derived parameters into spatial rainfall 

models. A structure is described by its dimensions in 

two perpendicular directions. In a spatial rainfall 

generator, a rainfall structure is often represented by 

an ellipse, for which the axes can be defined by the 

determined dimensions. However, difficulties arise 

through the irregular shape of rainstorms. Three 

methods are proposed, as illustrated in Fig. 5. 

 
 

Fig. 5. Schematic overview of the three methods applied to 

determine the dimensions of a rainstorm. The rectangular in dash– 

dash line defines the dimensions of a rainstorm for method 1, in 

dash–dash–dot line for method 2 and in dash–dot–dot line for 

method 3. 
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 Method 1 

 
The maximum dimensions of the rainstorm are 

measured in the East–West and North–South direc- 

tions of the image, defining the X1–Y1 coordinate 

system (Fig. 5). The smallest rectangle surrounding 

the rainstorm, with sides parallel to the X1 and Y1 axes, 

is used to determine the extent of the rainstorm. The 

lengths of the rectangle sides, sx1 and sy1, are a first 

estimation of the rainstorm extent. 

 

 Method 2 

 
A new coordinate system is defined with axes 

parallel (X23) and perpendicular (Y23) to the direction 

6. Spatial distribution of clusters 
 

A simple Poisson process is often used to 

represent the distribution of clusters in time and 

space. The Poisson distribution is discrete and 

assumes that the probability of occurrence of an 

event  is  related  to  time  or  space  by  a  coefficient  l. 

The process is completely defined by this single 

parameter  l,  which  is  a  measure  for  the  average 

number of events per unit of distance (1D), space 

(2D) or time, as well as a measure for the variance 

of the distribution. The probability of the occurrence 

of i events over a distance, area or time interval x is 

given by: 

of movement of the rainstorm. The instantaneous ðlxÞi
 

 
 

Klx 

direction of the movement at time t is defined as the 

average of the direction of the movement during the 

Pi Z  
i!  

e (8) 

intervals [tKtd,t] and [t,tCtd]. The origin of the axis 

is chosen in the center point (mpx, mpy) of the storm, 

where 

A typical feature of the Poisson distribution is 

the exponential frequency distribution of the 

interval x between two consecutive events. Two 

 
mpx Z 

1 X X 
 

 

N 
i j 

 
xi and mpy Z 

1 X X 
 

 

N 
i j 

 
yi (7) 

methods (1D, 2D) are presented to determine the 

single parameter l that characterizes the Poisson 

process, in order to verify whether the hypothesis 

of a Poisson process holds in space (2D) as well as 

for i and j over all pixels with intensities larger than 

0 mm hK1 and N the number of pixels in the 

rainstorm. xi and yj are the x- and y-coordinate of a 

pixel within the rainstorm, measured along the X1 and 

Y1 axes. The intersections of the rainstorm with the 

X23 and Y23 axes form the boundaries for a rectangle 

(Fig. 5). The lengths of its sides give an estimation for 

the spatial extent of the rainstorm. The dimensions of 

the rainstorm parallel with and perpendicular to the 

direction of the movement are given by sx2 and sy2, 

respectively. 

 

 Method 3 

 
The same coordinate system as in method 2 is used, 

but now the dimensions of the rainstorm are defined 

by creating the smallest rectangle possible surround- 

ing the rainstorm with its sides parallel to the X23 and 

Y23 axes (Fig. 5). The lengths of the rectangle sides 

(sx3 and sy3) are used as measure for the dimensions of 

the rainstorm. 

after projection of clusters on a line (1D). The 

position of the clusters are determined by their 

center points (cfr. Eq. 7). 

 

 Number of clusters per unit length on an axis: 1D 

Poisson process 

 

All center points of clusters are projected on 

four predefined axes. For this study two coordinate 

systems are defined: axes parallel to the image 

sides (North–South and East–West) and axes 

parallel with and perpendicular to the direction of 

the movement (Fig. 6a). If the projected positions 

(i.e. the coordinates on a projection axis) of the 

cluster centers are distributed by a Poisson process, 

then the distance between the projections should 

follow an exponential distribution. Through fitting 

(least squares method) an exponential distribution 

to the histogram of the distances between adjacent 

points,  the  parameter  l1D,  representing  the  number 

of clusters per unit of length, is retrieved. 
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Fig. 6. Schematic overview of the methods to determine. (a) The number of clusters per unit of length after projection and (b) the number of 

clusters per unit area. 

 

 Number of clusters per area: 2D Poisson process 

 

In a 2D Poisson process the l2D parameter 

represents the average number of clusters per unit of 

area. This means that with increasing area the number 

of clusters increases linearly, with a slope l2D. Starting 

with a square area surrounding a single cluster center, 

the square area centered around the first cluster center 

is gradually increased. For every new increased area 

the number of cluster centers is counted. This is 

repeated for each cluster center in the image. The 

number of clusters in a given area is calculated as the 

average number of clusters over all squares of the same 

size around each cluster (Fig. 6b). Finally, a line is 
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p 

 

optimally fitted (least squares method) to the observed 

relation between the area and the number of clusters, 

and the parameter l2D is retrieved from its slope. 

 

 
 

7. Results and discussion 
 

Descriptive statistics for all characteristics are 

calculated and statistical distributions are fitted to 

observed frequency distributions. These results 

give information that can be used directly into 

rainfall models. For the descriptive statistics simple 

sample averages, standard deviations, minima and 

maxima are studied. Furthermore non-parametric 

Mann–Whitney-U tests (Zar, 1999; McCuen, 2003) 

are performed to analyze differences between two 

variables. The null-hypothesis for these tests is that 

the distributions for both variables are the same. The 

higher the power to reject this hypothesis, the more 

likely the samples are really characterized by a 

different distribution. 

The theoretical distribution functions are fitted 

based on a combination of non-parametric Kolmo- 

gorov-Smirnov tests (McCuen, 2003), Q–Q plots and 

curve fitting. The null-hypothesis for a Kolmogorov- 

Smirnov test is that the observed distribution of a 

sample is represented by a proposed theoretical 

distribution. The higher the power to reject this 

hypothesis, the less likely the theoretical distribution 

matches the observed one. In Q–Q plots the 

theoretical expected value of a random variable at a 

given probability is plotted against the observed 

value. The criterion for a good match between 

observed and theoretical distribution is an evaluation 

of the goodness-of-fit of this plot with the 1–1 line. A 

final tool used is curve fitting, where the best fit 

between an observed distribution and a theoretical 

distribution is found by a combination of visual 

interpretation and minimizing the least square error, 

while tuning the parameters defining the theoretical 

distribution. In this study normal, log–normal, 

gamma, exponential, Weibull and uniform distri- 

butions are compared for each characteristic variable. 

In an attempt to improve fits of theoretical distri- 

butions with observed distributions, also different 

transformations on eacffiffihffi  variable (V) are considered, 

e.g. log(V), 1/V and V . 

 Velocity and direction of movement 

 
Out of the 20 series of radar images, 1603 pairs of 

consecutive images are selected. For each of these 

pairs the movement was tracked by (i) following the 

mass center of the rainy areas over the whole image, 

(ii) following the mass centers of the isolated 

rainstorms and (iii) using the correlation method. 

Tracking the mass center of the total rainy area in a 

radar image reveals some serious drawbacks of the 

method. For example small rainy areas (sometimes 

with very high intensities) around the main rainstorm 

are not stable in time, i.e. they have a quite short 

lifetime (cfr. raincells). This affects the spatial 

distribution of rainfall and consequently the position 

of the mass center. Tracking the mass center of 

isolated rainstorms gives better results, but for a 

continuous analysis over a time series, there is the 

problem of rainstorms moving in or out of the image 

window, producing temporary unrealistic results for 

the direction and velocity of rainstorms. 

The correlation method on the other hand, gives far 

more realistic results and is used for further analysis. 

As discussed in Section 3, increments for the spatial 

lags can be chosen as small as desired. In this study the 

increments are chosen at a tenth of the pixel size 

allowing to estimate the velocity at an accuracy of 

0.24 km/15 min. Fig. 7 shows an example of the fact 

that due to the resampling, using weighted averages of 

fractions of pixels, local maxima are found in the 

behavior of the correlation coefficient. In the studied 

series, the optimal displacement vector is typically 

found when an image is displaced over a non-integer 

multiple of pixels or in other words, after smoothing the 

first image. It is interesting to note that Bellon and 

Zawadski (1994) found that radar based forecasts could 

be optimized, if pixel values first were averaged over a 

certain area, i.e. after smoothing. The loss of infor- 

mation by averaging (smoothing) can be well accepted, 

because most intense echoes only last a short time. 

Analogously, it can be expected that the correlation 

coefficient will increase for smoothed images, as the 

most intensive echoes will not occur at the same 

positions within a rainstorm in consecutive images. 

Descriptive statistics for the analysis of all 20 

series together are summarized in Table 2. Histograms 

of the data are made for the angle and velocity of the 

movement for every single radar image series and for 
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Fig. 7. Determination of the movement of the rainfall event of March 6, 1998 from 8:00 to 8:15 a.m. Detailed view of the correlation function 

around the maximum with indication of the number of pixels over which the image at 8:15 a.m. is horizontally shifted (under a constant angle of 

0.1 rad). The optimal vector of movement is at 0.1 rad and a distance lag in the direction of movement of 10.85 km (rZ0.8551; RMSEZ 

0.3715; vector number 195). 

all analyzed images together. As expected, the bxbK1   x  b
  

histograms for single series show a rather narrow 

shape around the mean, while for all 20 series together 

the variance increases a lot. The normal distribution 

fXðx; a; bÞ Z exp K 
a a 

(10) 

best matches the observed distribution for the angle of 

movement, while the Weibull distribution best fits to 

the observed distribution of the velocity. No trans- 

formation of the data improved the fit with any 

theoretical distribution for any of the two variables. 

The density functions of the normal distribution, 

N(m,s), and the two-parameter Weibull distribution, 

W(a,b) are, respectively, given by: 

  
1 ðx KmÞ2

 
 

 

The Weibull distribution for the velocity is 

characterized by a scale parameter a of 0.98 and a 

shape parameter b of 2.10 (Fig. 8). The velocity of the 

studied rainfall events varies between 0.03 and 

3.09 km minK1,     with     an     average     value     of 

0.86 km minK1 (Table 2). The normal distribution 

for the direction of the movement is characterized by a 

mean m of 0.33 rad and a standard deviation s of 

0.75 rad (Fig. 8). The direction in which the rainfall 
event is moving varies between K2.88 and 2.90 rad 

fXðx; m; sÞ Z   pffiffiffiffiffiffi exp   K 2s2 (9) relative to the eastern direction (Table 2). The studied 
 
 

and 

s  2p 
rainfall systems mainly move in the East-North East 

direction, which is a consequence of typical weather 

Table 2 

Sample average m, standard deviation s, minimum min, maximum max and fitted distribution for the velocity and direction of movement 

(calculated on 1603 pairs of radar images) and for geometric characteristics (of 934 rainstorms): area, perimeter and dimensions, calculated 

using the three different methods 

 
m 

 
s 

 
min max 

 
Distribution 

Velocity uxy (km minK1)  0.863  0.412 0.030  3.088 W (aZ0.98, bZ2.10) 

Direction angle q (rad)  0.327  0.754 K2.880  2.900 N (mZ0.33, sZ0.75) 

Area (km2) 87178 35707 8456 202568 N (mpffiZ288.90, spffiZ60.96) 

Perimeter (km) 3654 1174 1022 6989 N (mpffiZ59.63, spffiZ9.90) 

sx1 (km) 382 90 79 480 – 

sy1 (km) 405 75 94 480 – 

sx2 (km) 328 117 81 609 W (aZ367.47, bZ3.06) 

sy2 (km) 314 111 53 563 W (aZ351.66, bZ2.99) 

sx3 (km) 410 104 124 618 W (aZ450.01, bZ4.43) 

sy3 (km) 392 89 126 599 W (aZ425.71, bZ5.12) 

A square root transformation of the data is indicated with a 
pffi

-subscript for the distribution parameters. The distributions are indicated as N and 

W for, respectively, the normal and Weibull distribution. 
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Fig. 8. Distributions for the velocity and direction (angle) of movement based on results for 1603 pairs of radar images. 
 

conditions over the area in consideration (cfr. 

Section 2). 

Using rain gauge measurements taken during 

1994–1997 over Antwerp (Belgium), a region that is 

included in our radar images, Willems (1999) found 

an average velocity for raincells of 0.6 km minK1 and 

a direction of K0.38 rad. Probability distribution 

functions for the velocity of raincells and their 

direction of movement were also determined by 

Willems (1999, 2001). They found for raincells the 

same type of distributions as a best fit for observed 

histograms, with slightly different parameters. For the 

velocity (km minK1) W(aZ0.70, bZ2.36) was found 

to match best with the observed distribution, while 

N(mZK0.38,   sZ1.19)   fitted   best   the   observed 

distribution for the direction (rad). This indicates an 

agreement between the movement of cells and that of 

rainstorms in frontal systems over Belgium. For one 

limited series Zawadski (1973) found velocities 

around 1.1 km minK1 for cells and rainstorms in 

convective rain events observed with the McGill FPS- 

16 radar (Quebec, Canada). He found that the 

agreement between cell and storm speeds was very 

good during development and peak periods of the 

storm. Tsanis et al. (2002) reported an average 

rainstorm velocity of G1.0 km minK1 as a result of 

calculations using a radar storm tracker (applying 

cross-correlation technique) as well as a result 

obtained using a rain gauge technique (smaller 

scale) for rainfall events during one year in Canada. 

Váldes et al. (1985) assumed in their rainfall model 

that cells and rainstorms move at the same speed and 

under an angle of 0 rad with velocities between 0.07 

and 0.17 km minK1, depending on the synthetic 

climate simulated. Mellor and O’Connell (1996) and 

Mellor and Metcalfe (1996) proposed methods to 

characterize raincells and rainstorms and applied 

them on synthetic data. Mellor and O’Connell 

(1996) estimated the velocity of real raincells over a 

catchment near Manchester (UK) around 

0.95 km minK1 and Mellor and Metcalfe (1996) 

concluded from literature review that the velocity of 

storms range between 0.33 and 1.5 km min K1. 

Similar results are reported by, e.g. Niemczynowicz 

(1987), Kawamura et al. (1997) and Upton (2002). 

 

 Geometric characterization of rainstorms 

 
The total area (km2) and the perimeter (km) for 

isolated rainstorms are calculated. The results of this 

analysis are summarized in Table 2 and Fig. 9. Based 

on the analysis of 934 rainstorms, we found that the 

area of the rainstorm lies in the range 103–104 km2, 

which means that we study synoptic areas and LMSAs 

(Austin and Houze, 1972). Statistical analyses 

revealed that the distribution of the area and the 

perimeter can be approached by a normal distribution 

after a square root transformation of the data. The 

mean m and standard deviation s are given by 288.90 

and 60.96 km, respectively, for the square root 
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Fig. 9. Observed histograms and fitted distributions for different geometrical characteristics (area, perimeter, dimensions sx1, sy1, sx2, sy2, sx3 and 

sy3 obtained by method 1, 2 and 3) based on results for 934 rainstorms. 

 

 
transformed area and 59.63 and 9.90 km0.5 for the 

square root transformed perimeter. 

The dimensions of rainstorms are analyzed by the 

three proposed methods. Descriptive statistics are 

summarized in Table 2 and Fig. 9 for the total of 934 

rainstorms analyzed. The extent of the studied rain- 

storms is in average between 300 and 400 km. It is 

obvious that the size of the radar images can limit the 

analysis as the maximum dimension of rainstorms 

 
along the X1 and Y1 axis is limited to 480 km, the total 

width of the radar image and a maximum of 679 m for 

the X2,3 and Y2,3 axes. For method 3, a cutoff of the 

histograms for higher values is not seen, while for 

method 1, there is a clear cutoff. Consequently, the 

distributions for the sx1 and sy1 variables are not 

calculated. Method 3 results in larger dimensions for 

the rainstorms compared with the dimensions calcu- 

lated with method 2. For the variables sx2, sx3, sy2 
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and sy3 a Weibull distribution fits best with the 

observed distributions, with shape parameters of, 

respectively, 3.06, 4.43, 2.99 and 5.12 and scale 

parameters of, respectively, 367.47, 450.01, 351.66 

and 425.71. No transformation of any of the variables 

improved the fit. 

A Mann–Whitney-U test on the sx2, sy2 and the sx3, 

sy3 data showed a significant difference between the 

dimensions of the rainstorm in the direction of the 

rainfall movement and the direction perpendicular to 

the   direction   of   movement   (P!0.05),   for   both 

methods 2 and 3. The extent of a rainstorm in the 

direction of the movement is in general slightly larger 

than the extent perpendicular to the direction of the 

movement (see Fig. 9). From the analysis of the 

individual storms, it was found that for the smaller 

rainstorms, dimensions in the two directions differ 

more from each other than for larger rainstorms, 

which seem to have a less elongated shape. Image 

windows of larger size should be considered in order 

to generalize this result, as due to the limited image 

window some rainstorms are not completely visual- 

ized (see distributions of sx1 and sy1 in Fig. 9). 

Because the dimensions of the rainstorms will be 

used to define a rainstorm in a spatial rainfall model, 

the observed rainstorm area is compared with the area 

of an ellipse. This allows to account for the 

statistically significant dimensions of the geometrical 

shape in two perpendicular directions. Based on the 

deviations from the 1–1 line in Fig. 10 it is clear that 

dimensions obtained by method 1 and method 3 tend 

to give an overestimation of the rainstorm area, while 

dimensions obtained by method 2 give a quite good 

approximation of the total area of rainstorms. 

 

 Distribution of clusters in space 

 
In order to describe the distribution of clusters in a 

rainstorm area, a 1D and a 2D Poisson process can be 

used. For the characterization of the 1D Poisson 

distribution, histograms of distances between adjacent 

projected clusters are constructed and exponential 

distributions are fitted by tuning the l1D parameter. 

This analysis is performed for four directions: East– 

West and North–South direction and the direction 

parallel with and perpendicular to the direction of the 

rainstorm movement. The histograms closely fit the 

exponential distributions, which supports the assump- 

tion that the x- and y-coordinates of clusters follow a 

Poisson process. For every series separately and for the 

20 series together exponential distributions are fitted for 

the four directions individually (Fig. 11). In East–West 

direction an average of 0.199 clusters kmK1 is found, 

while in North–South direction 0.211 clusters kmK1 are 

counted. In the direction of the movement 0.135 clus- 

ters kmK1 (l1D,s) are found and perpendicular to the 

direction  of  the  movement  an  average  l1D,T  of 

0.145 clusters kmK1 is retrieved. In general there is a 

slightly larger distance between projections of cluster 

centers in the direction of the movement. This could be 

partially caused by the slightly elongated shape of 

rainstorms in the direction of the movement. 

The characterization of the 2D Poisson process is 

performed by plotting the average number of clusters 

 

 
 

Fig. 10. Comparison of the observed rainstorm area with the area of an ellipse calculated based on the dimensions resulting from method 1 

(RMSEZ0.413X105 km2), method 2 (RMSEZ0.202X105 km2) and method 3 (RMSEZ0.481X105 km2). 
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Fig. 11. Exponential distribution of the distance between clusters after projection on axes in four different directions to determine l1D for all 20 

series. The histograms are cut off at a distance of 75 km between clusters. 

 

(and the standard deviation on it) for increasing areas 

of rainfall and fitting a straight line (Fig. 12). Again 

this is done for all individual image series and for all 

images together. Only the first linear part of the plot 

should be taken into consideration. Large rainy areas 

are not available in all images and so for larger areas 

less images are available to contribute to the average 

number of clusters in those areas. From all 20 series 

together, the parameter l2D is quantified as (5.56G 

1.91)X10K4 clusters kmK2. Bacchi et al. (1996) 

reported a cluster density of 4.11X10K4 clus- 
K2 

ters km    as a parameter in a Neyman-Scott based 

model. This result was found on radar images with 

a resolution of 2X2 km2. They found slightly higher 

values on radar images with a higher resolution. 

The clusters only occur within the limited area of a 

rainstorm and consequently the related Poisson 

processes are restricted to this rainstorm area. A 

changing rainstorm size does not influence the l2D 

value, assuming a homogeneous Poisson process in 

space. However, as the bounded rainstorm area limits 

the number of clusters projected on the axes, the value 

for l1D is dependent on the rainstorm area. A 

combination of the results from the 1D and 2D 

method provide information on the extent of the 

rainstorm. Let us assume that a rainstorm can be 
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Fig. 12. Average (,) number of clusters plus and minus the standard deviation (resp. * and C) for increasing areas, to determine l2D for all 20 

series. 

 

 

represented by an ellipse with major diameter ŝ x 8. Conclusions 
(along the direction of the movement) and minor 

diameter s^y (perpendicular to the direction of move- 

ment). The number of clusters within a rainstorm can 

then be written as 

 

Several characteristics of rainfall events occurring 

in frontal weather systems over a temperate area, are 

investigated and statistical descriptors and distri- 

butions are proposed for use in rainfall models. The 
p 

l2D     
4
 

and 

p 
l2D     

4
 

ŝ xŝ y 

 

 

 
ŝ xŝ y 

Z l1D;s 

 

 
 
Z l1D;T 

s x̂ 

 

 

 
ŝ y 

(11) 

 

 

 

(12) 

movement of rainstorms is described by its direction 

and velocity. The correlation technique is the most 

successful to determine these variables. Statistical 

analysis reveals that the velocity of rainfall events 

follows a two-parameter Weibull distribution and 

that the direction of rainfall movement follows a 

normal distribution. The studied rainfall events move 
where l1D,s and l1D,T are the parameters of the 1D 
Poisson distribution, respectively, along and perpen- 

dicular to the direction of movement and l2D is the 

parameter of the Poisson distribution in 2D. From 

Eqs. (11) and (12) the dimensions in both directions 

can be estimated by 
 

4  l1D;T 

at an average velocity of 0.86 km minK1 under a 

direction of 0.327 rad relative to the eastern 

direction. 

A technique to discriminate single rainstorms 

within radar images is developed, using the temporal 

evolution of the total area and the total perimeter of all 

rainy areas in the radar image. Only images with a 

ŝ x Z 
p  l2D 

Z 332 km (13) fully developed rainstorm are selected for further 

analysis. Three methods to determine rainstorm 

dimensions are proposed. Comparison of the real 

ŝ y Z 
4  l1D;s  

Z 309 km (14) 
p l2D 

rainstorm area with the area calculated from the 

rainstorm dimensions supports the use of the dimen- 

sions resulting from the method 2. In this method the 

which corresponds to the values sx2 (Z328 km) and 

sy2(Z314 km) given in Table 2. 

origin of the coordinate system is situated in the 

rainstorm center and the directions are based on 
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the direction of movement. The rainstorm is charac- 

terized by the dimensions of a rectangle whose sides 

are determined by the intersection of the coordinate 

axes with the rainstorm boundaries. The distributions 

of the dimensions in the direction of the movement 

and perpendicular to it, are both described by a two- 

parameter Weibull distribution. Furthermore, the 

dimensions of the rainstorms are significantly differ- 

ent for both directions. 

The spatial distribution of clusters in rainstorms is 

evaluated by two methods in which the parameter l 

that describes a Poisson process is calculated. In a first 

method the number of clusters per unit length is 

determined after projection of the cluster centers. A 

value of 0.135 and 0.145 clusters kmK1 is found in the 

direction along and perpendicular to the movement of 

the rainstorm, respectively. In a second method the 

number of clusters per unit of area is calculated after 

counting the number of clusters in increasing areas 

within rainstorms. This method results in a value of 

(5.56G1.91)X10K4 clusters kmK2. By a combi- 

nation of the results from both methods, an estimate 

of the rainstorm extent can be obtained. 

Analysis of more rainfall events, covering different 

types of rainfall would be a useful extent of this 

research in order to capture a broad range of rainfall 

types in statistical descriptions. Also the use of 

different types of radar images, more specifically 

with different resolutions, could be advised to pick up 

even more variation and to investigate possible 

scaling effects. Implementation of accurate descrip- 

tions of rainfall patterns in rainfall models is desirable 

to assure realistic representations of the natural 

rainfall process. This will definitely increase the 

accuracy of rainfall inputs in hydrological models and 

improve their results. 
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