
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 698 Copyright @ 2021 Authors

A ccNUMA Extremely Scalable Server: The SGI Origin

Mr. Mr Sakti charan panda *, Mr. Narottam sahu

Dept. OF Computer Science and Engineering, NIT , BBSR

sakticharan@thenalanda.com* ,narottam@thenalanda.com

Abstract

1 Silicon Graphics, Inc. created and produced the cache-

coherent non-uniform memory access (ccNUMA)

multiprocessor known as the SGI Origin 2000. The Origin

system is a multiprocessor that can scale to both low and high

processor counts without experiencing bandwidth, latency, or

cost cliffs. The Origin system has a scalable Craylink network

connecting up to 512 nodes. Each node has up to four

gigabytes of coherent memory, one or two R10000

processors, and a connection to the XIO IO subsystem. The

purpose for creating the Origin 2000 is discussed in this

paper, after which its architecture and implementation are

covered. Moreover, performance data for the SPLASH2 and

NAS Parallel Benchmarks V2.2 apps are shown. Finally,
The Origin system is then contrasted with other current

commercial ccNUMA systems.

Background

Silicon Graphics has offered multiple generations of symmetric
multiprocessor (SMP) systems based on the MIPS microproces-
sors. From the 8 processor R3000-based Power Series to the 36
processor R4000-based Challenge and R10000-based Power Chal-
lenge systems, the cache-coherent, globally addressable memory
architecture of these SMP systems has provided a convenient pro-
gramming environment for large parallel applications while at the
same time providing for efficient execution of both parallel and
throughput based workloads.
The follow-on system to the Power Challenge needed to meet three
important goals. First, it needed to scale beyond the 36 processor
limit of the Power Challenge and provide an infrastructure that
supports higher performance per processor. Given the factor of
four processor count increase between the Power Series and Power
Challenge lines, it was desired to have the next system support at
least another factor of four in maximum processor count. Second,
the new system had to retain the cache-coherent globally address-
able memory model of the Power Challenge. This model is critical
for achieving high performance on loop-level parallelized code and
for supporting the existing Power Challenge users. Finally, the en-
try level and incremental cost of the system was desired to be low-
er than that of a high-performance SMP, with the cost ideally
approaching that of a cluster of workstations.
Simply building a larger and faster snoopy bus-based SMP system
could not meet all three of these goals. The second goal might be
achievable, but it would surely compromise performance for larger
processor counts and costs for smaller configurations.
Therefore a very different architecture was chosen for use in the
next generation Origin system. The Origin employs distributed

Figure 1 Origin block diagram
shared memory (DSM), with cache coherence maintained via a di-
rectory-based protocol. A DSM system has the potential for meet-
ing all three goals: scalability, ease of programming, and cost. The
directory-based coherence removes the broadcast bottleneck that
prevents scalability of the snoopy bus-based coherence. The glo-
bally addressable memory model is retained, although memory ac-
cess times are no longer uniform. However, as will be shown in
this paper, Origin was designed to minimize the latency difference
between remote and local memory and to include hardware and
software support to insure that most memory references are local.
Finally, a low initial and incremental cost can be provided if the
natural modularity of a DSM system is exploited at a relatively fine
granularity by the product design.
In the following section of this paper, the scalable shared-memory
multiprocessing (S2MP) architecture of the Origin is presented.
Section 3 details the implementation of the Origin 2000. Perfor-
mance of the Origin 2000 is presented in Section 4. Section 5 com-
pares the Origin system with other contemporary ccNUMA
systems. Finally, Section 6 concludes the paper.

2 The Origin S2MP Architecture

A block diagram of the Origin architecture is shown in Figure 1.
The basic building block of the Origin system is the dual-processor
node. In addition to the processors, a node contains up to 4 GB of
main memory and its corresponding directory memory, and has a
connection to a portion of the IO subsystem.
The DSM architecture provides global addressability of all memo-
ry, and in addition, the IO subsystem is also globally addressable.
Physical IO operations (PIOs) can be directed from any processor

Scalable Interconnect Network

Node
511

Node

1

Node 0

Proc A Proc B

 Mem
&

Dir

Hub

Chip

IO

Xba

r

IO Ct rls

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 699 Copyright @ 2021 Authors

Crossbar

SSD/SSR
LLP

01 2 3 Msg Ctrl

Tables/

Admin

Arbiter

to any IO device. IO devices can DMA to and from all memory in
the system, not just their local memory.
While the two processors share the same bus connected to the Hub,
they do not function as a snoopy cluster. Instead they operate as
two separate processors multiplexed over the single physical bus
(done to save Hub pins). This is different from many other ccNU-
MA systems, where the node is a SMP cluster. Origin does not em-
ploy a SMP cluster in order to reduce both the local and remote
memory latency, and to increase remote memory bandwidth. Local
memory latency is reduced because the bus can be run at a much
higher frequency when it needs to support only one or two proces-
sor than when it must support large numbers of processors. Re-
mote memory latency is also reduced by a higher frequency bus,
and in addition because a request made in a snoopy bus cluster
must generally wait for the result of the snoop before being for-
warded to the remote node[7]. Remote bandwidth can be lower in a
system with a SMP cluster node if memory data is sent across the
remote data bus before being sent to the network, as is commonly
done in DSM systems with SMP-based nodes[7][8]. For remote re-
quests, the data will traverse the data bus at both the remote node
and at the local node of the requestor, leading to the remote band-
width being one-half the local bandwidth. One of the major goals
for the Origin system was to keep both absolute memory latency
and the ratio of remote to local latency as low as possible and to
provide remote memory bandwidth equal to local memory band-
width in order to provide an easy migration path for existing SMP
software. As we will show in the paper, the Origin system does ac-
complish both goals, whereas in Section 6 we see that all the
snoopy-bus clustered ccNUMA systems do not achieve all of these
goals.
In addition to keeping the ratio of remote memory to local memory
latency low, Origin also includes architectural features to address
the NUMA aspects of the machine. First, a combination of hard-
ware and software features are provided for effective page migra-
tion and replication. Page migration and replication is important as
it reduces effective memory latency by satisfying a greater percent-
age of accesses locally. To support page migration Origin provides
per-page hardware memory reference counters, contains a block
copy engine that is able to copy data at near peak memory speeds,
and has mechanisms for reducing the cost of TLB updates.
Other performance features of the architecture include a high-per-
formance local and global interconnect design, coherence protocol
features to minimize latency and bandwidth per access, and a rich
set of synchronization primitives. The intra-node interconnect con-
sists of single Hub chip that implements a full four-way crossbar
between processors, local memory, and the I/O and network inter-
faces. The global interconnect is based on a six-ported router chip
configured in a multi-level fat-hypercube topology.
The coherence protocol supports a clean-exclusive state to mini-
mize latency on read-modify-write operations. Further, it allows
cache dropping of clean-exclusive or shared data without notifying
the directory in order to minimize the impact on memory/directory
bandwidth caused by directory coherence. The architecture also
supports request forwarding to reduce the latency of interprocessor
communication.
For effective synchronization in large systems, the Origin system
provides fetch-and-op primitives on memory in addition to the
standard MIPS load-linked/store-conditional (LL/SC) instructions.
These operations greatly reduce the serialization for highly con-
tended locks and barrier operations.
Origin includes many features to enhance reliability and availabili-
ty. All external cache SRAM and main memory and directory
DRAM are protected by a SECDED ECC code. Furthermore, all
high-speed router and I/O links are protected by a full CRC code
and a hardware link-level protocol that detects and automatically
retries faulty packets. Origin’s modular design provides the overall

Figure 2 SPIDER ASIC block diagram

basis for a highly available hardware architecture. The flexible
routing network supports multiple paths between nodes, partial
population of the interconnect, and the hot plugging of cabled-
links that permits the bypass, service, and reintegration of faulty
hardware.
To address software availability in large systems, Origin provides
access protection rights on both memory and IO devices. These ac-
cess protection rights prevent unauthorized nodes from being able
to modify memory or IO and allows an operating system to be
structured into cells or partitions with containment of most failures
to within a given partition[10][13].

3 The Origin Implementation

While existence proofs for the DSM architecture have been avail-
able in the academic community for some time[1][6], the key to
commercial success of this architecture will be an aggressive im-
plementation that provides for a truly scalable system with low
memory latency and no unexpected bandwidth bottlenecks. In this
section we explore how the Origin 2000 implementation meets this
goal. We start by exploring the global interconnect of the system.
We then present an overview of the cache coherence protocol, fol-
lowed with a discussion of the node design. The IO subsystem is
explored next, and then the various subsystems are tied together
with the presentation of the product design. Finally, this section
ends with a discussion of interesting performance features of the
Origin system.

 Network Topology

The interconnect employed in the Origin 2000 system is based on
the SGI SPIDER router chip[4]. A block diagram of this chip is
shown in Figure 2. The main features of the SPIDER chip are:
● six pairs of unidirectional links per router

● low latency (41 ns pin-to-pin) wormhole routing

● DAMQ buffer structures[4] with global arbitration to maxi-
mize utilization under load.

● four virtual channels per physical channel

● congestion control allowing messages to adaptively switch
between two virtual channels

S
S

D
/S

S
R

L

L
P

S

S
D

/S
S

R

L
L

P

M
sg

 C
trl

M
sg

 C
trl

0
1

 2
 3

0

1
 2

 3

S
S

D
/S

S
R

L
L

P

S
S

D
/S

S
R

L
L

P

M
sg

 C
tr

l
M

sg
 C

tr
l

0
1

 2
 3

0

1
 2

 3

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 700 Copyright @ 2021 Authors

R R

R R

R R

R R

R R

R R

R R
R R

R R
R R

R R

R R

RR RR RR RR

RR RR RR RR

RR RR RR RR

RR RR RR RR

RR

RR
RR

RR
RR

RR
RR

RR

RR RR RR RR

RR RR RR RR

RR RR RR RR

RR RR RR RR

32 Processor System 64 Processor System

Figure 3 32P and 64P Bristled Hypercubes

Figure 4 128P Heirarchical Fat Bristled

Hypercube

● support for 256 levels of message priority with increased pri-
ority via packet aging

● CRC checking on each packet with retransmission on error
via a go-back-n sliding window protocol

● software programmable routing tables

The Origin 2000 employs SPIDER routers to create a bristled fat
hypercube interconnect topology. The network topology is bristled
in that two nodes are connected to a single router instead of one.
The fat hypercube comes into play for systems beyond 32 nodes
(64 processors). For up to 32 nodes, the routers connect in a bris-
tled hypercube as shown in Figure 3. The SPIDER routers are la-
beled using R, the nodes are the block boxes connecting to the
routers. In the 32 processor configuration, the otherwise unused
SPIDER ports are shown as dotted lines being used for Express
Links which connect the corners of the cube, thereby reducing la-
tency and increasing bisection bandwidth.
Beyond 64 processors, a hierarchical fat hypercube is employed.
Figure 4 shows the topology of a 128 processor Origin system. The
vertices of four 32-processor hypercubes are connected to eight
meta-routers. To scale up to 1024 processors, each of the single
meta-routers in the 128 processor system is replaced with a 5-D
hypercubes.

 Cache Coherence Protocol

The cache coherence protocol employed in Origin is similar to the
Stanford DASH protocol[6], but has several significant perfor-

mance improvements. Like the DASH protocol, the Origin cache
coherence protocol is non-blocking. Memory can satisfy any in-
coming request immediately; it never buffers requests while wait-
ing for another message to arrive. The Origin protocol also
employs the request forwarding of the DASH protocol for three
party transactions. Request forwarding reduces the latency of re-
quests which target a cache line that is owned by another proces-
sor.
The Origin coherence protocol has several enhancements over the
DASH protocol. First, the Clean-exclusive (CEX) processor cache
state (also known as the exclusive state in MESI) is fully supported
by the Origin protocol. This state allows for efficient execution of
read-modify-write accesses since there is only a single fetch of the
cache line from memory. The protocol also permits the processor
to replace a CEX cache line without notifying the directory. The
Origin protocol is able to detect a rerequest by a processor that had
replaced a CEX cache line and immediately satisfy that request
from memory. Support of CEX state in this manner is very impor-
tant for single process performance as much of the gains from the
CEX state would be lost if directory bandwidth was needed each
time a processor replaced a CEX line. By adding protocol com-
plexity to allow for the “silent” CEX replacement, all of the advan-
tages of the CEX state are realized.
The second enhancement of the Origin protocol over DASH is full
support of upgrade requests which move a line from a shared to ex-
clusive state without the bandwidth and latency overhead of trans-
ferring the memory data.
For handling incoming I/O DMA data, Origin employs a write-in-
validate transaction that uses only a single memory write as op-
posed to the processor’s normal write-allocate plus writeback. This
transaction is fully cache coherent (i.e., any cache invalidations/in-
terventions required by the directory are sent), and increases I/O
DMA bandwidth by as much as a factor of two.
Origin’s protocol is fully insensitive to network ordering. Messag-
es are allowed to bypass each other in the network and the protocol
detects and resolves all of these out-of-order message deliveries.
This allows Origin to employ adaptive routing in its network to
deal with network congestion.
The Origin protocol uses a more sophisticated network deadlock
avoidance scheme than DASH. As in DASH, two separate net-
works are provided for requests and replies (implemented in Ori-
gin via different virtual channels). The Origin protocol does have
requests which generate additional requests (these additional re-
quests are referred to as interventions or invalidations). This re-
quest-to-request dependency could lead to deadlock in the request
network. In DASH, this deadlock was broken by detecting a poten-
tial deadlock situation and sending negative-acknowledgments
(NAKs) to all requests which needed to generate additional re-
quests to be serviced until the potential deadlock situation was re-
solved. In Origin, rather than sending NAKs in such a situation, a
backoff intervention or invalidate is sent to the requestor on the re-
ply network. The backoff message contains either the target of the
intervention or the list of sharers to invalidate, and is used to signal
the requestor that the memory was unable to generate the interven-
tion or invalidation directly and therefore the requestor must gener-
ate that message instead. The requestor can always sink the
backoff reply, which causes the requestor to then queue up the in-
tervention or invalidate for injection into the request network as
soon as the request network allows. The backoff intervention or in-
validate changes the request-intervention-reply chain to two re-
quest-reply chains (one chain being the request-backoff message,
one being the intervention-reply chain), with the two networks pre-
venting deadlock on these two request-reply chains. The ability to
generate backoff interventions and invalidations allows for better
forward progress in the face of very heavily loaded systems since
the deadlock detection in both DASH and Origin is conservatively

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 701 Copyright @ 2021 Authors

done based on local information, and a processor that receives a
backoff is guaranteed that it will eventually receive the data, while
a processor that receives a NAK must retry its request.
Since the Origin system is able to maintain coherence over 1024
processors, it obviously employs a more scalable directory scheme
than in DASH. For tracking sharers, Origin supports a bit-vector
directory format with either 16 or 64 bits. Each bit represents a
node, so with a single bit to node correspondence the directory can
track up to a maximum of 128 processors. For systems with greater
than 64 nodes, Origin dynamically selects between a full bit vector
and coarse bit vector[12] depending on where the sharers are locat-
ed. This dynamic selection is based on the machine being divided
into up to eight 64 node octants. If all the processors sharing the
cache line are from the same octant, the full bit vector is used (in
conjunction with a 3-bit octant identifier). If the processors sharing
the cache line are from different octants, a coarse bit vector where
each bit represents eight nodes is employed.
Finally, the coherence protocol includes an important feature for
effective page migration known as directory poisoning. The use of
directory poisoning will be discussed in more detail in Section 3.6.
A slightly simplified flow of the cache coherence protocol is now
presented for both read, read-exclusive, and writeback requests.
We start with the basic flow for a read request.

1. Processor issues read request.

2. Read request goes across network to home memory (requests
to local memory only traverse Hub).

3. Home memory does memory read and directory lookup.

4. If directory state is Unowned or Exclusive with requestor as
owner, transitions to Exclusive and returns an exclusive reply
to the requestor. Go to 5a.
If directory state is Shared, the requesting node is marked in
the bit vector and a shared reply is returned to the requestor.
Go to 5a.
If directory state is Exclusive with another owner, transitions
to Busy-shared with requestor as owner and send out an inter-
vention shared request to the previous owner and a specula-
tive reply to the requestor. Go to 5b.
If directory state is Busy, a negative acknowledgment is sent
to the requestor, who must retry the request. QED

5a. Processor receives exclusive or shared reply and fills cache in
CEX or shared (SHD) state respectively. QED

5b. Intervention shared received by owner. If owner has a dirty
copy it sends an shared response to the requestor and a shar-
ing writeback to the directory. If owner has a clean-exclusive
or invalid copy it sends an shared ack (no data) to the request-
or and a sharing transfer (no data) to the directory.

6a. Directory receives shared writeback or shared transfer, up-
dates memory (only if shared writeback) and transitions to the
shared state.

6b. Processor receives both speculative reply and shared response
or ack. Cache filled in SHD state with data from response (if
shared response) or data from speculative reply (if shared
ack). QED

The following list details the basic flow for a read-exclusive re-
quest.

1. Processor issues read-exclusive request.

2. Read-exclusive request goes across network to home memory
(only traverses Hub if local).

3. Home memory does memory read and directory lookup.

4. If directory state is Unowned or Exclusive with requestor as
owner, transitions to Exclusive and returns an exclusive reply
to the requestor. Go to 5a.
If directory state is Shared, transitions to Exclusive and a ex-
clusive reply with invalidates pending is returned to the re-

questor. Invalidations are sent to the sharers. Go to 5b.
If directory state is Exclusive with another owner, transitions
to Busy-Exclusive with requestor as owner and sends out an
intervention exclusive request to the previous owner and a
speculative reply to the requestor. Go to 5c.
If directory state is Busy, a negative acknowledgment is sent
to the requestor, who must retry the request. QED

5a. Processor receives exclusive reply and fills cache in dirty ex-
clusive (DEX) state. QED

5b. Invalidates received by sharers. Caches invalidated and invali-
date acknowledgments sent to requestor. Go to 6a.

5c. Intervention shared received by owner. If owner has a dirty
copy it sends an exclusive response to the requestor and a
dirty transfer (no data) to the directory. If owner has a clean-
exclusive or invalid copy it sends an exclusive ack to the re-
questor and a dirty transfer to the directory. Go to 6b.

6a. Processor receives exclusive reply with invalidates pending
and all invalidate acks. (Exclusive reply with invalidates
pending has count of invalidate acks to expect.) Processor fills
cache in DEX state. QED

6b. Directory receives dirty transfer and transitions to the exclu-
sive state with new owner.

6c. Processor receives both speculative reply and exclusive re-
sponse or ack. Cache filled in DEX state with data from re-
sponse (if exclusive response) or data from speculative reply
(if exclusive ack). QED

The flow for an upgrade (write hit to SHD state) is similar to the
read-exclusive, except it only succeeds for the case where the di-
rectory is in the shared state (and the equivalent reply to the exclu-
sive reply with invalidates pending does not need to send the
memory data). In all other cases a negative acknowledgment is
sent to the requestor in response to the upgrade request.
Finally, the flow for a writeback request is presented. Note that if a
writeback encounters the directory in one of the busy states, this
means that the writeback was issued before an intervention target-
ing the cache line being written back made it to the writeback issu-
er. This race is resolved in the Origin protocol by “bouncing” the
writeback data off the memory as a response to the processor that
caused the intervention, and sending a special type of writeback
acknowledgment that informs the writeback issuer to wait for (and
then ignore) the intervention in addition to the writeback acknowl-
edgment.

1. Processor issues writeback request.

2. Writeback request goes across network to home memory
(only traverses Hub if local).

3. Home memory does memory write and directory lookup.

4. If directory state is Exclusive with requestor as owner, transi-
tions to Unowned and returns a writeback exclusive acknowl-
edge to the requestor. Go to 5a.
If directory state is Busy-shared, transitions to Shared, a
shared response is returned to the owner marked in the direc-
tory. A writeback busy acknowledgment is also sent to the re-
questor. Go to 5b.
If directory state is Busy-exclusive, transitions to Exclusive,
an exclusive response is returned to the owner marked in the
directory. A writeback busy acknowledgment is also sent to
the requestor. Go to 5b.

5a. Processor receives writeback exclusive acknowledgment.
QED

5b. Processor receives both a writeback busy acknowledgment
and an intervention. QED

 Node Design

The design of an Origin node fits on a single 16” x 11” printed cir-
cuit board. A drawing of the Origin node board is shown in Figure

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 702 Copyright @ 2021 Authors

Figure 6 Hub ASIC block diagram

DIMM
release
tab

Main memory
DIMM slots (16)
(includes standard
directory memory)

Bulk
head

LEDS

Compression
mounting
knob

Extended
directory
memory
DIMM slots (8)

Compression
mounting
knob

DIMM
release
tab

Power/
ground

 300-pin

compression
connector

HUB chip
with heat sink

Power/
ground

Front View Side View

R10000 processor and
secondary cache (HIMM)
with heat sink

SysAD

Figure 5 An Origin node board

5. At the bottom of the board are two R10000 processors with their
secondary caches. The R10000 is a four-way out-of-order super-
scalar processor[14]. Current Origin systems run the processor at
195 MHz and contain 4 MB secondary caches. Each processor and
its secondary cache is mounted on a horizontal in-line memory
module (HIMM) daughter card. The HIMM is parallel to the main
node card and connects via low-inductance fuzz-button processor
and HIMM interposers. The system interface buses of the R10000s
are connected to the Hub chip. The Hub chip also has connections
to the memory and directory on the node board, and has two ports
that exit the node board via the 300-pin CPOP (compression pad-
on-pad) connector. These two ports are the Craylink connection to
router network and the XIO connection to the IO subsystem.
As was mentioned in Section 3.2, a 16 bit-vector directory format
and a 64 bit-vector format are supported by the Origin system. The
directory that implements the 16-bit vector format is located on the
same DIMMs as main memory. For systems larger than 32 proces-
sors, additional expansion directory is needed. These expansion di-
rectory slots, shown to the left of the Hub chip in Figure 5, operate
by expanding the width of the standard directory included on the
main memory boards. The Hub chip operates on standard 16-bit
directory entries by converting them to expanded entries upon their
entry into the Hub chip. All directory operations within the Hub
chip are done on the expanded directory entries, and the results are
then converted back to standard entries before being written back
to the directory memory. Expanded directory entries obviously by-
pass the conversion stages.
Figure 6 shows a block diagram of the Hub chip. The hub chip is
divided into five major sections: the crossbar (XB), the IO inter-
face (II), the network interface (NI), the processor interface (PI),
and the memory and directory interface (MD). All the interfaces
communicate with each other via FIFOs that connect to the cross-
bar.
The IO interface contains the translation logic for interfacing to the
XIO IO subsystem. The XIO subsystem is based on the same low-
level signalling protocol as the Craylink network (and uses the
same interface block to the XIO pins as in the SPIDER router of
Figure 2), but utilizes a different higher level message protocol.
The IO section also contains the logic for two block transfer en-
gines (BTEs) which are able to do memory to memory copies at

near the peak of a node’s memory bandwidth. It also implements
the IO request tracking portion of the cache coherence protocol via
the IO request buffers (IRB) and the IO protocol table. The IRB
tracks both full and partial cache line DMA requests by IO devices
as well as full cache line requests by the BTEs.
The network interface takes messages from the II, PI, and MD and
sends them out on the Craylink network. It also receives incoming
messages for the MD, PI, II, and local Hub registers from the
Craylink network. Routing tables for outgoing messages are pro-
vided in the NI as the software programmable routing of the SPI-
DER chip is pipelined by one network hop[4]. The NI also is
responsible for taking a compact intra-Hub version of the invalida-
tion message resulting from a coherence operation (a bit-vector
representation) and generating the multiple unicast invalidate mes-
sages required by that message.
The processor interface contains the logic for implementing the re-
quest tracking for both processors. Read and write requests are
tracked via a coherent request buffer (CRB), with one CRB per
processor. The PI also includes the protocol table for its portion of
the cache coherence protocol. The PI also has logic for controlling
the flow of requests to and from the R10000 processors and con-
tains the logic for generating interrupts to the processors.
Finally, the memory/directory section contains logic for sequenc-
ing the external memory and directory synchronous DRAMs
(SDRAMs). Memory on a node is banked 4-32 way depending on
how many memory DIMMs are populated. Requests to different
banks and requests to the same page within a bank as the previous
request can be serviced at minimum latency and full bandwidth.
Directory operations are performed in parallel with the memory
data access. A complete directory entry (and page reference
counter, as will be discussed in Section 3.6) read-modify-write can
be performed in the same amount of time it takes to fetch the 128B
cache line from memory. The MD performs the directory portion
of the cache coherence protocol via its protocol table and generates
the appropriate requests and/or replies for all incoming messages.
The MD also contains a small fetch-and-op cache which sits in
front of the memory. This fetch-and-op cache allows fetch-and-op
variables that hit in the cache to be updated at the minimum net-

XIO Craylink

 0123 0123

NI
IO

Transl

II
MD

IRB Protocol

Table

Dir

Mem

Protocol

Table
CRB A CRB B

FandOp
Cache

BTE

B

PI
Protocol

Table

BTE

A

Crossbar

Msg Msg

LLP LLP
SSD/SSR SSD/SSR

Tables

Inval
Multicast

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 703 Copyright @ 2021 Authors

Port SysAD Mem XIO Craylink

GB/s 0.78 0.78 1.56 1.56

Table 1 Hub ASIC port bandwidths

Section XB IO NI PI MD

K gates 246 296 56 133 77

Table 2 Hub ASIC gate count

Figure 7 Example IO subsystem block diagram

work reply serialization rate of 41 ns instead of at the much slower
SDRAM read-modify-write timing.
Note that all the protocol tables in the Hub are hard-wired. While
programmable protocol engines can come close to achieving the
performance of a hard-wired protocol state machine[5][9], we opt-
ed for hard-wiring the protocol to minimize latency and maximize
bandwidth. We were also concerned about the variability in latency
and bandwidth given the caching of directory information used by
most programmable approaches. To ensure that the cache coher-
ence protocol implemented in the tables was correct, we employed
formal verification[3]. Formal verification worked extremely well;
no bugs have been found in the Origin cache coherence protocol
since the formal verification was completed.
The raw data bandwidth of the Hub chip ports is listed in Table 1.
A summary of the sizes of the units is shown in Table 2. Note that
most of the chip is allocated either to interfacing to the IO sub-
system or in the crossbar itself, rather than in implementing global
cache coherence.

 IO Subsystem

Not too surprisingly, the Origin system also utilizes crossbars in its
IO subsystem. Figure 7 shows one possible configuration of IO
cards connected to two nodes. Using the same link technology as
in the Craylink interconnect, each Hub link provides a peak of 1.56
GB/sec of bandwidth to the six XIO cards connected to it (actually
limited to half this amount if only local memory bandwidth is con-
sidered). At the heart of the IO subsystem is the Crossbow (Xbow)
ASIC, which has many similarities with the SPIDER router. The
primary differences between the Xbow and the router is a simplifi-

Table 3 Origin IO boards

cation of the Xbow buffering and arbitration protocols given the
chips more limited configuration. These simplifications reduce
costs and permit eight ports to be integrated on a single chip. Some
of the main features of the Xbow are:
● eight XIO ports, connected in Origin to 2 nodes and 6 XIO

cards.

● two virtual channels per physical channel

● low latency wormhole routing

● support for allocated bandwidth of messages from particular
devices

● CRC checking on each packet with retransmission on error
via a go-back-n sliding window protocol

The Crossbow has support in its arbiter for allocating a portion of
the bandwidth to a given IO device. This feature is important for
certain system applications such as video on demand.
A large number of XIO cards are available to connect to the Cross-
bow. Table 3 contains a listing of the common XIO cards. The
highest performance XIO cards connect directly to the XIO, but
most of the cards bridge XIO to an embedded PCI bus with multi-
ple external interfaces. The IO bandwidth together with integration
provide IO performance which is effectively added as a PCI-bus at
a time versus individual PCI cards.

 Product Design

The Origin 2000 is a highly modular design. The basic building
block is the deskside module, which has slots for 4 node boards, 2
router boards, and 12 XIO boards. The module also includes a
CDROM and up to 5 Ultra SCSI devices. Figure 8 shows a block
diagram of the deskside module, while Figure 9 shows a rear-view
perspective of a deskside system. The system has a central mid-
plane, which has two Crossbow chips mounted on it. The 4 node
and 12 XIO boards plug into the midplane from the rear of the sys-
tem, while the 2 router boards, the power supply and the UltraSCSI
devices plug into the midplane from the front of the system.
A module can be used as a stand-alone deskside system or two
modules (without the deskside plastic skins) can be mounted in a
rack to form a 16 processor system. In addition to the two mod-
ules, the rack also includes a disk bay for up to 8 additional disks.
One of the modules can be replaced with an Infinite reality graph-

To SN0Net

Node 1

I/O Subsystem

Other XTALK

Main Memory/ Bridge
Directory

Graphics

IO6 (Ethernet, SCSI, Serial

Hub

 Bridge PCI

R10000 R10000 16 16 16

16

XBOW

Node 2 16 ATM, Fibre C,HIPPI-Serial

Main Memory/
Directory

16 16 16
PCI

Bridge
 LINC CTRL

Hub
KONA

Graphics

Other XTALK

R10000 R10000

Bridge

To SN0Net

SCSI SCSI

SIO IOC3

KONA

Board Number of Ports

Base IO 2 Ultra SCSI, 1 Fast

Enet, 2 serial

Ultra SCSI 4

10/100 Enet 4

HiPPI 1 serial

Fibre Channel 2 Cu loops

ATM OC3 4

Infinite Reality Gfx 1

Standard PCI Cage 3

VME Adapter 1

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 704 Copyright @ 2021 Authors

10

11

13

14

12

BaseIO

Node 4

Node 3

Node 2

Node 1

AC input

XIO slots

PCI module
Serial

Module power connector
switch

Node 1

Midplane

Node
boards

Router
boards

R1 R2

R3 R4

Figure 8 Deskside module block diagram

Figure 9 Deskside module, rear view

ics module or with 4 additional 8-disk bays. An Origin Vault which
contains 9 8-disk bays in a single rack is also available. Figure 10
depicts a configured rack supporting 16 processors, 24 XIO
boards, and 18 UltraSCSI devices.

Figure 10 16 processor Origin system.

 Performance Features

The Origin system has two features very important for achieving
good performance in a highly scalable system. First, fetch-and-op
primitives are provided as uncached operations that occur at the
memory. Fetch-and-op variables are used for highly contended
locks, barriers, and other synchronization mechanisms. The typical
serialization rate (the rate at which a stream of requests can be ser-
viced) for fetch-and-op variables is 41 ns. In Section 4.1 we will
show how fetch-and-op variables can improve the performance of
highly contended objects.
Second, Origin provides hardware and software support for page
migration. Page migration is important for NUMA systems as it
changes many of the cache misses which would have gone to re-
mote memory to local misses. To help the OS in determining when
and which page to migrate the Origin system provides an array of
per-page memory reference counters, which are stored in the direc-
tory memory. This array is indexed by the nodes in a system (up to
64 nodes, beyond this 8 nodes share a single counter). When a re-
quest comes in, its reference counter is read out during the directo-
ry lookup and incremented. In addition, the reference counter of
the home node is read out during the same directory lookup. The
requestor’s count and home count are compared and if the differ-
ence exceeds a software programmable threshold register (and the
migration control bits stored with the requestor’s reference counter
says that this page is a candidate for migration), an interrupt is gen-
erated to the home node. This interrupt signals a potential migra-
tion candidate to the operating system.
When the operating system determines it does indeed want to mi-
grate the page[13], two operations need to be performed. First, the
OS needs to copy the page from its current location to a free mem-
ory page on the requestor’s node. Second, the OS needs to invali-

Main Memory/

Directory

Midplane

XTALK Interconnect

Hub
16

XBOW

1

R10000 R10000

16

16

16

16

16

16

16

Node 2

Main Memory/

Directory
Router Slot 1

(Contains Router)

Hub Router Slot 2

(Contains Star Router)

XTALK Interconnect
R10000 R10000

16

Node 3

Main Memory/

Directory

XBOW

2

16

16

16

16

16

16

16

Hub

R10000 R10000

Node 4

Main Memory/

Directory

Hub

R10000 R10000

Half Size

Half Size

Half Size

Half Size

Half Size

Half Size

Half Size

Half Size

Half Size

Half Size

Half Size

Half Size

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 705 Copyright @ 2021 Authors

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

STREAM - One Thread per Node

1 4 8 16

Number of Processors

Figure 11 STREAM results - one thread per
node

Table 4 Origin 2000 latencies

7000

6000

STREAM - Two Threads per Node

date all the translations to the old page cached in processor’s TLBs
and then update the translation for the migrated page to point to the
new page.
The block transfer engine allows a 16 KB page to be copied from
one node’s memory to another in under 30 microseconds. Unfortu-
nately, in a very large Origin system, the cost to invalidate all the
TLBs and update the translation using a conventional TLB shoot-
down algorithm can be 100 microseconds or more, removing much
of the benefit of providing a fast memory to memory copy. Recent
page migration research has also identified TLB shootdown as a
significant cost of page migration[11]. To solve the TLB update
problem, the directory supports a block transfer copy mode known

5000

4000

3000

2000

1000

0

2 4 6 8 16 24 32
Number of Processors

as directory poisoning, which works as follows.
During the read phase of the poisoning block copy, in addition to
reading the data, the directory protocol makes sure the latest copy
of the data is written back to memory, and the directory is placed in
the POISON state. Any access by a processor to a poisoned direc-
tory entry during the copy will result in a synchronous bus error.
The bus error handler is able to quickly determine that the bus er-
ror was due to page migration, and the handler invalidates the pro-
cessor’s TLB entry for the page, and then has the process wait for
the new translation to be produced.
Once the poisoning block copy has completed, the new translation
is updated and all processors that took the poison bus error will
load their TLB with the new translation. The poisoned page is now
placed on a poisoned list to “age”. The operating system invali-
dates one sequential TLB entry per scheduler tick, so after a time
equal to the number of per-processor TLB entries times the period
between scheduler ticks, the page can be moved off the poisoned
list and onto the free list. This directory poisoning allows the TLB
shootdown and page copy to proceed in parallel, and as a result the
cost to migrate a page is much lower than if a standard TLB shoot-
down were invoked. This low cost of migration enables the operat-
ing system to be fairly aggressive in determining when to migrate a
page.

4 Origin Performance

This section examines the performance of the Origin system using
both microbenchmarks to measure latencies and bandwidths, and
by using the NAS Parallel Benchmarks V2.2 and the SPLASH2
suite to measure performance of a set of parallel applications.

Figure 12 STREAM results - two threads per
node

 Microbenchmarks

The first microbenchmarks examine the latency and bandwidth of
the Origin memory system. Table 4 shows the latency measured
for a memory reference in isolation. This is the time from when the
L1 cache is accessed until the instruction associated with the cache
miss can graduate. The remote latency numbers for 16 and 32 pro-
cessors assume that express links are employed.
The STREAM benchmark is the standard memory bandwidth
benchmark for the high performance computing industry.
STREAM measures the performance of four simple long vector
kernels, which are sized to eliminate cache re-use, and reports the
results in terms of sustained memory bandwidth. On parallel sys-
tems, STREAM is essentially completely parallel; the only com-
munication required is for synchronization at the end of execution
of each kernel.
On the Origin 2000, each processor can effectively utilize more
than half of the memory bandwidth available on a node. Thus,
we’ve included STREAM results in MB/s with only one thread
running per node in Figure 11, and with two threads running per
node in Figure 12.
Table 5 shows the effectiveness of the fetch-and-increment opera-
tions in implementing a globally shared counter. Note that LL/SC
does much better for a single processor, at 6.9 million increments/
second, since the counter variable and the lock surrounding it
(which are allocated from the same cache line) stays loaded in the
processor’s cache, whereas the fetch-and-increment variable is al-
ways accessed via an uncached reference to local memory, and de-

COPY
SCALE

ADD
TRIAD

COPY
SCALE

ADD
TRIAD

M
B

/s

M
B

/s

Memory level Latency (ns)

L1 cache 5.1

L2 cache 56.4

local memory 310

4P remote memory 540

8P avg. remote memory 707

16P avg. remote memory 726

32P avg. remote memory 773

64P avg. remote memory 867

128P avg. remote memory 945

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 706 Copyright @ 2021 Authors

NAS V2.2 Class A Speedups
40

35

30

25

20

Table 5 Comparison of LL/SC and fetch-and-op
for atomic increments

15

10

5

0
1 2 4 8 16 32

Number of Processors

Figure 14 NAS Parallel V2.2 Speedups

Application Command Line

radiosity -batch -room

raytrace balls4.env

lu -n2048 -b16

ocean -n 1026

barnes < input.512

Table 6 SPLASH2 Applications

Figure 13 Comparison of LL/SC and fetch-and-

op for a null doacross loop

livers only 4.0 million increments/sec. As more processors are
added, however, the number of increments on the fetch-and-incre-
ment variable is able to increase to near the fetch-and-op cache
throughput limit of 24.4 million/sec (one every 41 ns), while the
number of increments on the LL/SC variable falls off dramatically,
to under 100 thousand increments/second with 32 processors. Also
note the drop off in fetch-and-op increments/second between two
and four processors. With a small number of processors, the num-
ber of fetch-and-increments achievable per second is limited by the
fetch-and-increment latency, since each R10000 processor can
only have a single uncached read outstanding. Therefore with two
processors, the fetch-and-increment can be allocated locally,
whereas with four processors, only two of the processors can ac-
cess the fetch-and-increment variable from local memory, and the
other two processors must pay the longer remote latency.
Figure 13 shows the advantages of using fetch-and-op for barrier
implementation. The graph shows the time to execute a null FOR-
TRAN doacross statement. In addition to the barrier time, the null
doacross includes the time to perform the work dispatch to the
slaves and the execution of one iteration of an empty do-loop.
Therefore the graph actually understates the performance benefits
of fetch-and-ops in implementing the barrier itself.

 Applications

In this section we examine the performance of the Origin system
using the NAS Parallel Benchmarks V2.2 Class A and the

SPLASH2 Speedups

35

30

25

20

15

10

5

0

1 2 4 8 16 32
Number of Processors

Figure 15 SPLASH2 Speedups

SPLASH2 suite. Application and operating system tuning is ongo-
ing, so these results are a snapshot as of late February, 1997.
Figure 14 shows the performance of the NAS parallel benchmarks
using the Class A datasets for up to 32 processors. Overall, speed-
up on the NAS benchmarks is very good. For several of the bench-
marks, superlinear speedups are achieved due to the larger total
cache size and memory bandwidth available as the number of pro-
cessors (and therefore the number of nodes) increases.
Table 6 lists the applications run from the SPLASH2 suite along
with their command line arguments. Figure 15 shows speedups for

w / o FOP

w / FOP

48.00

44.00

40.00

36.00

32.00

28.00

24.00

20.00

16.00

12.00

8.00

4.00

0.00

0.00 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00

Processor s

Perfect speedup
APPLU
APPSP
APPBT

EP
MG
FT
IS

Perfect speedup
Barnes
Ocean

Raytrace
Radiosity

LU

T
i
m

e

in

m
 i
c
r
o

s
e
c
s

S
p

e
e

d
u

p

S
p
e
e
d

u
p

M op/s 1 P 2 P 4 P 8 P 16 P 32 P

fch-inc 4.0 7.4 6.1 10.0 19.3 23.0

LL/SC 6.9 2.3 0.84 0.23 0.12 0.09

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 707 Copyright @ 2021 Authors

the four SPLASH2 applications and one SPLASH2 kernel on the
Origin system. Barnes and Ocean get good speedups to 32 proces-
sors, while Lu starts to roll off beyond 16 processors. Radiosity
and Raytrace both begin to have speedup fall-off after 8 proces-
sors, and show very small increases between 16 and 32 processors.
We have just started our investigation into the performance of the
SPLASH suite, so we are not certain of the exact cause of the
speedup roll-off for Lu, Radiosity, and Raytrace. Our benchmark
machine had a limited amount of total memory, so the small data
sets for these applications may be a contributor to the limited
speedup at 32 processors.

5 Related Systems

The Origin system benefitted from the many lessons the authors
learned in designing the Stanford DASH[7], so we start by discuss-
ing the major differences between Origin and DASH. We then con-
trast the Origin with three contemporary ccNUMA systems: the
Sequent NUMAQ, the Data General NUMALiiNE, and the Con-
vex Exemplar X.

 Stanford DASH

The differences between the Origin and DASH coherence proto-
cols was already explored in Section 3.2. The main architectural
difference between the Origin and DASH systems is that DASH
employed a four processor SMP cluster as its node[7], while Ori-
gin uses a two processor node where coherence between the pro-
cessors in the node is handled by the directory-based protocol.
The major advantage of a SMP-based node is the potential for
cache-to-cache sharing within the node. In [7] the 4-way intra-
node sharing of DASH is shown to produce small performance
gains for 3 out of 4 SPLASH applications with only the Barnes ap-
plication showing significant performance gains.
On the other hand, the disadvantages of the SMP-based nodes are
three-fold. First, to get to the number of processors where intra-
node sharing will be significant the bus will most likely not be able
to be on a single board. This causes local memory latency to be
longer as the bus must run slower to support the large number of
devices connected to it and more ASIC crossings will generally be
between the processor and local memory. In addition, this makes
the initial cost of the SMP node much higher since even a single
processor node requires several boards. Second, remote latency
also increases as requests to remote memory will generally have to
wait for the results of the local processor snoops before being able
to issue to the remote memory. Finally, as discussed earlier, the re-
mote memory bandwidth for a SMP-based node is half the local
memory bandwidth. In fact, in DASH, the remove memory band-
width was reduced by a factor of three since each remote memory
reference needed to traverse the local bus for the initial request, the
home memory bus to get the data, and the local bus again to return
the data to the processor.
While the DASH prototype did suffer increased latency on it’s lo-
cal memory access time due to the snoopy bus, it did manage to
have a 3:1 best case (nearest-neighbor) remote to local latency,
which as we will see when we examine some commercial contem-
porary systems is quite good for a SMP-based ccNUMA machine.
Despite being much better than other SMP-based node solutions,
this ratio is still less than the 2:1 best case (nearest-neighbor) re-
mote to local latency achieved by Origin.

 Sequent NUMAQ and DG NUMALiiNE

The Sequent NUMAQ consists of up to 63 nodes, where each node
is a 4-processor Pentium Pro-based SMP referred to as a quad[8].
The nodes are connected together via an SCI-based ring. Both the
low-level transport layers and the higher-level coherence protocol

of the SCI are utilized in the NUMAQ. A programmable protocol
engine is used to implement the SCI coherence protocol. A full
board (the Lynx Board) implements the complete interface be-
tween the Pentium Pro based quad.
The Sequent NUMAQ is architecturally similar to the Stanford
DASH, albeit with a different processor, a simpler network topolo-
gy, and the SCI coherence protocol instead of the DASH coherence
protocol. It has the same advantages and disadvantages of DASH:
the local memory latency is good, around 250 ns, but the best case
remote memory latency is around 8 times the local latency[8]. The
choice of a ring with its low bisection bandwidth as the intercon-
nect network causes large degradation in remote latency as the sys-
tem interconnect becomes loaded.
The Data General NUMALiiNE is architecturally very similar to
the Sequent NUMAQ. The node is a Pentium-Pro quad, and the
nodes are connected via a SCI-based ring. As such it suffers from
the same limitations in remote latency and network performance as
the NUMAQ.

 Convex Exemplar X

The Convex Exemplar X is similar to earlier Exemplar systems im-
plementing a crossbar connected set of hyper-nodes that are then
connected by parallel ring interconnects that implement a modified
version of the SCI protocol[2]. In the X-class machines the hyper-
node size has increased from 8 to 16 processors and the four 1-D
rings have been replaced by eight sets of 2-D rings. Initial configu-
rations support 64 processors (4 hypernodes), but the machine can
architecturally scale to 512 processors in an 8x4 torus configura-
tion.
The use of a crossbar intra-connect for the hypernode does reduce
the bandwidth penalty of using an SMP node compared with the
NUMAQ or NUMALiiNE machines, but still adds to latency in
comparison with the smaller, more integrated nodes in Origin.
While no latency data has been published to date, the ratio of local
to remote in the Exemplar is likely to be similar to previous ma-
chines (5:1 without loading on small configurations), whereas the
base numbers in the Origin start at 2:1 in small configurations and
grow very slowly.
Another major difference is the use of a third-level cluster cache in
the Exemplar. This mechanism is in contrast to Origin’s page mi-
gration mechanism. The cluster cache can adapt to capacity misses
more quickly then Origin’s migration mechanism, but does this at
the cost of increased latency for communication misses and misses
that result from conflicts in the cluster cache. The cluster cache
also hurts remote bandwidth because it implies that at least three
DRAM accesses be made per remote miss (one in the local cluster
cache, one at the home, an additional one or two if the line is held
dirty in another cluster cache, and a final access to allocate into the
local cluster cache), leading to remote bandwidth being one-third
of the local bandwidth.

 Overall Comparison of DSM Systems

The major difference between the Convex, Sequent and DG ma-
chines and the Origin is that the Origin has a much more tightly in-
tegrated DSM structure with the assumption of treating local
accesses as an optimization of a general DSM memory reference.
The other commercial DSM machines add a DSM mechanism on
top of a relatively large SMP node in which local communication
and memory accesses are optimized over performance of the gen-
eral DSM structure. Which one of these models is more appropri-
ate depends upon a number of factors:

1. Is scaling the system down in size and cost important? The
overhead of the SMP nodes sets a minimum on how effective
such machines can be in small configurations (one to two pro-
cessors).

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 708 Copyright @ 2021 Authors

2. Is the workload primarily throughput oriented, with only a
small degree of parallelism? If so, the SMP solutions might
achieve higher performance due to lower communication
costs between processors within the same SMP node. Oppo-
sitely, if parallelism beyond the size of the SMP node is im-
portant, then the latency and bandwidth overheads are likely
to be very high in comparison to Origin.

3. Is I/O structured as a global resource or must nodes treat I/O
as a local resource similar to a distributed memory system? If
the goal is global accessibility then the tight DSM integration
of Origin would also be preferred.

6 Conclusions

The Origin 2000 is a highly scalable server designed to meet the
needs of both the technical and commercial marketplaces. This is
accomplished by providing a highly modular system with a low-
entry point and incremental costs. A bristled fat hypercube net-
work is used to provide a high bisection bandwidth, low-latency
interconnect. Low latency to local memory and a low remote to lo-
cal memory latency ratio allow the existing application base to eas-
ily migrate their applications from the uniform access of the
existing SMP Challenge and Power Challenge systems to the
NUMA Origin systems. Origin also includes several features to
help the performance of these applications including hardware and
software support for page migration and fast synchronization.

7 Acknowledgments

The Origin system design resulted from the very hard work of a
top-notch team of chip, board, and system engineers. Major con-
tributors on the core logic design/verification team besides the au-
thors included: Michael Anderson, John Andrews, Rick Bahr, John
Burger, John Carlson, Hansel Collins, Pat Conway, Ken Choy, As-
geir Eiriksson, Paul Everhardt, Mike Galles, Sameer Gupta, Gary
Hagensen, Dick Hessel, Roger Hu, Lee Jones, George Kaldani,
John Keen, Ron Kolb, Yuval Koren, Waidy Lee, Viranjit Madan,
John Manton, Greg Marlan, Dawn Maxon, David McCracken, Ali
Moyedian, Bob Newhall, Kianoosh Naghshineh, Chuck Narad,
Ron Nikel, Steve Padnos, Dave Parry, Ed Priest, Azmeer Salleh,
Ken Sarocky, Chris Satterlee, Alex Silbey, Doug Solomon, Jim
Smith, Tuan Tran, Swami Venkataraman, Rich Weber, Eric Will-
iams, Mike Woodacre, and Steve Yurash.
The authors would also like to thank Jaswinder Pal Singh and
Dongming Jiang for their help in getting the SPLASH perfor-
mance numbers on Origin, John McCalpin for providing the NAS
Parallel Benchmark and STREAM results, and the anonymous ref-
erees for their comments which helped to improve the final version
of this paper.

References

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L.
Johnson, David Kranz, John Kubiatowicz, Beng-Hong Lim,
Kenneth Mackenzie, and Donald Yeung. The MIT Alewife
machine: Architecture and Performance. In Proceedings of
the 22nd Annual International Symposium on Computer Ar-
chitecture, pages 2-13, June 1995.

[2] Tony Brewer and Greg Astfalk. The evolution of the HP/Con-
vex Exemplar. In Proceedings of COMPCON Spring ‘97:
Forty-Second IEEE Computer Society International Confer-
ence, pages 81-86, February 1997.

[3] Asgeir Th. Eiriksson and Ken L. McMillan, Using formal ver-
ification/analysis methods on the critical path in system de-
sign: A case study. In Proceedings of Computer Aided
Verification Conference, Liege Belgium, LNCS 939, Springer
Verlag, 1995.

[4] Mike Galles. Scalable Pipelined Interconnect for Distributed
Endpoint Routing: The SGI SPIDER chip. In Hot Intercon-
nects ‘96.

[5] Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein,
Joel Baxter, Jaswinder Pal Singh, Richard Simoni, Kourosh
Gharachorloo, David Nakahira, Mark Horowitz, Anoop Gup-
ta, Mendel Rosenblum, and John Hennessy. The performance
impact of flexibility in the Stanford FLASH multipocessor. In
Proceedings of the 6th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 274-285, October 1994.

[6] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy. The directory-based cache
coherence protocol for the DASH multiprocessor. In Proceed-
ings of the 17th Annual International Symposium on Comput-
er Architecture, pages 148-159, May 1990.

[7] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira,
Luis Stevens, Anoop Gupta, and John Hennessy. The DASH
prototype: Logic overhead and performance. IEEE Transac-
tions on Parallel and Distributed Systems, 4(1):41-61, Janu-
ary 1993.

[8] Tom Lovett and Russell Clapp, STiNG: A CC-NUMA com-
puter system for the commercial marketplace. In Proceedings
of the 23rd Annual International Symposium on Computer
Architecture, pages 308-317, May 1996.

[9] Steven K. Reinhardt, James R. Larus, and David A. Wood.
Tempest and Typhoon: User-level shared memory. In Pro-
ceedings of the 21st Annual International Symposium on
Computer Architecture, pages 325-336, April 1994.

[10] Mendel Rosenblum, John Chapin, Dan Teodosiu, Scott De-
vine, Tirthankar Lahiri, and Anoop Gupta. Implementing effi-
cient fault containment for multiprocessors. Communications
of the ACM, 39(3):52-61, September, 1996.

[11] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel
Rosenblum. Operating system support for improving data lo-
cality on CC-NUMA compute servers. In Proceedings of the
7th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 279-
289, October 1996.

[12] Wolf-Dietrich Weber, Scalable Directories for Cache-Coher-
ent Shared-Memory Multiprocessors. Ph.D.thesis, Stanford
University, Stanford, California, January 1993.

[13] Steve Whitney, John McCalpin, Nawaf Bitar, John L. Rich-
ardson, and Luis Stevens. The SGI Origin software environ-
ment and application performance. In Proceedings of
COMPCON Spring ‘97: Forty-Second IEEE Computer Soci-
ety International Conference, pages 165-170, February 1997.

[14] Kenneth Yeager, The MIPS R10000 Superscalar Micropro-
cessor, IEEE Micro, 16(2):28-40, April, 1996.

