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1 Silicon Graphics, Inc. created and produced the cache-

coherent non-uniform memory access (ccNUMA) 

multiprocessor known as the SGI Origin 2000. The Origin 

system is a multiprocessor that can scale to both low and high 

processor counts without experiencing bandwidth, latency, or 

cost cliffs. The Origin system has a scalable Craylink network 

connecting up to 512 nodes. Each node has up to four 

gigabytes of coherent memory, one or two R10000 

processors, and a connection to the XIO IO subsystem. The 

purpose for creating the Origin 2000 is discussed in this 

paper, after which its architecture and implementation are 

covered. Moreover, performance data for the SPLASH2 and 

NAS Parallel Benchmarks V2.2 apps are shown. Finally, 
The Origin system is then contrasted with other current 

commercial ccNUMA systems. 

Background 

Silicon Graphics has offered multiple generations of symmetric 
multiprocessor (SMP) systems based on the MIPS microproces- 
sors. From the 8 processor R3000-based Power Series to the 36 
processor R4000-based Challenge and R10000-based Power Chal- 
lenge systems, the cache-coherent, globally addressable memory 
architecture of these SMP systems has provided a convenient pro- 
gramming environment for large parallel applications while at the 
same time providing for efficient execution of both parallel and 
throughput based workloads. 
The follow-on system to the Power Challenge needed to meet three 
important goals. First, it needed to scale beyond the 36 processor 
limit of the Power Challenge and provide an infrastructure that 
supports higher performance per processor. Given the factor of 
four processor count increase between the Power Series and Power 
Challenge lines, it was desired to have the next system support at 
least another factor of four in maximum processor count. Second, 
the new system had to retain the cache-coherent globally address- 
able memory model of the Power Challenge. This model is critical 
for achieving high performance on loop-level parallelized code and 
for supporting the existing Power Challenge users. Finally, the en- 
try level and incremental cost of the system was desired to be low- 
er than that of a high-performance SMP, with the cost ideally 
approaching that of a cluster of workstations. 
Simply building a larger and faster snoopy bus-based SMP system 
could not meet all three of these goals. The second goal might be 
achievable, but it would surely compromise performance for larger 
processor counts and costs for smaller configurations. 
Therefore a very different architecture was chosen for use in the 
next generation Origin system. The Origin employs distributed 

 

 

Figure 1 Origin block diagram 
shared memory (DSM), with cache coherence maintained via a di- 
rectory-based protocol. A DSM system has the potential for meet- 
ing all three goals: scalability, ease of programming, and cost. The 
directory-based coherence removes the broadcast bottleneck that 
prevents scalability of the snoopy bus-based coherence. The glo- 
bally addressable memory model is retained, although memory ac- 
cess times are no longer uniform. However, as will be shown in 
this paper, Origin was designed to minimize the latency difference 
between remote and local memory and to include hardware and 
software support to insure that most memory references are local. 
Finally, a low initial and incremental cost can be provided if the 
natural modularity of a DSM system is exploited at a relatively fine 
granularity by the product design. 
In the following section of this paper, the scalable shared-memory 
multiprocessing (S2MP) architecture of the Origin is presented. 
Section 3 details the implementation of the Origin 2000. Perfor- 
mance of the Origin 2000 is presented in Section 4. Section 5 com- 
pares the Origin system with other contemporary ccNUMA 
systems. Finally, Section 6 concludes the paper. 

 

2 The Origin S2MP Architecture 

A block diagram of the Origin architecture is shown in Figure 1. 
The basic building block of the Origin system is the dual-processor 
node. In addition to the processors, a node contains up to 4 GB of 
main memory and its corresponding directory memory, and has a 
connection to a portion of the IO subsystem. 
The DSM architecture provides global addressability of all memo- 
ry, and in addition, the IO subsystem is also globally addressable. 
Physical IO operations (PIOs) can be directed from any processor 
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to any IO device. IO devices can DMA to and from all memory in 
the system, not just their local memory. 
While the two processors share the same bus connected to the Hub, 
they do not function as a snoopy cluster. Instead they operate as 
two separate processors multiplexed over the single physical bus 
(done to save Hub pins). This is different from many other ccNU- 
MA systems, where the node is a SMP cluster. Origin does not em- 
ploy a SMP cluster in order to reduce both the local and remote 
memory latency, and to increase remote memory bandwidth. Local 
memory latency is reduced because the bus can be run at a much 
higher frequency when it needs to support only one or two proces- 
sor than when it must support large numbers of processors. Re- 
mote memory latency is also reduced by a higher frequency bus, 
and in addition because a request made in a snoopy bus cluster 
must generally wait for the result of the snoop before being for- 
warded to the remote node[7]. Remote bandwidth can be lower in a 
system with a SMP cluster node if memory data is sent across the 
remote data bus before being sent to the network, as is commonly 
done in DSM systems with SMP-based nodes[7][8]. For remote re- 
quests, the data will traverse the data bus at both the remote node 
and at the local node of the requestor, leading to the remote band- 
width being one-half the local bandwidth. One of the major goals 
for the Origin system was to keep both absolute memory latency 
and the ratio of remote to local latency as low as possible and to 
provide remote memory bandwidth equal to local memory band- 
width in order to provide an easy migration path for existing SMP 
software. As we will show in the paper, the Origin system does ac- 
complish both goals, whereas in Section 6 we see that all the 
snoopy-bus clustered ccNUMA systems do not achieve all of these 
goals. 
In addition to keeping the ratio of remote memory to local memory 
latency low, Origin also includes architectural features to address 
the NUMA aspects of the machine. First, a combination of hard- 
ware and software features are provided for effective page migra- 
tion and replication. Page migration and replication is important as 
it reduces effective memory latency by satisfying a greater percent- 
age of accesses locally. To support page migration Origin provides 
per-page hardware memory reference counters, contains a block 
copy engine that is able to copy data at near peak memory speeds, 
and has mechanisms for reducing the cost of TLB updates. 
Other performance features of the architecture include a high-per- 
formance local and global interconnect design, coherence protocol 
features to minimize latency and bandwidth per access, and a rich 
set of synchronization primitives. The intra-node interconnect con- 
sists of single Hub chip that implements a full four-way crossbar 
between processors, local memory, and the I/O and network inter- 
faces. The global interconnect is based on a six-ported router chip 
configured in a multi-level fat-hypercube topology. 
The coherence protocol supports a clean-exclusive state to mini- 
mize latency on read-modify-write operations. Further, it allows 
cache dropping of clean-exclusive or shared data without notifying 
the directory in order to minimize the impact on memory/directory 
bandwidth caused by directory coherence. The architecture also 
supports request forwarding to reduce the latency of interprocessor 
communication. 
For effective synchronization in large systems, the Origin system 
provides fetch-and-op primitives on memory in addition to the 
standard MIPS load-linked/store-conditional (LL/SC) instructions. 
These operations greatly reduce the serialization for highly con- 
tended locks and barrier operations. 
Origin includes many features to enhance reliability and availabili- 
ty. All external cache SRAM and main memory and directory 
DRAM are protected by a SECDED ECC code. Furthermore, all 
high-speed router and I/O links are protected by a full CRC code 
and a hardware link-level protocol that detects and automatically 
retries faulty packets. Origin’s modular design provides the overall 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 SPIDER ASIC block diagram 

basis for a highly available hardware architecture. The flexible 
routing network supports multiple paths between nodes, partial 
population of the interconnect, and the hot plugging of cabled- 
links that permits the bypass, service, and reintegration of faulty 
hardware. 
To address software availability in large systems, Origin provides 
access protection rights on both memory and IO devices. These ac- 
cess protection rights prevent unauthorized nodes from being able 
to modify memory or IO and allows an operating system to be 
structured into cells or partitions with containment of most failures 
to within a given partition[10][13]. 

 

3 The Origin Implementation 

While existence proofs for the DSM architecture have been avail- 
able in the academic community for some time[1][6], the key to 
commercial success of this architecture will be an aggressive im- 
plementation that provides for a truly scalable system with low 
memory latency and no unexpected bandwidth bottlenecks. In this 
section we explore how the Origin 2000 implementation meets this 
goal. We start by exploring the global interconnect of the system. 
We then present an overview of the cache coherence protocol, fol- 
lowed with a discussion of the node design. The IO subsystem is 
explored next, and then the various subsystems are tied together 
with the presentation of the product design. Finally, this section 
ends with a discussion of interesting performance features of the 
Origin system. 

 Network Topology 

The interconnect employed in the Origin 2000 system is based on 
the SGI SPIDER router chip[4]. A block diagram of this chip is 
shown in Figure 2. The main features of the SPIDER chip are: 
● six pairs of unidirectional links per router 

● low latency (41 ns pin-to-pin) wormhole routing 

● DAMQ buffer structures[4] with global arbitration to maxi- 
mize utilization under load. 

● four virtual channels per physical channel 

● congestion control allowing messages to adaptively switch 
between two virtual channels 
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Figure 3 32P and 64P Bristled Hypercubes 
 

 
Figure 4 128P Heirarchical Fat Bristled 

Hypercube 

● support for 256 levels of message priority with increased pri- 
ority via packet aging 

● CRC checking on each packet with retransmission on error 
via a go-back-n sliding window protocol 

● software programmable routing tables 

The Origin 2000 employs SPIDER routers to create a bristled fat 
hypercube interconnect topology. The network topology is bristled 
in that two nodes are connected to a single router instead of one. 
The fat hypercube comes into play for systems beyond 32 nodes 
(64 processors). For up to 32 nodes, the routers connect in a bris- 
tled hypercube as shown in Figure 3. The SPIDER routers are la- 
beled using R, the nodes are the block boxes connecting to the 
routers. In the 32 processor configuration, the otherwise unused 
SPIDER ports are shown as dotted lines being used for Express 
Links which connect the corners of the cube, thereby reducing la- 
tency and increasing bisection bandwidth. 
Beyond 64 processors, a hierarchical fat hypercube is employed. 
Figure 4 shows the topology of a 128 processor Origin system. The 
vertices of four 32-processor hypercubes are connected to eight 
meta-routers. To scale up to 1024 processors, each of the single 
meta-routers in the 128 processor system is replaced with a 5-D 
hypercubes. 

 Cache Coherence Protocol 

The cache coherence protocol employed in Origin is similar to the 
Stanford DASH protocol[6], but has several significant perfor- 

mance improvements. Like the DASH protocol, the Origin cache 
coherence protocol is non-blocking. Memory can satisfy any in- 
coming request immediately; it never buffers requests while wait- 
ing for another message to arrive. The Origin protocol also 
employs the request forwarding of the DASH protocol for three 
party transactions. Request forwarding reduces the latency of re- 
quests which target a cache line that is owned by another proces- 
sor. 
The Origin coherence protocol has several enhancements over the 
DASH protocol. First, the Clean-exclusive (CEX) processor cache 
state (also known as the exclusive state in MESI) is fully supported 
by the Origin protocol. This state allows for efficient execution of 
read-modify-write accesses since there is only a single fetch of the 
cache line from memory. The protocol also permits the processor 
to replace a CEX cache line without notifying the directory. The 
Origin protocol is able to detect a rerequest by a processor that had 
replaced a CEX cache line and immediately satisfy that request 
from memory. Support of CEX state in this manner is very impor- 
tant for single process performance as much of the gains from the 
CEX state would be lost if directory bandwidth was needed each 
time a processor replaced a CEX line. By adding protocol com- 
plexity to allow for the “silent” CEX replacement, all of the advan- 
tages of the CEX state are realized. 
The second enhancement of the Origin protocol over DASH is full 
support of upgrade requests which move a line from a shared to ex- 
clusive state without the bandwidth and latency overhead of trans- 
ferring the memory data. 
For handling incoming I/O DMA data, Origin employs a write-in- 
validate transaction that uses only a single memory write as op- 
posed to the processor’s normal write-allocate plus writeback. This 
transaction is fully cache coherent (i.e., any cache invalidations/in- 
terventions required by the directory are sent), and increases I/O 
DMA bandwidth by as much as a factor of two. 
Origin’s protocol is fully insensitive to network ordering. Messag- 
es are allowed to bypass each other in the network and the protocol 
detects and resolves all of these out-of-order message deliveries. 
This allows Origin to employ adaptive routing in its network to 
deal with network congestion. 
The Origin protocol uses a more sophisticated network deadlock 
avoidance scheme than DASH. As in DASH, two separate net- 
works are provided for requests and replies (implemented in Ori- 
gin via different virtual channels). The Origin protocol does have 
requests which generate additional requests (these additional re- 
quests are referred to as interventions or invalidations). This re- 
quest-to-request dependency could lead to deadlock in the request 
network. In DASH, this deadlock was broken by detecting a poten- 
tial deadlock situation and sending negative-acknowledgments 
(NAKs) to all requests which needed to generate additional re- 
quests to be serviced until the potential deadlock situation was re- 
solved. In Origin, rather than sending NAKs in such a situation, a 
backoff intervention or invalidate is sent to the requestor on the re- 
ply network. The backoff message contains either the target of the 
intervention or the list of sharers to invalidate, and is used to signal 
the requestor that the memory was unable to generate the interven- 
tion or invalidation directly and therefore the requestor must gener- 
ate that message instead. The requestor can always sink the 
backoff reply, which causes the requestor to then queue up the in- 
tervention or invalidate for injection into the request network as 
soon as the request network allows. The backoff intervention or in- 
validate changes the request-intervention-reply chain to two re- 
quest-reply chains (one chain being the request-backoff message, 
one being the intervention-reply chain), with the two networks pre- 
venting deadlock on these two request-reply chains. The ability to 
generate backoff interventions and invalidations allows for better 
forward progress in the face of very heavily loaded systems since 
the deadlock detection in both DASH and Origin is conservatively 
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done based on local information, and a processor that receives a 
backoff is guaranteed that it will eventually receive the data, while 
a processor that receives a NAK must retry its request. 
Since the Origin system is able to maintain coherence over 1024 
processors, it obviously employs a more scalable directory scheme 
than in DASH. For tracking sharers, Origin supports a bit-vector 
directory format with either 16 or 64 bits. Each bit represents a 
node, so with a single bit to node correspondence the directory can 
track up to a maximum of 128 processors. For systems with greater 
than 64 nodes, Origin dynamically selects between a full bit vector 
and coarse bit vector[12] depending on where the sharers are locat- 
ed. This dynamic selection is based on the machine being divided 
into up to eight 64 node octants. If all the processors sharing the 
cache line are from the same octant, the full bit vector is used (in 
conjunction with a 3-bit octant identifier). If the processors sharing 
the cache line are from different octants, a coarse bit vector where 
each bit represents eight nodes is employed. 
Finally, the coherence protocol includes an important feature for 
effective page migration known as directory poisoning. The use of 
directory poisoning will be discussed in more detail in Section 3.6. 
A slightly simplified flow of the cache coherence protocol is now 
presented for both read, read-exclusive, and writeback requests. 
We start with the basic flow for a read request. 

1. Processor issues read request. 

2. Read request goes across network to home memory (requests 
to local memory only traverse Hub). 

3. Home memory does memory read and directory lookup. 

4. If directory state is Unowned or Exclusive with requestor as 
owner, transitions to Exclusive and returns an exclusive reply 
to the requestor. Go to 5a. 
If directory state is Shared, the requesting node is marked in 
the bit vector and a shared reply is returned to the requestor. 
Go to 5a. 
If directory state is Exclusive with another owner, transitions 
to Busy-shared with requestor as owner and send out an inter- 
vention shared request to the previous owner and a specula- 
tive reply to the requestor. Go to 5b. 
If directory state is Busy, a negative acknowledgment is sent 
to the requestor, who must retry the request. QED 

5a. Processor receives exclusive or shared reply and fills cache in 
CEX or shared (SHD) state respectively. QED 

5b. Intervention shared received by owner. If owner has a dirty 
copy it sends an shared response to the requestor and a shar- 
ing writeback to the directory. If owner has a clean-exclusive 
or invalid copy it sends an shared ack (no data) to the request- 
or and a sharing transfer (no data) to the directory. 

6a. Directory receives shared writeback or shared transfer, up- 
dates memory (only if shared writeback) and transitions to the 
shared state. 

6b. Processor receives both speculative reply and shared response 
or ack. Cache filled in SHD state with data from response (if 
shared response) or data from speculative reply (if shared 
ack). QED 

The following list details the basic flow for a read-exclusive re- 
quest. 

1. Processor issues read-exclusive request. 

2. Read-exclusive request goes across network to home memory 
(only traverses Hub if local). 

3. Home memory does memory read and directory lookup. 

4. If directory state is Unowned or Exclusive with requestor as 
owner, transitions to Exclusive and returns an exclusive reply 
to the requestor. Go to 5a. 
If directory state is Shared, transitions to Exclusive and a ex- 
clusive reply with invalidates pending is returned to the re- 

questor. Invalidations are sent to the sharers. Go to 5b. 
If directory state is Exclusive with another owner, transitions 
to Busy-Exclusive with requestor as owner and sends out an 
intervention exclusive request to the previous owner and a 
speculative reply to the requestor. Go to 5c. 
If directory state is Busy, a negative acknowledgment is sent 
to the requestor, who must retry the request. QED 

5a. Processor receives exclusive reply and fills cache in dirty ex- 
clusive (DEX) state. QED 

5b. Invalidates received by sharers. Caches invalidated and invali- 
date acknowledgments sent to requestor. Go to 6a. 

5c. Intervention shared received by owner. If owner has a dirty 
copy it sends an exclusive response to the requestor and a 
dirty transfer (no data) to the directory. If owner has a clean- 
exclusive or invalid copy it sends an exclusive ack to the re- 
questor and a dirty transfer to the directory. Go to 6b. 

6a. Processor receives exclusive reply with invalidates pending 
and all invalidate acks. (Exclusive reply with invalidates 
pending has count of invalidate acks to expect.) Processor fills 
cache in DEX state. QED 

6b. Directory receives dirty transfer and transitions to the exclu- 
sive state with new owner. 

6c. Processor receives both speculative reply and exclusive re- 
sponse or ack. Cache filled in DEX state with data from re- 
sponse (if exclusive response) or data from speculative reply 
(if exclusive ack). QED 

The flow for an upgrade (write hit to SHD state) is similar to the 
read-exclusive, except it only succeeds for the case where the di- 
rectory is in the shared state (and the equivalent reply to the exclu- 
sive reply with invalidates pending does not need to send the 
memory data). In all other cases a negative acknowledgment is 
sent to the requestor in response to the upgrade request. 
Finally, the flow for a writeback request is presented. Note that if a 
writeback encounters the directory in one of the busy states, this 
means that the writeback was issued before an intervention target- 
ing the cache line being written back made it to the writeback issu- 
er. This race is resolved in the Origin protocol by “bouncing” the 
writeback data off the memory as a response to the processor that 
caused the intervention, and sending a special type of writeback 
acknowledgment that informs the writeback issuer to wait for (and 
then ignore) the intervention in addition to the writeback acknowl- 
edgment. 

1. Processor issues writeback request. 

2. Writeback request goes across network to home memory 
(only traverses Hub if local). 

3. Home memory does memory write and directory lookup. 

4. If directory state is Exclusive with requestor as owner, transi- 
tions to Unowned and returns a writeback exclusive acknowl- 
edge to the requestor. Go to 5a. 
If directory state is Busy-shared, transitions to Shared, a 
shared response is returned to the owner marked in the direc- 
tory. A writeback busy acknowledgment is also sent to the re- 
questor. Go to 5b. 
If directory state is Busy-exclusive, transitions to Exclusive, 
an exclusive response is returned to the owner marked in the 
directory. A writeback busy acknowledgment is also sent to 
the requestor. Go to 5b. 

5a. Processor receives writeback exclusive acknowledgment. 
QED 

5b. Processor receives both a writeback busy acknowledgment 
and an intervention. QED 

 

 Node Design 

The design of an Origin node fits on a single 16” x 11” printed cir- 
cuit board. A drawing of the Origin node board is shown in Figure 
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Figure 6 Hub ASIC block diagram 
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Figure 5   An Origin node board 

5. At the bottom of the board are two R10000 processors with their 
secondary caches. The R10000 is a four-way out-of-order super- 
scalar processor[14]. Current Origin systems run the processor at 
195 MHz and contain 4 MB secondary caches. Each processor and 
its secondary cache is mounted on a horizontal in-line memory 
module (HIMM) daughter card. The HIMM is parallel to the main 
node card and connects via low-inductance fuzz-button processor 
and HIMM interposers. The system interface buses of the R10000s 
are connected to the Hub chip. The Hub chip also has connections 
to the memory and directory on the node board, and has two ports 
that exit the node board via the 300-pin CPOP (compression pad- 
on-pad) connector. These two ports are the Craylink connection to 
router network and the XIO connection to the IO subsystem. 
As was mentioned in Section 3.2, a 16 bit-vector directory format 
and a 64 bit-vector format are supported by the Origin system. The 
directory that implements the 16-bit vector format is located on the 
same DIMMs as main memory. For systems larger than 32 proces- 
sors, additional expansion directory is needed. These expansion di- 
rectory slots, shown to the left of the Hub chip in Figure 5, operate 
by expanding the width of the standard directory included on the 
main memory boards. The Hub chip operates on standard 16-bit 
directory entries by converting them to expanded entries upon their 
entry into the Hub chip. All directory operations within the Hub 
chip are done on the expanded directory entries, and the results are 
then converted back to standard entries before being written back 
to the directory memory. Expanded directory entries obviously by- 
pass the conversion stages. 
Figure 6 shows a block diagram of the Hub chip. The hub chip is 
divided into five major sections: the crossbar (XB), the IO inter- 
face (II), the network interface (NI), the processor interface (PI), 
and the memory and directory interface (MD). All the interfaces 
communicate with each other via FIFOs that connect to the cross- 
bar. 
The IO interface contains the translation logic for interfacing to the 
XIO IO subsystem. The XIO subsystem is based on the same low- 
level signalling protocol as the Craylink network (and uses the 
same interface block to the XIO pins as in the SPIDER router of 
Figure 2), but utilizes a different higher level message protocol. 
The IO section also contains the logic for two block transfer en- 
gines (BTEs) which are able to do memory to memory copies at 

 

 

near the peak of a node’s memory bandwidth. It also implements 
the IO request tracking portion of the cache coherence protocol via 
the IO request buffers (IRB) and the IO protocol table. The IRB 
tracks both full and partial cache line DMA requests by IO devices 
as well as full cache line requests by the BTEs. 
The network interface takes messages from the II, PI, and MD and 
sends them out on the Craylink network. It also receives incoming 
messages for the MD, PI, II, and local Hub registers from the 
Craylink network. Routing tables for outgoing messages are pro- 
vided in the NI as the software programmable routing of the SPI- 
DER chip is pipelined by one network hop[4]. The NI also is 
responsible for taking a compact intra-Hub version of the invalida- 
tion message resulting from a coherence operation (a bit-vector 
representation) and generating the multiple unicast invalidate mes- 
sages required by that message. 
The processor interface contains the logic for implementing the re- 
quest tracking for both processors. Read and write requests are 
tracked via a coherent request buffer (CRB), with one CRB per 
processor. The PI also includes the protocol table for its portion of 
the cache coherence protocol. The PI also has logic for controlling 
the flow of requests to and from the R10000 processors and con- 
tains the logic for generating interrupts to the processors. 
Finally, the memory/directory section contains logic for sequenc- 
ing the external memory and directory synchronous DRAMs 
(SDRAMs). Memory on a node is banked 4-32 way depending on 
how many memory DIMMs are populated. Requests to different 
banks and requests to the same page within a bank as the previous 
request can be serviced at minimum latency and full bandwidth. 
Directory operations are performed in parallel with the memory 
data access. A complete directory entry (and page reference 
counter, as will be discussed in Section 3.6) read-modify-write can 
be performed in the same amount of time it takes to fetch the 128B 
cache line from memory. The MD performs the directory portion 
of the cache coherence protocol via its protocol table and generates 
the appropriate requests and/or replies for all incoming messages. 
The MD also contains a small fetch-and-op cache which sits in 
front of the memory. This fetch-and-op cache allows fetch-and-op 
variables that hit in the cache to be updated at the minimum net- 
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Port SysAD Mem XIO Craylink 

GB/s 0.78 0.78 1.56 1.56 

Table 1 Hub ASIC port bandwidths 

 

Section XB IO NI PI MD 

K gates 246 296 56 133 77 

Table 2 Hub ASIC gate count 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 7   Example IO subsystem block diagram 

work reply serialization rate of 41 ns instead of at the much slower 
SDRAM read-modify-write timing. 
Note that all the protocol tables in the Hub are hard-wired. While 
programmable protocol engines can come close to achieving the 
performance of a hard-wired protocol state machine[5][9], we opt- 
ed for hard-wiring the protocol to minimize latency and maximize 
bandwidth. We were also concerned about the variability in latency 
and bandwidth given the caching of directory information used by 
most programmable approaches. To ensure that the cache coher- 
ence protocol implemented in the tables was correct, we employed 
formal verification[3]. Formal verification worked extremely well; 
no bugs have been found in the Origin cache coherence protocol 
since the formal verification was completed. 
The raw data bandwidth of the Hub chip ports is listed in Table 1. 
A summary of the sizes of the units is shown in Table 2. Note that 
most of the chip is allocated either to interfacing to the IO sub- 
system or in the crossbar itself, rather than in implementing global 
cache coherence. 

 IO Subsystem 

Not too surprisingly, the Origin system also utilizes crossbars in its 
IO subsystem. Figure 7 shows one possible configuration of IO 
cards connected to two nodes. Using the same link technology as 
in the Craylink interconnect, each Hub link provides a peak of 1.56 
GB/sec of bandwidth to the six XIO cards connected to it (actually 
limited to half this amount if only local memory bandwidth is con- 
sidered). At the heart of the IO subsystem is the Crossbow (Xbow) 
ASIC, which has many similarities with the SPIDER router. The 
primary differences between the Xbow and the router is a simplifi- 

Table 3      Origin IO boards 

cation of the Xbow buffering and arbitration protocols given the 
chips more limited configuration. These simplifications reduce 
costs and permit eight ports to be integrated on a single chip. Some 
of the main features of the Xbow are: 
● eight XIO ports, connected in Origin to 2 nodes and 6 XIO 

cards. 

● two virtual channels per physical channel 

● low latency wormhole routing 

● support for allocated bandwidth of messages from particular 
devices 

● CRC checking on each packet with retransmission on error 
via a go-back-n sliding window protocol 

The Crossbow has support in its arbiter for allocating a portion of 
the bandwidth to a given IO device. This feature is important for 
certain system applications such as video on demand. 
A large number of XIO cards are available to connect to the Cross- 
bow. Table 3 contains a listing of the common XIO cards. The 
highest performance XIO cards connect directly to the XIO, but 
most of the cards bridge XIO to an embedded PCI bus with multi- 
ple external interfaces. The IO bandwidth together with integration 
provide IO performance which is effectively added as a PCI-bus at 
a time versus individual PCI cards. 

 Product Design 

The Origin 2000 is a highly modular design. The basic building 
block is the deskside module, which has slots for 4 node boards, 2 
router boards, and 12 XIO boards. The module also includes a 
CDROM and up to 5 Ultra SCSI devices. Figure 8 shows a block 
diagram of the deskside module, while Figure 9 shows a rear-view 
perspective of a deskside system. The system has a central mid- 
plane, which has two Crossbow chips mounted on it. The 4 node 
and 12 XIO boards plug into the midplane from the rear of the sys- 
tem, while the 2 router boards, the power supply and the UltraSCSI 
devices plug into the midplane from the front of the system. 
A module can be used as a stand-alone deskside system or two 
modules (without the deskside plastic skins) can be mounted in a 
rack to form a 16 processor system. In addition to the two mod- 
ules, the rack also includes a disk bay for up to 8 additional disks. 
One of the modules can be replaced with an Infinite reality graph- 
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Figure 8 Deskside module block diagram 
 

Figure 9 Deskside module, rear view 

ics module or with 4 additional 8-disk bays. An Origin Vault which 
contains 9 8-disk bays in a single rack is also available. Figure 10 
depicts a configured rack supporting 16 processors, 24 XIO 
boards, and 18 UltraSCSI devices. 

 
Figure 10 16 processor Origin system. 

 

 Performance Features 

The Origin system has two features very important for achieving 
good performance in a highly scalable system. First, fetch-and-op 
primitives are provided as uncached operations that occur at the 
memory. Fetch-and-op variables are used for highly contended 
locks, barriers, and other synchronization mechanisms. The typical 
serialization rate (the rate at which a stream of requests can be ser- 
viced) for fetch-and-op variables is 41 ns. In Section 4.1 we will 
show how fetch-and-op variables can improve the performance of 
highly contended objects. 
Second, Origin provides hardware and software support for page 
migration. Page migration is important for NUMA systems as it 
changes many of the cache misses which would have gone to re- 
mote memory to local misses. To help the OS in determining when 
and which page to migrate the Origin system provides an array of 
per-page memory reference counters, which are stored in the direc- 
tory memory. This array is indexed by the nodes in a system (up to 
64 nodes, beyond this 8 nodes share a single counter). When a re- 
quest comes in, its reference counter is read out during the directo- 
ry lookup and incremented. In addition, the reference counter of 
the home node is read out during the same directory lookup. The 
requestor’s count and home count are compared and if the differ- 
ence exceeds a software programmable threshold register (and the 
migration control bits stored with the requestor’s reference counter 
says that this page is a candidate for migration), an interrupt is gen- 
erated to the home node. This interrupt signals a potential migra- 
tion candidate to the operating system. 
When the operating system determines it does indeed want to mi- 
grate the page[13], two operations need to be performed. First, the 
OS needs to copy the page from its current location to a free mem- 
ory page on the requestor’s node. Second, the OS needs to invali- 
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Figure 11 STREAM results - one thread per 
node 

 
 

Table 4 Origin 2000 latencies 
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date all the translations to the old page cached in processor’s TLBs 
and then update the translation for the migrated page to point to the 
new page. 
The block transfer engine allows a 16 KB page to be copied from 
one node’s memory to another in under 30 microseconds. Unfortu- 
nately, in a very large Origin system, the cost to invalidate all the 
TLBs and update the translation using a conventional TLB shoot- 
down algorithm can be 100 microseconds or more, removing much 
of the benefit of providing a fast memory to memory copy. Recent 
page migration research has also identified TLB shootdown as a 
significant cost of page migration[11]. To solve the TLB update 
problem, the directory supports a block transfer copy mode known 
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as directory poisoning, which works as follows. 
During the read phase of the poisoning block copy, in addition to 
reading the data, the directory protocol makes sure the latest copy 
of the data is written back to memory, and the directory is placed in 
the POISON state. Any access by a processor to a poisoned direc- 
tory entry during the copy will result in a synchronous bus error. 
The bus error handler is able to quickly determine that the bus er- 
ror was due to page migration, and the handler invalidates the pro- 
cessor’s TLB entry for the page, and then has the process wait for 
the new translation to be produced. 
Once the poisoning block copy has completed, the new translation 
is updated and all processors that took the poison bus error will 
load their TLB with the new translation. The poisoned page is now 
placed on a poisoned list to “age”. The operating system invali- 
dates one sequential TLB entry per scheduler tick, so after a time 
equal to the number of per-processor TLB entries times the period 
between scheduler ticks, the page can be moved off the poisoned 
list and onto the free list. This directory poisoning allows the TLB 
shootdown and page copy to proceed in parallel, and as a result the 
cost to migrate a page is much lower than if a standard TLB shoot- 
down were invoked. This low cost of migration enables the operat- 
ing system to be fairly aggressive in determining when to migrate a 
page. 

 

4 Origin Performance 

This section examines the performance of the Origin system using 
both microbenchmarks to measure latencies and bandwidths, and 
by using the NAS Parallel Benchmarks V2.2 and the SPLASH2 
suite to measure performance of a set of parallel applications. 

Figure 12 STREAM results - two threads per 
node 

 Microbenchmarks 

The first microbenchmarks examine the latency and bandwidth of 
the Origin memory system. Table 4 shows the latency measured 
for a memory reference in isolation. This is the time from when the 
L1 cache is accessed until the instruction associated with the cache 
miss can graduate. The remote latency numbers for 16 and 32 pro- 
cessors assume that express links are employed. 
The STREAM benchmark is the standard memory bandwidth 
benchmark for the high performance computing industry. 
STREAM measures the performance of four simple long vector 
kernels, which are sized to eliminate cache re-use, and reports the 
results in terms of sustained memory bandwidth. On parallel sys- 
tems, STREAM is essentially completely parallel; the only com- 
munication required is for synchronization at the end of execution 
of each kernel. 
On the Origin 2000, each processor can effectively utilize more 
than half of the memory bandwidth available on a node. Thus, 
we’ve included STREAM results in MB/s with only one thread 
running per node in Figure 11, and with two threads running per 
node in Figure 12. 
Table 5 shows the effectiveness of the fetch-and-increment opera- 
tions in implementing a globally shared counter. Note that LL/SC 
does much better for a single processor, at 6.9 million increments/ 
second, since the counter variable and the lock surrounding it 
(which are allocated from the same cache line) stays loaded in the 
processor’s cache, whereas the fetch-and-increment variable is al- 
ways accessed via an uncached reference to local memory, and de- 
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Figure 14 NAS Parallel V2.2 Speedups 

 

Application Command Line 

radiosity -batch -room 

raytrace balls4.env 

lu -n2048 -b16 

ocean -n 1026 

barnes < input.512 

Table 6 SPLASH2 Applications 
 

 
Figure 13 Comparison of LL/SC and fetch-and- 

op for a null doacross loop 

livers only 4.0 million increments/sec. As more processors are 
added, however, the number of increments on the fetch-and-incre- 
ment variable is able to increase to near the fetch-and-op cache 
throughput limit of 24.4 million/sec (one every 41 ns), while the 
number of increments on the LL/SC variable falls off dramatically, 
to under 100 thousand increments/second with 32 processors. Also 
note the drop off in fetch-and-op increments/second between two 
and four processors. With a small number of processors, the num- 
ber of fetch-and-increments achievable per second is limited by the 
fetch-and-increment latency, since each R10000 processor can 
only have a single uncached read outstanding. Therefore with two 
processors, the fetch-and-increment can be allocated locally, 
whereas with four processors, only two of the processors can ac- 
cess the fetch-and-increment variable from local memory, and the 
other two processors must pay the longer remote latency. 
Figure 13 shows the advantages of using fetch-and-op for barrier 
implementation. The graph shows the time to execute a null FOR- 
TRAN doacross statement. In addition to the barrier time, the null 
doacross includes the time to perform the work dispatch to the 
slaves and the execution of one iteration of an empty do-loop. 
Therefore the graph actually understates the performance benefits 
of fetch-and-ops in implementing the barrier itself. 

 Applications 

In this section we examine the performance of the Origin system 
using the NAS Parallel Benchmarks V2.2 Class A and the 
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Figure 15 SPLASH2 Speedups 

 
SPLASH2 suite. Application and operating system tuning is ongo- 
ing, so these results are a snapshot as of late February, 1997. 
Figure 14 shows the performance of the NAS parallel benchmarks 
using the Class A datasets for up to 32 processors. Overall, speed- 
up on the NAS benchmarks is very good. For several of the bench- 
marks, superlinear speedups are achieved due to the larger total 
cache size and memory bandwidth available as the number of pro- 
cessors (and therefore the number of nodes) increases. 
Table 6 lists the applications run from the SPLASH2 suite along 
with their command line arguments. Figure 15 shows speedups for 
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the four SPLASH2 applications and one SPLASH2 kernel on the 
Origin system. Barnes and Ocean get good speedups to 32 proces- 
sors, while Lu starts to roll off beyond 16 processors. Radiosity 
and Raytrace both begin to have speedup fall-off after 8 proces- 
sors, and show very small increases between 16 and 32 processors. 
We have just started our investigation into the performance of the 
SPLASH suite, so we are not certain of the exact cause of the 
speedup roll-off for Lu, Radiosity, and Raytrace. Our benchmark 
machine had a limited amount of total memory, so the small data 
sets for these applications may be a contributor to the limited 
speedup at 32 processors. 

 

5 Related Systems 

The Origin system benefitted from the many lessons the authors 
learned in designing the Stanford DASH[7], so we start by discuss- 
ing the major differences between Origin and DASH. We then con- 
trast the Origin with three contemporary ccNUMA systems: the 
Sequent NUMAQ, the Data General NUMALiiNE, and the Con- 
vex Exemplar X. 

 Stanford DASH 

The differences between the Origin and DASH coherence proto- 
cols was already explored in Section 3.2. The main architectural 
difference between the Origin and DASH systems is that DASH 
employed a four processor SMP cluster as its node[7], while Ori- 
gin uses a two processor node where coherence between the pro- 
cessors in the node is handled by the directory-based protocol. 
The major advantage of a SMP-based node is the potential for 
cache-to-cache sharing within the node. In [7] the 4-way intra- 
node sharing of DASH is shown to produce small performance 
gains for 3 out of 4 SPLASH applications with only the Barnes ap- 
plication showing significant performance gains. 
On the other hand, the disadvantages of the SMP-based nodes are 
three-fold. First, to get to the number of processors where intra- 
node sharing will be significant the bus will most likely not be able 
to be on a single board. This causes local memory latency to be 
longer as the bus must run slower to support the large number of 
devices connected to it and more ASIC crossings will generally be 
between the processor and local memory. In addition, this makes 
the initial cost of the SMP node much higher since even a single 
processor node requires several boards. Second, remote latency 
also increases as requests to remote memory will generally have to 
wait for the results of the local processor snoops before being able 
to issue to the remote memory. Finally, as discussed earlier, the re- 
mote memory bandwidth for a SMP-based node is half the local 
memory bandwidth. In fact, in DASH, the remove memory band- 
width was reduced by a factor of three since each remote memory 
reference needed to traverse the local bus for the initial request, the 
home memory bus to get the data, and the local bus again to return 
the data to the processor. 
While the DASH prototype did suffer increased latency on it’s lo- 
cal memory access time due to the snoopy bus, it did manage to 
have a 3:1 best case (nearest-neighbor) remote to local latency, 
which as we will see when we examine some commercial contem- 
porary systems is quite good for a SMP-based ccNUMA machine. 
Despite being much better than other SMP-based node solutions, 
this ratio is still less than the 2:1 best case (nearest-neighbor) re- 
mote to local latency achieved by Origin. 

 Sequent NUMAQ and DG NUMALiiNE 

The Sequent NUMAQ consists of up to 63 nodes, where each node 
is a 4-processor Pentium Pro-based SMP referred to as a quad[8]. 
The nodes are connected together via an SCI-based ring. Both the 
low-level transport layers and the higher-level coherence protocol 

of the SCI are utilized in the NUMAQ. A programmable protocol 
engine is used to implement the SCI coherence protocol. A full 
board (the Lynx Board) implements the complete interface be- 
tween the Pentium Pro based quad. 
The Sequent NUMAQ is architecturally similar to the Stanford 
DASH, albeit with a different processor, a simpler network topolo- 
gy, and the SCI coherence protocol instead of the DASH coherence 
protocol. It has the same advantages and disadvantages of DASH: 
the local memory latency is good, around 250 ns, but the best case 
remote memory latency is around 8 times the local latency[8]. The 
choice of a ring with its low bisection bandwidth as the intercon- 
nect network causes large degradation in remote latency as the sys- 
tem interconnect becomes loaded. 
The Data General NUMALiiNE is architecturally very similar to 
the Sequent NUMAQ. The node is a Pentium-Pro quad, and the 
nodes are connected via a SCI-based ring. As such it suffers from 
the same limitations in remote latency and network performance as 
the NUMAQ. 

 Convex Exemplar X 

The Convex Exemplar X is similar to earlier Exemplar systems im- 
plementing a crossbar connected set of hyper-nodes that are then 
connected by parallel ring interconnects that implement a modified 
version of the SCI protocol[2]. In the X-class machines the hyper- 
node size has increased from 8 to 16 processors and the four 1-D 
rings have been replaced by eight sets of 2-D rings. Initial configu- 
rations support 64 processors (4 hypernodes), but the machine can 
architecturally scale to 512 processors in an 8x4 torus configura- 
tion. 
The use of a crossbar intra-connect for the hypernode does reduce 
the bandwidth penalty of using an SMP node compared with the 
NUMAQ or NUMALiiNE machines, but still adds to latency in 
comparison with the smaller, more integrated nodes in Origin. 
While no latency data has been published to date, the ratio of local 
to remote in the Exemplar is likely to be similar to previous ma- 
chines (5:1 without loading on small configurations), whereas the 
base numbers in the Origin start at 2:1 in small configurations and 
grow very slowly. 
Another major difference is the use of a third-level cluster cache in 
the Exemplar. This mechanism is in contrast to Origin’s page mi- 
gration mechanism. The cluster cache can adapt to capacity misses 
more quickly then Origin’s migration mechanism, but does this at 
the cost of increased latency for communication misses and misses 
that result from conflicts in the cluster cache. The cluster cache 
also hurts remote bandwidth because it implies that at least three 
DRAM accesses be made per remote miss (one in the local cluster 
cache, one at the home, an additional one or two if the line is held 
dirty in another cluster cache, and a final access to allocate into the 
local cluster cache), leading to remote bandwidth being one-third 
of the local bandwidth. 

 Overall Comparison of DSM Systems 

The major difference between the Convex, Sequent and DG ma- 
chines and the Origin is that the Origin has a much more tightly in- 
tegrated DSM structure with the assumption of treating local 
accesses as an optimization of a general DSM memory reference. 
The other commercial DSM machines add a DSM mechanism on 
top of a relatively large SMP node in which local communication 
and memory accesses are optimized over performance of the gen- 
eral DSM structure. Which one of these models is more appropri- 
ate depends upon a number of factors: 

1. Is scaling the system down in size and cost important? The 
overhead of the SMP nodes sets a minimum on how effective 
such machines can be in small configurations (one to two pro- 
cessors). 
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2. Is the workload primarily throughput oriented, with only a 
small degree of parallelism? If so, the SMP solutions might 
achieve higher performance due to lower communication 
costs between processors within the same SMP node. Oppo- 
sitely, if parallelism beyond the size of the SMP node is im- 
portant, then the latency and bandwidth overheads are likely 
to be very high in comparison to Origin. 

3. Is I/O structured as a global resource or must nodes treat I/O 
as a local resource similar to a distributed memory system? If 
the goal is global accessibility then the tight DSM integration 
of Origin would also be preferred. 

 

6 Conclusions 

The Origin 2000 is a highly scalable server designed to meet the 
needs of both the technical and commercial marketplaces. This is 
accomplished by providing a highly modular system with a low- 
entry point and incremental costs. A bristled fat hypercube net- 
work is used to provide a high bisection bandwidth, low-latency 
interconnect. Low latency to local memory and a low remote to lo- 
cal memory latency ratio allow the existing application base to eas- 
ily migrate their applications from the uniform access of the 
existing SMP Challenge and Power Challenge systems to the 
NUMA Origin systems. Origin also includes several features to 
help the performance of these applications including hardware and 
software support for page migration and fast synchronization. 
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