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Abstract— Throughout this study, we introduce DRAMSim2, a 
simulator for cycle-accurate memory systems. DRAMSim2 aims to be a 
precise and openly accessible model of the DDR2/3 memory system that 
can be applied to both complete system and trace-based simulations. To 
demonstrate the precision of the simulation findings, we present the 
procedure for testing DRAMSim2 timing against manufacturer Verilog 

models. We describe how to simulate entire systems using DRAMSim2 in 
conjunction with a cycle-accurate x86 simulator. Finally, we go over 
DRAMVis, a visualisation programme that lets you compare and graph 
DRAMSim2 simulation results. 

I. INTRODUCTION 

Simulation has become a vital tool for researchers in the computer 

architecture community. Evidence of this can be seen in the prolifera- 

tion of academic and commercial simulators of different architectures, 

levels of detail, and features. Unfortunately, many of these CPU 

simulators overlook the need for accurate models of the memory 

system. Many such simulators include simplistic models of memory 

which fail to account for the highly complex behavior of modern 

memory systems. A typical DDR memory controller reorders and 

schedules requests multiple times while keeping track of dozens of 

timing parameters. Despite the fact that main memory is growing 

both in complexity and as a system-level bottleneck, ‘cycle accurate’ 

CPU simulators often attach a fixed latency to memory accesses, 

significantly under-reporting the real effect of the memory system. 

To help fill the void of accurate memory system simulators, 

we present DRAMSim21, a cycle-accurate DDR2/3 simulator. The 

major goal of DRAMSim2 is to provide an easy to integrate and 

accurate DDR2/3 memory model. DRAMSim2 focuses on having 

a very simple programming interface and object oriented design 

while still being configurable. Additionally, DRAMSim2 provides 

a verification tool that can be used to validate the results of any 

DRAMSim2 simulation, regardless of the front end driver2 Finally, 

DRAMSim2 provides a robust visualization tool, DRAMVis, that 

enables the user to visualize and compare the effects of memory 

system parameters on key performance metrics such as bandwidth, 

latency, and power. A focus on usability, ease of integration, and 

supporting tools is what motivated us to create a brand new simulator 

instead of using an existing one. We believe these features make 

DRAMSim2 a valuable tool for computer architecture researchers 

that want to include memory models in their research. 

One of the first attempts to provide a detailed model of main 

memory was DRAMSim [1], software designed to explore memory 

systems concepts by providing models for many types of memory 

systems (such as SDRAM, DDR, and FBDIMM). Several other 

DRAM simulators have been mentioned in the literature such as 

dsim [2] and rascas [3], but neither simulator appears to be publicly 

available today. 

 
1DRAMSim2 is available at http://www.ece.umd.edu/dramsim/ 
2A ”driver” is any code that instantiates a MemorySystem object and 

issues requests (e.g. trace, CPU simulator, etc.) 
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Fig. 1. Overview of DRAMSim2 components. The MemorySystem 
wrapper provides a simple user interface for any front end driver. 

 

 

The structure of the paper is as follows: section II describes the 

basic architecture of DRAMSim2, section III talks about the chal- 

lenges and approach to verifying the simulator, section IV presents a 

full system simulation environment using the MARSSx86 simulator, 

section V describes DRAMVis, our cross platform visualization tool 

for DRAMSim2, and VI concludes. 

II. DRAMSIM2   ARCHITECTURE 

DRAMSim2 is implemented in C++ as an object oriented model 

of a DDR2/3 memory system that includes a detailed, cycle accu- 

rate model of a memory controller that issues commands to a set 

of DRAM devices attached to a standard memory bus. A block 

diagram of the major components of DRAMSim2 is illustrated in 

Fig.1. The DRAMSim2 core is wrapped in a single object called 

MemorySystem. A memory system object requires two ini files: 

a device ini file and a system ini file. A device ini file contains 

parameters that describe a specific DRAM device such as the timing 

constraints and power consumption of the device. These parameters 

can be found on manufacturer data sheets which are available on their 

websites. The DRAMSim2 package contains several device ini files 

for Micron DDR2/3 devices of varying densities and speed grades. 

The system ini file consists of parameters that are independent of the 

actual DRAM device. These include parameters such as the number 

of ranks, the address mapping scheme, debug options, row buffer 

policies, memory controller queue structures, and other simulation 

details. 

After a MemorySystem object is created, the driver code registers 

a callback function to be executed when a request completes. At this 

point, the initialization of DRAMSim2 is complete. The driver code 

must call a function for each memory system clock tick and another 

function to add memory requests. Upon completion of a memory 
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request several clock cycles later, DRAMSim2 calls the supplied 

callback function to let the front end driver know that the request is 

finished. The number of clock cycles between when a request is added 

to DRAMSim2 and when it completes varies with the current memory 

system state. Because the internals of the simulator are encapsulated 

into an interface that consists of just a few functions, it is easy to 

attach DRAMSim2 to any type of front end driver such as a trace 

reader, a cycle accurate CPU simulator such as MARSSx86 [4], or 

a discrete event simulation framework such as SST [5]. 

DRAMSim2 can be compiled either as a standalone binary or 

as a shared library. In standalone mode, DRAMSim2 simulates 

commands read from a memory trace on disk. In the shared li- 

brary mode, DRAMSim2 exposes the basic functionality to create 

a MemorySystem object and add requests to it. 

Other than the C++ STL, DRAMSim2 relies on no external 

libraries; thus, it is easy to build on any platform that has the 

GNU C++ compiler installed. We have successfully built and run 

DRAMSim2 on Linux, Windows (with Cygwin), and OSX. 

A. Simulation Internals 

Because manufacturers avoid publishing details about the internals 

of their memory controllers, DRAMSim2 attempts to model a modern 

DDR2/3 memory controller in a general way [6]. Requests from the 

CPU are buffered into a transaction queue in execution order. These 

transactions are converted into DRAM commands and placed into a 

command queue which can have different structures such as per rank 

or per rank per bank. The memory controller maintains the state of 

every memory bank in the system and uses this information to decide 

which request should be issued next. The memory controller is free 

to issue requests from the command queue out of order as long as it 

doesn’t schedule writes ahead of dependent reads or violate timing 

constraints. Issuing requests out of order helps to increase bank usage 

and therefore helps increase bandwidth and lower latency. In open 

page mode, DRAMSim2 will keep rows open and prioritize requests 

to already open rows. This can decrease the overhead of precharging 

rows that might potentially be used in the near future. Alternatively, 

closed page mode will precharge rows immediately after each request; 

this can be beneficial for workloads with poor locality. 

After the simulated DRAM devices receive the commands and 

data from the memory controller, a second set of bank states at the 

ranks are used for error checking to make sure that the timing of the 

received command is valid. If the simulator is compiled in a timing- 

only mode, data from writes are not stored, and data is not included 

in read responses. Alternatively, DRAMSim2 can be configured to 

store data on writes and return data on reads. Many CPU simulators 

and other front-end drivers are not concerned with the actual data, 

so data storage is disabled by default to reduce the memory usage of 

the simulator. 

As reads and writes complete, the simulator keeps track of the 

bandwidth and latency of the requests. These statistics are averaged 

over an epoch, the length of which is configurable by the user. During 

each epoch, the simulator outputs detailed bandwidth, latency, and 

power statistics both to a .vis file and the console (or a log file). The 

resulting .vis file can be loaded into DRAMVis, which is described 

in section V. 

In addition to simulating the state changes due to reads and writes 

from the driver, the DRAMSim2 memory controller also models the 

effects of DRAM refresh. Modeling refresh is important since refresh 

has become a major source of variance in the latency of memory 

requests. Read requests that are issued while a refresh is in progress 

have to wait much longer than other requests. This long latency 

can introduce major performance penalties for processors blocked 

on memory accesses and could significantly impact the performance 

of the system as a whole. 

Finally, DRAMSim2 uses the power model described by Micron in 

[7] to compute the power consumption given the state transitions of 

each bank. DRAMSim2 also includes heuristics to place devices in 

low power mode to reduce power consumption during periods of low 

memory activity. The low power mode can be enabled or disabled 

with a flag in the ini file. 

We omit the description of the actual DRAM timing parameters 

and their interactions since they are beyond the scope of this technical 

overview. A good description of these topics can be found in [1], [8], 

and [9]. 

III. VALIDATION 

A. Validation Challenges 

One of the major design goals of DRAMSim2 has been to focus 

on trying to show that the simulation results are accurate. We believe 

that if one takes the time to create a memory model and the CPU time 

to run the model, then one should also make an effort to show that the 

model produces valid results. A memory system model is non-trivial 

to debug and validate; the memory controller’s scheduling algorithm 

must take into account the state of every memory bank, its adherence 

to over a dozen timing parameters, the interactions between requests 

in multiple queues, and the arbitration of the bus that the devices 

share. 

One of the most important guarantees that a memory simulator 

should make is that it does not violate the timing constraints of the 

DRAM device. Since these timing parameters represent the physical 

constants associated with a device, the simulator must take extra care 

to never issue commands faster than these parameters allow. Doing 

so would create unrealistic performance results with respect to actual 

hardware. This is the case that our validation process tries to eliminate 

since it is the most egregious type of error. 

B. Verilog Model Verification 

DRAM Manufacturers such as Micron often supply Verilog timing 

models for their DDR2/3 DRAM parts. Although default values are 

provided with the models, the Verilog timing parameters can be 

arbitrarily set, allowing the user to simulate any DDR2/3 device. The 

supplied files provide a set of Verilog tasks that simulate the toggling 

of command lines and the transmission of data to the DRAM devices. 

DRAMSim2 models memory ranks receiving commands from a 

simulated memory controller. As DRAM commands (e.g., READ, 

WRITE, PRE) arrive at the simulated ranks, they can be captured 

along with their timing information to a log file. This file is processed 

by a small Ruby script to generate a Verilog output file containing 

calls to the corresponding Verilog task for that command. In other 

words, as the DRAMSim2 memory controller issues commands, these 

commands are executed by the Micron Verilog model with the same 

timing parameters; this indicates whether the DRAMSim2 memory 

controller has violated any timing constraints. 

Three steps are required to run the verification suite. First, the 

VERIFICATION_OUTPUT option must be set in the system.ini 

file to tell DRAMSim2 to capture verification output. The relevant 

timing parameters from the device.ini file must be set in the Verilog 

parameters file by a script. After running DRAMSim2, the verification 

output must be post-processed to generate a Verilog test file. Finally, 

the parameters file and the test file are included along with the 

Micron Verilog files and executed by the ModelSim simulator. We 
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Fig. 2. ModelSim waveform output after running the verification script. Row 0 is activated in bank 0 and a burst of data is written to column 0x2fb. Then, 
without closing the row, column 0x2fb is read back and the data is compared to see if it is correct. Finally, a precharge command is issued to close the row. 

 
 

 
 

Fig. 3. An overview of the DRAMSim2 verification process. 

 

 
have provided a small Ruby script that automates all of these tasks. 

The overall verification process is shown in Fig.3. 

Currently, we have implemented two verification modes. In the 

timing-only mode, only a single device is instantiated per memory 

rank. Since all devices in a rank receive the same control signals, 

simulating one device per rank is sufficient to capture all timing 

violations. This mode executes quickly because the Verilog simulator 

must only model a single device per rank instead of the usual 4-16 

devices per rank. The disadvantage of this mode is that only a portion 

of the data is retrieved on a read; thus, data verification is not possible. 

The second verification mode populates a full rank of devices. The 

verification script generates read_verify() calls which contain 

the DRAMSim2 data that is read. The read_verify() command 

compares the DRAMSim2 data and the Verilog data to detect any data 

discrepancies as well as any timing violations. Unlike traditional unit 

tests that are carefully tailored to test specific cases, our validation 

procedure can be used with any DRAMSim2 simulation regardless 

of which driver generated the results. The Verilog simulations can be 

easily batched using ModelSim’s command line interface or can be 

run interactively to generate a waveform output of the device signals 

such as in Fig.2. Although this type of validation scheme has been 

proposed in the past, to our knowledge it has never been implemented 

[3]. 

IV. FULL   SYSTEM   SIMULATION 

Although memory is becoming more and more of a bottleneck, 

most CPU simulators have an extremely simple main memory model 

[10]. At best this consists of a bank conflict model: if subsequent 

requests go to the same memory bank, an extra fixed latency is added 

to the memory request. In the worst case, the memory model is a 

simple fixed latency. Even extremely detailed CPU simulators such 

as PTLSim [11] use a fixed latency model. 

This approach is problematic because the dynamics of the CPU 

and memory are highly intertwined. Growing scheduling complexity 

in the memory system can result in highly variable latencies for 

memory requests based on the application request stream [8], [12]. 

Since processors spend a significant portion of execution time waiting 

for outstanding memory requests, accurately modeling the memory 

system is the only way to obtain meaningful full system results. 

Consequently, the real value of DRAMSim2 is to fill the void of 

publicly available DRAM simulators that are easily integrated into a 

full system simulation environment. 

We set out to create such a simulation environment by choosing 

a CPU simulator and integrating DRAMSim2. We had several cri- 

teria in mind: multi-threaded simulation capability to run modern 

workloads capable of stressing the memory system; full system 

simulation mode to capture the effects of virtual memory and the 

kernel; reasonably fast simulation speed; an x86 CPU model; and 

the ability to integrate DRAMSim2 with minimal effort. 

In the end, we chose a simulator called MARSSx86. This simu- 

lator expands on the extremely detailed x86 core models found in 

PTLSim/X by adding multicore support and a malleable MESI cache 

hierarchy. Additionally, MARSSx86 replaces the Xen hypervisor in 

PTLSim/X with the open source QEMU emulator, making it easier 

to integrate DRAMSim2. Although MARSSx86 runs completely in 

user mode, it achieves impressive simulation rates that have allowed 

us to run simulations with up to eight cores in a reasonable amount 

of time. 

Integrating DRAMSim2 into MARSSx86 was relatively straight 

forward because both simulators are cycle-based. The MARSSx86 

MemoryHierarchy object receives a clock tick of a user- 

controllable frequency. This clock is divided down and is used to call 

the DRAMSim2 clock function at the desired memory bus speed for 

the DRAM part. The default fixed memory latency in MARSSx86 

is replaced with calls to add requests to DRAMSim2; a callback 

function within MARSSx86 sends these requests back through the 

cache hierarchy to the CPU when they are complete. 

We simulated a dual-core CPU with 2GB of memory running 

a subset of the PARSEC [13] benchmarks. When compared with 

MARSSx86’s default fixed latency memory model, the simulation 

time increased by between 16-53% (average of 30%) when using 

DRAMSim2. Though these benchmarks provide a rough estimate, the 

performance overheads of DRAMSim2 will vary greatly with system 

parameters such as number of cores, number of ranks, aggressiveness 

of scheduling policy, workload memory intensity, etc. However, we 

believe that the modest increase in simulation time is a fair price to 

pay for increased accuracy. 

The patched MARSSx86 code that supports DRAMSim2 is pub- 

licly available through the DRAMSim2 website. 
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Fig. 4. DRAMVis comparing the effect of address mapping scheme on the power consumption of the “fluidanimate” benchmark from the PARSEC suite. 
Plots can be directly exported from the tool in png format. 

 

V. VISUALIZING   AND   COMPARING   RESULTS: DRAMVIS 

By default, DRAMSim2 prints a summary of the bandwidth, la- 

tency, and power for each simulation epoch. While this approach can 

be useful for looking at the output of short simulations, it is not very 

enlightening for simulations of real programs that execute for billions 

of cycles. To help understand and compare the output of DRAMSim2, 

we’ve developed a visualization tool which we call DRAMVis. Every 

DRAMSim2 simulation generates a .vis file in the results directory. 

The .vis file contains a summary of the simulation parameters along 

with the power and performance statistics for each epoch. DRAMVis 

plots the .vis file data and displays the parameters of the simulation 

in the left pane. DRAMVis loads previous simulation results that can 

be plotted on the same axes for easy comparison. 

Fig.4 shows the power consumption of a DRAMSim2 simulation 

of the PARSEC benchmark “fluidanimate”. The simulation was run 

with MARSSx86 with two different address mapping schemes. The 

stacked bar graph shows the power components color coded by rank 

along with an average power line. While both graphs exhibit the 

same overall pattern, the right graph has higher power peaks and 

stresses both ranks of memory rather than just one. Furthermore, 

the higher power consumption is in part due to higher burst power, 

which implies higher bandwidth for the right graph (switching to 

the bandwidth tab and comparing the two graphs also confirms this 

observation). 

DRAMVis supports standard graph interactions such as zooming 

and panning as well as breaking down latency and bandwidth by 

rank or by bank. Additionally, it can serve as a front end to run trace-

based simulations. By changing some parameters and pressing the 

run button, DRAMVis invokes DRAMSim2 and adds the result to 

the interface, allowing the user to see instantly the effects of the 

parameter changes. 

VI. CONCLUSION 

In this paper we present a technical overview of DRAMSim2, a 

cycle-accurate memory system simulator. DRAMSim2 has a strong 

focus on being accurate and easy to integrate. We describe the 

simulator and our verification strategy as well as our full system sim- 

ulation environment using MARSSx86. Additionally, we discuss our 

visualization and comparison tool, DRAMVis. The source code to all 

of the tools described in this paper are available on the DRAMSim2 

website. Overall, we feel that DRAMSim2 is an invaluable tool for 

the growing use of simulation in the computer architecture field. 
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