
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 728 Copyright @ 2021 Authors

A Estimation Model for CPU-GPU Data processing is
Multi2Sim

Dr. Dhaneswar Parida*, Mrs. Banashree Dash

Dept. OF Computer Science and Engineering, NIT , BBSR

dhaneswar@thenalanda.com*,banashree@thenalanda.com

ABSTRACT

For the appropriate design and evaluation of any computing

platform, accurate simulation is crucial. Researchers require a

simulation framework that can mimic both types of computing

devices and their interaction as we approach closer to the CPU-

GPU heterogeneous computing era. In this study, we introduce

Multi2Sim, a modular, open-source toolbox that allows for

complete configuration and ISA-level modelling of an AMD

Evergreen GPU and an x86 CPU. We use AMD's OpenCL

benchmark suite to address programme emulation correctness and

architecture simulation accuracy while focusing on a model of the

AMD Radeon 5870 GPU. A preliminary architectural explo-

ration study and workload characterisation examples are used to

illustrate the simulation capabilities. Public access to the project

source code, benchmark packages, and a thorough user's manual

is provided at www.multi2sim.org.

1. INTRODUCTION
GPUs have become an important component of High Perfor-

mance Computing (HPC) platforms by accelerating the ever de-

manding data-parallel portions of a wide range of applications. The

success of GPU computing has made microprocessor researchers in

both academia and industry believe that CPU-GPU heterogeneous

computing is not just an alternative, but the future of HPC. Now,

GPUs are showing up as integrated accelerators for general purpose

platforms [8, 5, 9]. This move attempts to leverage the combined

capabilities of multi-core CPU and many-core GPU architectures.

As CPU-GPU heterogeneous computing research gains momen-

tum, the need to provide a robust simulation environment becomes

more critical. Simulation frameworks provide a number of benefits

to researchers. They allow pre-silicon designs to be evaluated and

performance results to be obtained for a range of design points. A

number of CPU simulators supporting simulation at the ISA level

have been developed [11, 14] and successfully used in a range of

architectural studies. Although there are tools that are currently

available for simulating GPUs at the intermediate language level

(e.g., PTX) [12, 13], the research community still lacks a publicly

available framework integrating both fast functional simulation and

cycle-accurate detailed architectural simulation at the ISA level that

considers a true heterogeneous CPU-GPU model.

In this paper we present Multi2Sim, a simulation framework for

CPU-GPU computing. The proposed framework integrates a pub-

licly available model of the data-parallel AMD Evergreen GPU

family [3]1 with the simulation of superscalar, multi-threaded, and

multicore x86 processors. This work also offers important insight

into the architecture of an AMD Evergreen GPU, by describing our

models of instruction pipelines and memory hierarchy, to a deeper

extent than previous public work, to the best of our knowledge, has

done before.

Multi2Sim is provided as a Linux-based command-line toolset,

designed with an emphasis on presenting a user-friendly interface.

It runs OpenCL applications without any source code modifica-

tions, and provides a number of instrumentation capabilities that

enable research in application characterization, code optimization,

compiler optimization, and hardware architecture design. To illus-

trate the utility and power of our toolset, we report on a wide range

of experimental results based on benchmarks taken from AMD’s

Accelerated Parallel Processing (APP) SDK 2.5 [1].

The rest of this paper is organized as follows. Section 2 intro-

duces the functional simulation model in Multi2Sim. Section 3

presents the Evergreen GPU architecture and its simulation. Sec-

tion 4 reports our experimental evaluation. We summarize related

work in Section 5, and conclude the paper in Section 6.

1AMD has used the Evergreen ISA specification for the implemen-
tation of its mainstream Radeon 5000 and 6000 series of GPUs.

http://www.multi2sim.org/

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 729 Copyright @ 2021 Authors

2. THE MULTI2SIM PROJECT
The Multi2Sim project started as a free, open-source, cycle-

accurate simulation framework targeting superscalar, multi-

threaded, and multicore x86 CPUs. The CPU simulation frame-

work consists of two major interacting software components: the

functional simulator and the architectural simulator. The func-

tional simulator (i.e., emulator) mimics the execution of a guest

program on a native x86 processor, by interpreting the program

binary and dynamically reproducing its behavior at the ISA level.

The architectural simulator (i.e., detailed or timing simulator) ob-

tains a trace of x86 instructions from the functional simulator, and

tracks execution of the processor hardware structures on a cycle-

by-cycle basis.

The current version of the CPU functional simulator supports the

execution of a number of different benchmark suites without any

porting effort, including single-threaded benchmark suites (e.g.,

SPEC2006 and Mediabench), multi-threaded parallel benchmarks

(SPLASH-2 and PARSEC 2.1), as well as custom self-compiled

user code. The architectural simulator models many-core super-

scalar pipelines with out-of-order execution, a complete memory

hierarchy with cache coherence, interconnection networks, and ad-

ditional components.

Multi2Sim integrates a configurable model for the commercial

AMD Evergreen GPU family (e.g., Radeon 5870). The latest re-

leases fully support both functional and architectural simulation of

a GPU, following the same interaction model between them as for

CPU simulation. While the GPU emulator provides traces of Ev-

ergreen instructions, the detailed simulator tracks execution times

and architectural state.

All simulated programs begin with the execution of CPU code.

The interface to the GPU simulator is the Open Compute Language

(OpenCL). When OpenCL programs are executed, the host (i.e.,

CPU) portions of the program are run using the CPU simulation

modules. When OpenCL API calls are encountered, they are inter-

cepted and used to setup or begin GPU simulation.

 The OpenCL Programming Model
OpenCL is an industry-standard programming framework de-

signed specifically for developing programs targeting heteroge-

neous computing platforms, consisting of CPUs, GPUs, and

other classes of processing devices [7]. OpenCL’s programming

model emphasizes parallel processing by using the single-program

multiple-data (SPMD) paradigm, in which a single piece of code,

called a kernel, maps to multiple subsets of input data, creating a

massive amount of parallel execution.

Figure 1 provides a view of the basic execution elements hierar-

chy defined in OpenCL. An instance of the OpenCL kernel is called

a work-item, which can access its own pool of private memory.

Work-items are arranged into work-groups with two basic proper-

ties: i) those work-items contained in the same work-group can

Figure 1: OpenCL programming and memory model.

perform efficient synchronization operations, and ii) work-items

within the same work-group can share data through a low-latency

local memory. The totality of work-groups form the ND-Range

(grid of work-item groups) and share a common global memory.

 OpenCL Simulation

Figure 2: Comparison of software modules of an OpenCL pro-

gram: native AMD GPU based heterogeneous system versus

Multi2Sim simulation framework.

The call stack of an OpenCL program running on Multi2Sim dif-

fers from the native call stack starting at the OpenCL library

call, as shown in Figure 2. When an OpenCL API func-

tion call is issued, our implementation of the OpenCL runtime

(libm2s-opencl.so) handles the call. This call is intercepted

by the CPU simulation module, which transfers control to the GPU

module as soon as the guest application launches the device kernel

execution. This infrastructure allows unmodified x86 binaries (pre-

compiled OpenCL host programs) to run on Multi2Sim with total

binary compatibility with the native environment.

3. ARCHITECTURAL SIMULATION OF

AN AMD EVERGREEN GPU
This section presents the architecture of a generic AMD Ever-

green GPU device, focusing on hardware components devoted to

general purpose computing of OpenCL kernels. As one of the nov-

elties of this paper, the following block diagrams and descriptions

provide some insight into the instruction pipelines, memory com-

ponents, and interconnects, which tend to be kept private by the ma-

jor GPU vendors, and remain undocumented in currently available

tools. All presented architectural details are accurately modeled on

Multi2Sim, as described next.

 The Evergreen GPU Architecture
A GPU consists of an ultra-threaded dispatcher, an array of

independent compute units, and a memory hierarchy. The ultra-

threaded dispatcher processes the ND-Range and maps waiting

work-groups onto available compute units. Once a work-group is

assigned to a compute unit, it remains in the compute unit until its

execution completes. As a work-group executes, work-items fetch

and store data through the global memory hierarchy, formed of two

levels of cache, interconnects, and memory controllers. Figure 3a

shows a block diagram of the Evergreen family compute device.

A compute unit consists of three execution engines, a local mem-

ory, and a register file. The three execution engines, called control

flow (CF), arithmetic-logic (ALU), and texture (TEX) engines, are

devoted to execute different portions of an OpenCL kernel binary,

referred to as CF, ALU, and TEX clauses, respectively (see Sec-

tion 3.2). A block diagram of the compute unit is illustrated in

Figure 3b.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 730 Copyright @ 2021 Authors

Figure 4: Example of AMD Evergreen assembly code: (a) main

CF clause instruction counter, (b) internal clause instruction

counter, (c) ALU clause, (d) TEX clause.

Figure 3: Block diagram of the GPU architecture.

The ALU engine contains a set of stream cores, each devoted to

the execution of one work-item’s arithmetic operations. ALU in-

structions are organized as 5-way VLIW bundles, created at com-

pile time. Each instruction in a VLIW bundle is executed on one of

the 5 VLIW lanes forming the stream core.

An Evergreen GPU defines the concept of a wavefront as a

group of work-items executing in a Single-Instruction Multiple-

Data (SIMD) fashion. Each instruction is executed concurrently by

every work-item comprising a wavefront, although each work-item

uses its private data for the computations. This model simplifies in-

struction fetch hardware by implementing a common front-end for

a whole wavefront.

 The Evergreen Instruction Set Architec-
ture (ISA)

When the GPU functional simulator receives the OpenCL ker-

nel to execute, an emulation loop starts by fetching, decoding, and
executing Evergreen instructions. The basic format of the AMD

Evergreen ISA can be observed in the sample code from Figure 4.

Evergreen assembly uses a clause-based format. The kernel exe-
cution starts with a CF instruction. CF instructions affect the main

program control flow (such is the case for CF instruction 03), write

data to global memory (04), or transfer control to a secondary

clause, such as an ALU clause (00, 02), or a TEX clause (01).

ALU clauses contain instructions performing arithmetic-logic op-
erations and local memory accesses, while TEX clauses are exclu-

sively devoted to global memory read operations.

ALU instructions are packed into VLIW bundles. A VLIW bun-

dle is run one at a time on a stream core, where each ALU instruc-

tion label reflects the VLIW lane assigned to that instruction. An

ALU instruction operand can be any output from the previously

executed VLIW bundle using the Previous Vector (PV) or the Pre-

vious Scalar (PS) special registers. Finally, constant memory is an

additional globally accessible storage initialized by the CPU, which

can also be used as ALU instruction operands (KC).
From our discussion above of Evergreen ISA characteristics,

we can observe a couple of important differences from working

with higher level intermediate languages, such as AMD’s IL [4] or

NVIDIA’s PTX [6]. For example, in AMD’s Evergreen ISA there

is a limited number of general purpose registers, so there are re-

strictions on how to form VLIW bundles, and there are specific

rules to group machine instructions forming clauses. In general,

there are many properties of the ISA run directly by the machine

that need not be considered working with an intermediate language.

Thus, significant performance accuracy can be gained with ISA-

level simulation.

 Kernel Execution Model

When an OpenCL kernel is launched by a host program, the ND-

Range configuration is provided to the GPU. Work-groups are then
created and successively assigned to compute units when they have
available execution resources. The number of work-groups that can
be assigned to a single compute unit is determined by four hardware

limitations: i) the maximum number of work-groups supported per

compute unit, ii) the maximum number of wavefronts per compute

unit, iii) the number of registers on a compute unit, and iv) the

amount of local memory on a compute unit. Maximizing the num-

ber of assigned work-groups per compute unit is a performance-
sensitive decision that can be evaluated on Multi2Sim.

Each work-group assigned to a compute unit is partitioned into

wavefronts, which are then placed into a ready wavefront pool. The

CF engine selects wavefronts from the wavefront pool for execu-

tion, based on a wavefront scheduling algorithm. A new wavefront

starts running the main CF clause of the OpenCL kernel binary,

and subsequently spawns secondary ALU and TEX clauses. The

wavefront scheduling algorithm is another performance sensitive

parameter, which can be evaluated with Multi2Sim.

When a wavefront is extracted from the pool, it is only inserted

back in when the executed CF instruction completes. This ensures

that there is only a single CF instruction in flight at any time for a

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 731 Copyright @ 2021 Authors

given wavefront, avoiding the need for branch prediction or specu-

lative execution in case flow control is affected. The performance

penalty for this serialization is hidden by overlapping the execution

of different wavefronts. Determining the extent to which overlap-

ping execution is occurring and the cause of bottlenecks are addi-

tional benefits of simulating execution with Multi2Sim.

 Work-Item Divergence

In a SIMD execution model, work-item divergence is side-effect

generated when a conditional branch instruction is resolved differ-

ently for any work-items within a wavefront. To address work-item

divergence present during SIMD execution, the Evergreen ISA pro-

vides each wavefront with an active mask. The active mask is a bit

map, where each bit represents the active status of an individual

work-item in the wavefront. If a work-item is labeled as inactive,

the result of any arithmetic computation performed in its associated

stream core is ignored, preventing the work-item from changing the

kernel state.

This work-item divergence strategy attempts to converge all

work-items together across all possible execution paths, allowing

only those active work-items whose conditional execution matches

the currently fetched instruction flow to continue execution. To

support nested conditionals and procedure calls, an active mask

stack is used to push and pop active masks, so that the active mask

at the top of the stack always represents the active mask of the cur-

rently executing work-items. Using Multi2Sim, statistics related to

work-item divergence are available to researchers (see Section 4.3).

 The Instruction Pipelines
In a compute unit, the CF, ALU, and TEX engines are orga-

nized as instruction pipelines. Figure 5 presents a block diagram

of each engine’s instruction pipeline. Within each pipeline, deci-

sions about scheduling policies, latencies, and buffer sizes must

be made. These subtle factors have performance implications, and

provide another opportunity for researchers to benefit from experi-

menting with design decisions within Multi2Sim.

The CF engine (Figure 5a) runs the CF clause of an OpenCL

kernel. The fetch stage selects a new wavefront from the wavefront

pool on every cycle, switching among them at the granularity of

one single CF instruction. Instructions from different wavefronts

are interpreted by the decode stage in a round-robin fashion. When

a CF instruction triggers a secondary clause, the corresponding ex-

ecution engine (ALU or TEX engine) is allocated, and the CF in-

struction remains in the execute stage until the secondary clause

completes. Other CF instructions from other wavefronts can be ex-

ecuted in the interim, as long as they do not request a busy execu-

tion engine. CF instruction execution (including all instructions run

in a secondary clause, if any) finishes in order in the complete stage

stage. The wavefront is returned to the wavefront pool, making it

again a candidate for instruction fetching. Global memory writes

are run asynchronously in the CF engine itself, without requiring a

secondary engine.

The ALU engine is devoted to the execution of ALU clauses

from the allocated wavefront (Figure 5b). After the fetch and de-

code stages, decoded VLIW instructions are placed into a VLIW

bundle buffer. The read stage consumes the VLIW bundle and

reads the source operands from the register file and/or local mem-

ory for each work-item in the wavefront. The execute stage issues

an instance of a VLIW bundle to each of the stream cores every cy-

cle. The number of stream cores in a compute unit might be smaller

than the number of work-items in a wavefront. Thus, a wavefront

is split into subwavefronts, where each subwavefront contains as

many work-items as there are stream cores in a compute unit. The

result of the computation is written back to the destination operands

(register file or local memory) at the write stage.

The TEX engine (Figure 5c) is devoted to the execution of global

memory fetch instructions in TEX clauses. The TEX instruction

bytes are stored into a TEX instruction buffer after being fetched

and decoded. Memory addresses for each work-item in the wave-

front are read from the register file and a read request to the global

memory hierarchy is performed at the read stage. Completed

global memory reads are handled in order by the write stage. The

fetched data is stored into the corresponding locations of the regis-

ter file for each work-item. The lifetime of a memory read is mod-

eled in detail throughout the global memory hierarchy, as specified

in the following sections.

 Memory Subsystem
The GPU memory subsystem contains different components for

data storage and transfer. With Multi2Sim, the memory subsys-

tem is highly configurable, including customizable settings for the

number of cache levels, memory capacities, block sizes, number of

banks, and ports. A description of the memory components for the

Evergreen model follows:

Register file (GPRs). Multi2Sim provides a model with no con-

tention for register file accesses. In a given cycle, the register can be

accessed by the TEX and ALU engines simultaneously by differ-

ent wavefronts. Work-items within and among wavefronts always

access different register sets.

Local Memory. A separate local memory module is present in

each compute unit, and is modeled in Multi2Sim with a config-

urable latency, number of banks, ports, and allocation chunk size.

In an OpenCL kernel, accesses to local memory are defined by the

programmer by specifying a variable’s scope, whose accesses are

then compiled into distinct assembly instructions. Contention to lo-

cal memory is modeled by serializing accesses to the same memory

bank whenever no read or write port is available. Also, memory

access coalescing is considered by grouping those accesses from

different work-items to the same memory block.

Global memory. The GPU global memory is accessible by all

compute units. It is presented to the programmer as a separate

memory scope, and implemented as a memory hierarchy managed

by hardware in order to reduce access latency. In Multi2Sim, the

global memory hierarchy has a configurable number of cache levels

and interconnects. A possible configuration is shown in Figure 6a,

using private L1 caches per compute unit, and multiple L2 caches

that are shared between subsets of compute units. L1 caches pro-

vide usually a similar access time as local memory, but they are

managed transparently by hardware, similarly to how a memory

hierarchy is managed on a CPU.

Interconnection networks. Each cache in the global memory

hierarchy is connected to the lower-level cache (or global memory)

using an interconnection network. Interconnects are organized as

point-to-point connections using a switch, whose architecture block

diagram is presented in Figure 6b. A switch contains two disjoint

inner subnetworks, each devoted to package transfers in opposite

directions.

Cache access queues. Each cache memory has a buffer where

access requests are enqueued, as shown in Figure 6c. On one hand,

access buffers allow for asynchronous writes that prevent stalls in

instruction pipelines. On the other hand, memory access coalesc-

ing is handled in access buffers at every level of the global mem-

ory hierarchy (both caches and global memory). Each sequence

of subsequent entries in the access queue reading or writing to the

same cache block are grouped into one single actual memory ac-

cess. The coalescing degree depends on the memory block size,

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 732 Copyright @ 2021 Authors

Figure 5: Block diagram of the execution engine pipelines.

Figure 6: Components of the GPU global memory hierarchy, as modeled in Multi2Sim.

the access queue size, and the memory access pattern, and is a very

performance sensitive metric measurable with Multi2Sim.

4. EXPERIMENTAL EVALUATION

This section presents a set of experiments aimed at validating and

demonstrating the range of functional and architectural simulation

features available with Multi2Sim. All simulations are based on

a baseline GPU model resembling the commercial AMD Radeon

5870 GPU, whose hardware parameters are summarized in Table 1.

For the simulator performance studies, simulations were run on

a machine with four quad-core Intel Xeon processors (2.27GHz,

8MB cache, 24GB DDR3). Experimental evaluations were per-

formed using a subset of the AMD OpenCL SDK [1] applications,

representing a wide range of application behaviors and memory

access patterns [16]. The applications discussed in this paper are

listed in Table 2, where we include a short description of the pro-

grams and the corresponding input dataset characteristics.

 Validation
Our validation methodology for establishing the fidelity of the

GPU simulator considered the correctness of both the functional

and architectural simulation models, though we follow two differ-

ent validation methodologies. For the functional simulator, the cor-

rectness of the instruction decoder is validated by comparing the

disassembled code to the Evergreen output that is generated by the

AMD compiler. We also validate the correctness of each bench-

mark’s execution by comparing the simulated application output

with the output of the application run directly on the CPU. All sim-

ulations generate functionally correct results for all programs stud-

ied and input problem sets.

Regarding the fidelity of the architectural model, Multi2Sim’s

performance results have been compared against native execution

performance (native here refers to the actual Radeon 5870 hard-

ware), using ten different input sizes within the ranges shown in

Table 2 (column Input Range). Since our architectural model is

cycle-based, and the native execution is measured as kernel execu-

tion time, it is challenging to compare our metrics directly. To con-

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 733 Copyright @ 2021 Authors

DCT

MatixMultiplication

Sobel Filter
Binomial Option

DCT

MatixMultiplication

Sobel Filter

Binomial Option

N
a
ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

S
im

u
la

ti
o
n
 i
n
a
c
c
u
ra

c
y
 (

%
)

8 8
35

7 7 30

25

6 6

20

5 5
15

4 4 10

3 3
5

0

2 2

1 1

0

1 2 3 4 5 6 7 8 9 10
Input Set Number

0

1 2 3 4 5 6 7 8 9 10

Input Set Number

c) Average error percentage between the

a) Simulated execution time reported by b) Native execution time on the AMD Radeon native execution time and simulated execution

Multi2Sim. 5870.
time for APP SDK benchmarks.

Figure 7: Validation for the architectural simulation, comparing simulated and native absolute execution times.

a) Correlation between simulated execution

times and native execution times.

100

80

60

40

20

0
100

80

60

40

20

0

b) Comparison of cache hit rate in simulated and native executions, along with measured difference in

overall execution time. Workloads are sorted from compute bound to memory bound.

100

80

60

40

20

0

Figure 8: Validation for architectural simulation, comparing trends between simulated and native execution times.

vert simulated cycles into time, we use the documented ALU clock

frequency of 850MHz of the 5870 hardware. The native execution

time is computed as the average time of 1000 kernel executions for

each benchmark. Native kernel execution time was measured us-

ing the AMD APP profiler [2]. The execution time provided by the

APP profiler does not include overheads such as kernel setup and

host-device I/O [2].

Figure 7a and Figure 7b plot simulated execution time and native

execution time performance trends, respectively (only four bench-

marks are shown for clarity). Figure 7c shows the percentage dif-

ference in performance for a larger selection of benchmarks. The

value shown for each benchmark in Figure 7c is the average of

the absolute percent error for each input of the benchmark. For

those cases where simulation accuracy decreases, Figure 8 shows

detailed trends, leading to the following analysis.

In Figure 8a, we show the correlation between the native execu-

tion time and the simulated execution time for the studied bench-

marks. For some of the benchmarks (e.g., Histogram or Recursive-

Gauss), execution times vary significantly. However, we still see

a strong correlation between each of the native execution points

and their associated simulator results for all benchmarks. In other

words, a change in the problem size for a benchmark has the same

relative performance impact for both native and simulated execu-

tions. The linear trend-line is represented using a curve-fitting al-

gorithm that minimizes the squared distances between every data

point and itself. For the benchmarks that are modeled accurately

using the simulator, the data points lie on the 45◦ line. The rea-

son for the occurrence of divergent slopes can be attributed to the

lack of precise representation of the memory hierarchy in the 5870

GPU, including the following factors:

Specialized Memory Path Design. The AMD Radeon 5870

consists of two paths from compute units to memory [2], each with

different performance characteristics. The fast path performs only

basic operations, such as loads and stores for 32-bit data types. The

complete path supports additional advanced operations, including

atomics and stores for sub-32-bit data types. This design has been

deprecated in later GPU architectures for a more conventional lay-

out [17], which is similar to the one currently implemented in

Multi2Sim.

Cache Interconnects. The specification of the interconnection

network between the L1 and L2 caches has not been published.

We use an approximation where four L2 caches are shared between

compute units (Table 1).

Native cache hit rate (left axis)

Simulated cache hit rate (left axis)

Simulated vs. native performance (right axis)

Execution cycles spent in
TEX engine

Compute
bound

Memory
bound

S
im

u
la

te
d

 E
x
e
c
u
ti

o
n
 T

im
e
 (
m

s
)

C
y
c
le

s
 (

%
)

C
a
c
h
e
 h

it
 r

a
te

 (
%

)

S
im

u
la

ti
o
n
 e

rr
o
r

(%
)

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 734 Copyright @ 2021 Authors

×

×

×

Table 1: Baseline GPU simulation parameters.

Figure 9: Simulation slowdowns over native execution for func-

tional and architectural simulation.

Table 2: List of OpenCL benchmarks used for experiments.

Column Input base contains the baseline problem size used, and

column Input range contains the range of problem sizes used

during simulator validation.

Cache Parameters. The latency and associativity of the dif-

ferent levels of the cache hierarchy are not known. Some sources

of simulation inaccuracy can be attributed to cache parameters, as

shown in Figure 8, where the percent error is minimum for the cases

where the native cache hit ratios and simulated cache hit ratios vary

the least.

 Simulation Speed
For the benchmarks used in this paper, Multi2Sim’s simulation

overhead is plotted in Figure 9 as a function of the slowdown over

native execution time. The average functional simulation slow-

down is 8700 (113s), and the average architectural simulation

time is 44000 (595s). It should be noted that simulation time

is not necessarily related to native execution time (e.g., simulat-

ing one 100-cycle latency instruction is faster than simulating ten

1-cycle instructions), so these results only aim to provide some rep-

resentative samples of simulation overhead.

Simulation performance has been also evaluated for an architec-

tural simulation on GPGPUSim, an NVIDIA-based GPU simula-

tor [10]. This simulator has been used as experimental support for

recent studies on GPU computing, exploring alternative memory

controller implementations [18] and dynamic grouping of threads

(work-items) to minimize thread divergence penalty [15], for ex-

ample. To enable this comparison, the APP SDK benchmarks were

adapted to run on GPGPUSim. Figure 9c shows the performance

slowdown over native execution, which averages about 90000
(1350s).

 Benchmark Characterization
As a case study of GPU simulation, this section presents a brief

characterization of OpenCL benchmarks carried out on Multi2Sim,

based on instruction classification, VLIW bundle occupancy, and

control flow divergence. These statistics are dynamic in nature,

and are reported by Multi2Sim as part of its simulation reports.

Figure 10a shows Evergreen instruction mixes executed by each

OpenCL kernel. The instruction categories are control flow in-

structions (jumps, stack operations, and synchronizations), global

memory reads, global memory writes, local memory accesses, and

arithmetic-logic operations. Arithmetic-logic operations form the

bulk of executed instructions (these are GPU-friendly workloads).

Figure 10b represents the average occupancy of VLIW bundles

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 735 Copyright @ 2021 Authors

a) Classification of instruction types.

b) VLIW bundles occupancy.

URNG

SobelFilter

ScanLargeArrays

Reduction

RecursiveGaussian

PrefixSum

MatrixTranspose

MatrixMultiplication

FloydWarshall

DwtHaar1D

DCT

BitonicSort

BinomialOption

c) Control flow divergence.

Figure 10: Examples of benchmarks characterization, based on program features relevant to GPU performance. IPC is calculated

as total number of instructions the for entire kernel, divided by total cycles to execute the entire kernel.

executed in the stream cores of the GPU’s ALU engine. If a VLIW

instruction uses less than 5 slots, there will be idle VLIW lanes in

the stream core, resulting in an underutilization of available exe-

cution resources. The Evergreen compiler tries to maximize the

VLIW slot occupancy, but there is an upper limit imposed by the

available instruction-level parallelism in the kernel code. Results

show that we rarely utilize all 5 slots (except for SobelFilter thanks

to its high fraction of ALU instructions), and the worst case of only

one single filled slot is encountered frequently.

Finally, Figure 10c illustrates the control flow divergence effect

among work-items. When work-items within a wavefront execut-

ing in a SIMD fashion diverge on branch conditions, the entire

wavefront must go through all possible execution paths. Thus, fre-

quent work-item divergence has a negative impact on performance.

For each benchmark in Figure 10c, each color stride within a bar

represents a different control flow path through the program. If a

bar has one single stride, then only one path was taken by all work-

items for that kernel. If there are n strides, then n different control

flow paths were taken by different work-items. Notice that different

colors are used here with the only purpose of delimiting bar strides,

but no specific meaning is assigned to each color. The size of each

stride represents the percentage of work-items that took that con-

trol flow path for the kernel. Results show benchmarks with the

following divergence characteristics:

• No control flow divergence at all (URNG, DCT).

Groups of divergence with a logarithmic decreasing size

due to different number of loop iterations (Reduction,

DwtHaar1D).

Multiple divergence groups depending on input data (Bino-

mialOption2).

 Architectural Exploration
The architectural GPU model provided in Multi2Sim allows re-

searchers to perform large design space evaluations. As a sample

of the simulation flexibility, this section presents three case studies,

where performance significantly varies for different input parame-

ter values. In each case, we compare two benchmarks with respect

2The darker color for BinomialOption is caused by many small di-
vergence regions represented in the same bar.

to their architectural sensitivity. Performance is measured using

the number of instructions per cycle (IPC), where the instruction

count is incremented by one for a whole wavefront, regardless of

the number of comprising work-items.

Figure 11a shows performance scaling with respect to the num-

ber of compute units. The total memory bandwidth provided by

global memory is shared by all compute units, so increasing the

number of compute units decreases the available bandwidth per ex-

ecuted work-group. The available memory bandwidth for the de-

vice in this experiment only increases between compute unit counts

which are a multiple of 5 when a new L2 is added (Table 1). When

the total bandwidth is exhausted, the trend (as seen between 10-

15 and 15-20 compute units) flattens. This point is clearly ob-

served when we increase the number of compute units in compute-

intensive kernels with high ALU-to-Fetch instruction ratios (e.g.,

URNG) and less so in memory-intensive benchmarks (e.g., His-

togram).

Figure 11b presents the performance achieved by varying the

number of stream cores per compute unit. In the BinomialOption

kernel we observe a step function, where each step corresponds to

a multiple of the wavefront size (64). This behavior is due to the

fact that the number of stream cores determines the number of sub-

wavefronts (or time-multiplexed slots) that stream cores deal with

for each VLIW bundle. When an increase in the number of stream

cores causes a decrease in the number of subwavefronts (e.g., 15 to

16, 21 to 22, and 31 to 32), performance improves. When the num-

ber of stream cores matches the number of work-items per wave-

front, the bottleneck due to a serialized stream core utilization dis-

appears. This effect is not observed for ScanLargeArrays due to a

lower wavefront occupancy.

Figure 11c plots the impact of increasing the L1 cache size. For

benchmarks that lack temporal locality and exhibit large strided ac-

cesses in the data stream, performance is insensitive to increasing

cache size, as seen in Reduction. In contrast, benchmarks with

locality are more sensitive to changes in the L1 cache size, as ob-

served for FloydWarshall.

5. RELATED WORK
While numerous mature CPU simulators at various levels are

available, GPU simulators are still in their infancy. There continues

to be a growing need for architectural GPU simulators that model

•

•

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 736 Copyright @ 2021 Authors

a) Scaling the number of compute units. b) Scaling the number of stream cores. c) Scaling L1 cache size.

Figure 11: Architectural exploration, showing results for those benchmarks with interesting performance trends.

a GPU at the ISA level. And in the near future, we will see a

more pressing need for a true CPU-GPU heterogeneous simulation

framework. This section briefly summarizes existing simulators

targeting GPUs.

Barra [12] is an ISA-level functional simulator targeting the

NVIDIA G80 GPUs. It runs CUDA executables without any mod-

ification. Since the NVIDIA’s G80 ISA specification is not pub-

licly available, the simulator relies on a reverse-engineered ISA

provided by another academic project. Similar to our approach,

Barra intercepts API calls to the CUDA library and reroutes them

to the simulator. Unfortunately, it is limited to GPU functional sim-

ulation, lacking an architectural simulation model.

GPGPUSim [10] is a detailed simulator that models a GPU ar-

chitecture similar to NVIDIA’s architecture. It includes a shader

core, interconnects, thread block (work-group) scheduling, and

memory hierarchy. Multi2Sim models a different GPU ISA and ar-

chitecture (Evergreen). GPGPUSim can provide us with important

insight into design problems for GPUs. However, Multi2Sim also

supports CPU simulation within the same tool enabling additional

architectural research into heterogeneous architectures.

Ocelot [13] is a widely used functional simulator and dynamic

compilation framework that works at a virtual ISA level. Tak-

ing NVIDIA’s CUDA PTX code as input, it can either emulate or

dynamically translate it to multiple platforms such as x86 CPUs,

NVIDIA GPUs, and AMD GPUs. Ocelot has objectives different

than GPU architectural simulation, so there is an extensive func-

tionality not provided or targeted by Multi2Sim, which makes them

complementary tools.

When compared to previous work, Multi2Sim is unique in the

following aspects. First, it models the native ISA of a commercially

available GPU. Second, it provides an architectural simulation of a

real GPU with tractable accuracy. Third, Multi2Sim is a CPU-GPU

heterogeneous simulation framework, which can be used to evalu-

ate upcoming architectures where the CPU and GPU are merged on

silicon and share a common memory address space [8].

6. CONCLUSIONS

In this paper we have presented Multi2Sim, a full-fledged sim-

ulation framework that supports both fast functional and detailed

architectural simulation for x86 CPUs and Evergreen GPUs at the

ISA level. It is modular, fully configurable, and easy to use. The

toolset is actively maintained and is available as a free, open-source

project at www.multi2sim.org, together with packages of bench-

marks, a complete user guide, and active mailing lists and forums.

Ongoing work for Multi2Sim includes expanding benchmark

support by increasing Evergreen ISA coverage. Future releases will

include a model for the AMD Fusion architecture, where the CPU

and GPU share a common global memory hierarchy and address

space. Supporting shared memory for heterogeneous architectures

highlights the potential of Multi2Sim, as no other simulator can

provide useful architectural statistics in this type of environment.

Current development also includes support for OpenGL applica-

tions and exploration into OpenCL language extensions. Since

Multi2Sim is currently being used by a number of leading research

groups, we believe this is a great opportunity to accelerate research

on heterogeneous, parallel architectures.

Acknowledgments

This work was supported in part by NSF Award EEC-0946463,

and through the support and donations from AMD and NVIDIA.

The authors would also like to thank Norman Rubin (AMD) for his

advice and feedback on this work.

7. REFERENCES

[1] AMD Accelerated Parallel Processing (APP) Software

Development Kit (SDK).

http://developer.amd.com/sdks/amdappsdk/.

[2] AMD Accelerated Parallel Processing OpenCL

Programming Guide (v1.3c).

[3] AMD Evergreen Family Instruction Set Arch. (v1.0d).

http://developer.amd.com/sdks/amdappsdk/documentation/.

[4] AMD Intermediate Language (IL) Spec. (v2.0e).

http://developer.amd.com/sdks/amdappsdk/documentation/.

[5] Intel Ivy Bridge.

http://ark.intel.com/products/codename/29902/Ivy-Bridge.

[6] NVIDIA PTX: Parallel Thread Execution ISA.

http://developer.nvidia.com/cuda-downloads/.

[7] OpenCL: The Open Standard for Parallel Programming of

Heterogeneous Systems. www.khronos.org/opencl.

[8] The AMD Fusion Family of APUs. http://fusion.amd.com/.

[9] The NVIDIA Denver Project. http://blogs.nvidia.com/.

[10] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.

Analyzing CUDA Workloads Using a Detailed GPU

Simulator. In Proc. of the Int’l Symposium on Performance

Analysis of Systems and Software (ISPASS), Apr. 2009.

[11] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt.

Network-Oriented Full-System Simulation Using M5. 6th

Workshop on Computer Architecture Evaluation using

Commercial Workloads (CAECW), Feb. 2003.

http://www.multi2sim.org/
http://developer.amd.com/sdks/amdappsdk/
http://developer.amd.com/sdks/amdappsdk/documentation/
http://developer.amd.com/sdks/amdappsdk/documentation/
http://ark.intel.com/products/codename/29902/Ivy-Bridge
http://developer.nvidia.com/cuda-downloads/
http://www.khronos.org/opencl
http://fusion.amd.com/
http://blogs.nvidia.com/

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 737 Copyright @ 2021 Authors

[12] S. Collange, M. Daumas, D. Defour, and D. Parello. Barra:

A Parallel Functional Simulator for GPGPU. In Proc. of the

18th Int’l Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems (MASCOTS),

Aug. 2010.

[13] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot: a

Dynamic Optimization Framework for Bulk-Synchronous

Applications in Heterogeneous Systems. In Proc. of the 19th

Int’l Conference on Parallel Architectures and Compilation

Techniques, Sept. 2010.

[14] P. S. M. et. al. Simics: A Full System Simulation Platform.

IEEE Computer, 35(2), 2002.

[15] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt.

Dynamic Warp Formation and Scheduling for Efficient GPU

Control Flow. In Proc. of the 40th Int’l Symposium on

Microarchitecture, Dec. 2007.

[16] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting

Memory Access Patterns to Improve Memory Performance

in Data-Parallel Architectures. IEEE Transactions on

Parallel and Distributed Systems, 22(1), Jan. 2011.

[17] M. Houston and M. Mantor. AMD Graphics Core Next.

http://developer.amd.com/afds/assets/presentations/2620_final.pdf.

[18] G. L. Yuan, A. A. Bakhoda, and T. M. Aamodt. Complexity

Effective Memory Access Scheduling for Many-Core

Accelerator Architectures. In 42nd Int’l Symposium on

Microarchitecture, Dec. 2009.

http://developer.amd.com/afds/assets/presentations/2620_final.pdf

