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ABSTRACT 

For the appropriate design and evaluation of any computing 

platform, accurate simulation is crucial. Researchers require a 

simulation framework that can mimic both types of computing 

devices and their interaction as we approach closer to the CPU-

GPU heterogeneous computing era. In this study, we introduce 

Multi2Sim, a modular, open-source toolbox that allows for 

complete configuration and ISA-level modelling of an AMD 

Evergreen GPU and an x86 CPU. We use AMD's OpenCL 

benchmark suite to address programme emulation correctness and 

architecture simulation accuracy while focusing on a model of the 

AMD Radeon 5870 GPU. A preliminary architectural explo- 

ration study and workload characterisation examples are used to 

illustrate the simulation capabilities. Public access to the project 

source code, benchmark packages, and a thorough user's manual 

is provided at www.multi2sim.org. 

 

1. INTRODUCTION 
GPUs have become an important component of High Perfor- 

mance Computing (HPC) platforms by accelerating the ever de- 

manding data-parallel portions of a wide range of applications. The 

success of GPU computing has made microprocessor researchers in 

both academia and industry believe that CPU-GPU heterogeneous 

computing is not just an alternative, but the future of HPC. Now, 

GPUs are showing up as integrated accelerators for general purpose 

platforms [8, 5, 9]. This move attempts to leverage the combined 

capabilities of multi-core CPU and many-core GPU architectures. 

As CPU-GPU heterogeneous computing research gains momen- 

tum, the need to provide a robust simulation environment becomes 
 

more critical. Simulation frameworks provide a number of benefits 

to researchers. They allow pre-silicon designs to be evaluated and 

performance results to be obtained for a range of design points. A 

number of CPU simulators supporting simulation at the ISA level 

have been developed [11, 14] and successfully used in a range of 

architectural studies. Although there are tools that are currently 

available for simulating GPUs at the intermediate language level 

(e.g., PTX) [12, 13], the research community still lacks a publicly 

available framework integrating both fast functional simulation and 

cycle-accurate detailed architectural simulation at the ISA level that 

considers a true heterogeneous CPU-GPU model. 

In this paper we present Multi2Sim, a simulation framework for 

CPU-GPU computing. The proposed framework integrates a pub- 

licly available model of the data-parallel AMD Evergreen GPU 

family [3]1 with the simulation of superscalar, multi-threaded, and 

multicore x86 processors. This work also offers important insight 

into the architecture of an AMD Evergreen GPU, by describing our 

models of instruction pipelines and memory hierarchy, to a deeper 

extent than previous public work, to the best of our knowledge, has 

done before. 

Multi2Sim is provided as a Linux-based command-line toolset, 

designed with an emphasis on presenting a user-friendly interface. 

It runs OpenCL applications without any source code modifica- 

tions, and provides a number of instrumentation capabilities that 

enable research in application characterization, code optimization, 

compiler optimization, and hardware architecture design. To illus- 

trate the utility and power of our toolset, we report on a wide range 

of experimental results based on benchmarks taken from AMD’s 

Accelerated Parallel Processing (APP) SDK 2.5 [1]. 

The rest of this paper is organized as follows. Section 2 intro- 

duces the functional simulation model in Multi2Sim. Section 3 

presents the Evergreen GPU architecture and its simulation. Sec- 

tion 4 reports our experimental evaluation. We summarize related 

work in Section 5, and conclude the paper in Section 6. 

 

 

 
1AMD has used the Evergreen ISA specification for the implemen- 
tation of its mainstream Radeon 5000 and 6000 series of GPUs. 

http://www.multi2sim.org/
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2. THE MULTI2SIM PROJECT 
The Multi2Sim project started as a free, open-source, cycle- 

accurate simulation framework targeting superscalar, multi- 

threaded, and multicore x86 CPUs. The CPU simulation frame- 

work consists of two major interacting software components: the 

functional simulator and the architectural simulator. The func- 

tional simulator (i.e., emulator) mimics the execution of a guest 

program on a native x86 processor, by interpreting the program 

binary and dynamically reproducing its behavior at the ISA level. 

The architectural simulator (i.e., detailed or timing simulator) ob- 

tains a trace of x86 instructions from the functional simulator, and 

tracks execution of the processor hardware structures on a cycle- 

by-cycle basis. 

The current version of the CPU functional simulator supports the 

execution of a number of different benchmark suites without any 

porting effort, including single-threaded benchmark suites (e.g., 

SPEC2006 and Mediabench), multi-threaded parallel benchmarks 

(SPLASH-2 and PARSEC 2.1), as well as custom self-compiled 

user code. The architectural simulator models many-core super- 

scalar pipelines with out-of-order execution, a complete memory 

hierarchy with cache coherence, interconnection networks, and ad- 

ditional components. 

Multi2Sim integrates a configurable model for the commercial 

AMD Evergreen GPU family (e.g., Radeon 5870). The latest re- 

leases fully support both functional and architectural simulation of 

a GPU, following the same interaction model between them as for 

CPU simulation. While the GPU emulator provides traces of Ev- 

ergreen instructions, the detailed simulator tracks execution times 

and architectural state. 

All simulated programs begin with the execution of CPU code. 

The interface to the GPU simulator is the Open Compute Language 

(OpenCL). When OpenCL programs are executed, the host (i.e., 

CPU) portions of the program are run using the CPU simulation 

modules. When OpenCL API calls are encountered, they are inter- 

cepted and used to setup or begin GPU simulation. 

 The OpenCL Programming Model 
OpenCL is an industry-standard programming framework de- 

signed specifically for developing programs targeting heteroge- 

neous computing platforms, consisting of CPUs, GPUs, and 

other classes of processing devices [7]. OpenCL’s programming 

model emphasizes parallel processing by using the single-program 

multiple-data (SPMD) paradigm, in which a single piece of code, 

called a kernel, maps to multiple subsets of input data, creating a 

massive amount of parallel execution. 

Figure 1 provides a view of the basic execution elements hierar- 

chy defined in OpenCL. An instance of the OpenCL kernel is called 

a work-item, which can access its own pool of private memory. 

Work-items are arranged into work-groups with two basic proper- 

ties: i) those work-items contained in the same work-group can 

 
 

 

Figure 1: OpenCL programming and memory model. 

perform efficient synchronization operations, and ii) work-items 

within the same work-group can share data through a low-latency 

local memory. The totality of work-groups form the ND-Range 

(grid of work-item groups) and share a common global memory. 

 OpenCL Simulation 
 

 

Figure 2: Comparison of software modules of an OpenCL pro- 

gram: native AMD GPU based heterogeneous system versus 

Multi2Sim simulation framework. 

 
The call stack of an OpenCL program running on Multi2Sim dif- 

fers from the native call stack starting at the OpenCL library 

call, as shown in Figure 2.   When an OpenCL API func- 

tion call is issued, our implementation of the OpenCL runtime 

(libm2s-opencl.so) handles the call. This call is intercepted 

by the CPU simulation module, which transfers control to the GPU 

module as soon as the guest application launches the device kernel 

execution. This infrastructure allows unmodified x86 binaries (pre- 

compiled OpenCL host programs) to run on Multi2Sim with total 

binary compatibility with the native environment. 

 

3. ARCHITECTURAL SIMULATION OF 

AN AMD EVERGREEN GPU 
This section presents the architecture of a generic AMD Ever- 

green GPU device, focusing on hardware components devoted to 

general purpose computing of OpenCL kernels. As one of the nov- 

elties of this paper, the following block diagrams and descriptions 

provide some insight into the instruction pipelines, memory com- 

ponents, and interconnects, which tend to be kept private by the ma- 

jor GPU vendors, and remain undocumented in currently available 

tools. All presented architectural details are accurately modeled on 

Multi2Sim, as described next. 

 The Evergreen GPU Architecture 
A GPU consists of an ultra-threaded dispatcher, an array of 

independent compute units, and a memory hierarchy. The ultra- 

threaded dispatcher processes the ND-Range and maps waiting 

work-groups onto available compute units. Once a work-group is 

assigned to a compute unit, it remains in the compute unit until its 

execution completes. As a work-group executes, work-items fetch 

and store data through the global memory hierarchy, formed of two 

levels of cache, interconnects, and memory controllers. Figure 3a 

shows a block diagram of the Evergreen family compute device. 

A compute unit consists of three execution engines, a local mem- 

ory, and a register file. The three execution engines, called control 

flow (CF), arithmetic-logic (ALU), and texture (TEX) engines, are 

devoted to execute different portions of an OpenCL kernel binary, 

referred to as CF, ALU, and TEX clauses, respectively (see Sec- 

tion 3.2). A block diagram of the compute unit is illustrated in 

Figure 3b. 
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Figure 4: Example of AMD Evergreen assembly code: (a) main 

CF clause instruction counter, (b) internal clause instruction 

counter, (c) ALU clause, (d) TEX clause. 

 

 
 

 
Figure 3: Block diagram of the GPU architecture. 

 
The ALU engine contains a set of stream cores, each devoted to 

the execution of one work-item’s arithmetic operations. ALU in- 

structions are organized as 5-way VLIW bundles, created at com- 

pile time. Each instruction in a VLIW bundle is executed on one of 

the 5 VLIW lanes forming the stream core. 

An Evergreen GPU defines the concept of a wavefront as a 

group of work-items executing in a Single-Instruction Multiple- 

Data (SIMD) fashion. Each instruction is executed concurrently by 

every work-item comprising a wavefront, although each work-item 

uses its private data for the computations. This model simplifies in- 

struction fetch hardware by implementing a common front-end for 

a whole wavefront. 

 The Evergreen Instruction Set Architec- 
ture (ISA) 

When the GPU functional simulator receives the OpenCL ker- 

nel to execute, an emulation loop starts by fetching, decoding, and 
executing Evergreen instructions. The basic format of the AMD 

Evergreen ISA can be observed in the sample code from Figure 4. 

Evergreen assembly uses a clause-based format. The kernel exe- 
cution starts with a CF instruction. CF instructions affect the main 

program control flow (such is the case for CF instruction 03), write 

data to global memory (04), or transfer control to a secondary 

clause, such as an ALU clause (00, 02), or a TEX clause (01). 

ALU clauses contain instructions performing arithmetic-logic op- 
erations and local memory accesses, while TEX clauses are exclu- 

sively devoted to global memory read operations. 

ALU instructions are packed into VLIW bundles. A VLIW bun- 

dle is run one at a time on a stream core, where each ALU instruc- 

tion label reflects the VLIW lane assigned to that instruction. An 

ALU instruction operand can be any output from the previously 

executed VLIW bundle using the Previous Vector (PV) or the Pre- 

vious Scalar (PS) special registers. Finally, constant memory is an 

additional globally accessible storage initialized by the CPU, which 

can also be used as ALU instruction operands (KC). 
From our discussion above of Evergreen ISA characteristics, 

we can observe a couple of important differences from working 

with higher level intermediate languages, such as AMD’s IL [4] or 

NVIDIA’s PTX [6]. For example, in AMD’s Evergreen ISA there 

is a limited number of general purpose registers, so there are re- 

strictions on how to form VLIW bundles, and there are specific 

rules to group machine instructions forming clauses. In general, 

there are many properties of the ISA run directly by the machine 

that need not be considered working with an intermediate language. 

Thus, significant performance accuracy can be gained with ISA- 

level simulation. 

 Kernel Execution Model 

When an OpenCL kernel is launched by a host program, the ND- 

Range configuration is provided to the GPU. Work-groups are then 
created and successively assigned to compute units when they have 
available execution resources. The number of work-groups that can 
be assigned to a single compute unit is determined by four hardware 

limitations: i) the maximum number of work-groups supported per 

compute unit, ii) the maximum number of wavefronts per compute 

unit, iii) the number of registers on a compute unit, and iv) the 

amount of local memory on a compute unit. Maximizing the num- 

ber of assigned work-groups per compute unit is a performance- 
sensitive decision that can be evaluated on Multi2Sim. 

Each work-group assigned to a compute unit is partitioned into 

wavefronts, which are then placed into a ready wavefront pool. The 

CF engine selects wavefronts from the wavefront pool for execu- 

tion, based on a wavefront scheduling algorithm. A new wavefront 

starts running the main CF clause of the OpenCL kernel binary, 

and subsequently spawns secondary ALU and TEX clauses. The 

wavefront scheduling algorithm is another performance sensitive 

parameter, which can be evaluated with Multi2Sim. 

When a wavefront is extracted from the pool, it is only inserted 

back in when the executed CF instruction completes. This ensures 

that there is only a single CF instruction in flight at any time for a 
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given wavefront, avoiding the need for branch prediction or specu- 

lative execution in case flow control is affected. The performance 

penalty for this serialization is hidden by overlapping the execution 

of different wavefronts. Determining the extent to which overlap- 

ping execution is occurring and the cause of bottlenecks are addi- 

tional benefits of simulating execution with Multi2Sim. 

 Work-Item Divergence 

In a SIMD execution model, work-item divergence is side-effect 

generated when a conditional branch instruction is resolved differ- 

ently for any work-items within a wavefront. To address work-item 

divergence present during SIMD execution, the Evergreen ISA pro- 

vides each wavefront with an active mask. The active mask is a bit 

map, where each bit represents the active status of an individual 

work-item in the wavefront. If a work-item is labeled as inactive, 

the result of any arithmetic computation performed in its associated 

stream core is ignored, preventing the work-item from changing the 

kernel state. 

This work-item divergence strategy attempts to converge all 

work-items together across all possible execution paths, allowing 

only those active work-items whose conditional execution matches 

the currently fetched instruction flow to continue execution. To 

support nested conditionals and procedure calls, an active mask 

stack is used to push and pop active masks, so that the active mask 

at the top of the stack always represents the active mask of the cur- 

rently executing work-items. Using Multi2Sim, statistics related to 

work-item divergence are available to researchers (see Section 4.3). 

 The Instruction Pipelines 
In a compute unit, the CF, ALU, and TEX engines are orga- 

nized as instruction pipelines. Figure 5 presents a block diagram 

of each engine’s instruction pipeline. Within each pipeline, deci- 

sions about scheduling policies, latencies, and buffer sizes must 

be made. These subtle factors have performance implications, and 

provide another opportunity for researchers to benefit from experi- 

menting with design decisions within Multi2Sim. 

The CF engine (Figure 5a) runs the CF clause of an OpenCL 

kernel. The fetch stage selects a new wavefront from the wavefront 

pool on every cycle, switching among them at the granularity of 

one single CF instruction. Instructions from different wavefronts 

are interpreted by the decode stage in a round-robin fashion. When 

a CF instruction triggers a secondary clause, the corresponding ex- 

ecution engine (ALU or TEX engine) is allocated, and the CF in- 

struction remains in the execute stage until the secondary clause 

completes. Other CF instructions from other wavefronts can be ex- 

ecuted in the interim, as long as they do not request a busy execu- 

tion engine. CF instruction execution (including all instructions run 

in a secondary clause, if any) finishes in order in the complete stage 

stage. The wavefront is returned to the wavefront pool, making it 

again a candidate for instruction fetching. Global memory writes 

are run asynchronously in the CF engine itself, without requiring a 

secondary engine. 

The ALU engine is devoted to the execution of ALU clauses 

from the allocated wavefront (Figure 5b). After the fetch and de- 

code stages, decoded VLIW instructions are placed into a VLIW 

bundle buffer. The read stage consumes the VLIW bundle and 

reads the source operands from the register file and/or local mem- 

ory for each work-item in the wavefront. The execute stage issues 

an instance of a VLIW bundle to each of the stream cores every cy- 

cle. The number of stream cores in a compute unit might be smaller 

than the number of work-items in a wavefront. Thus, a wavefront 

is split into subwavefronts, where each subwavefront contains as 

many work-items as there are stream cores in a compute unit. The 

result of the computation is written back to the destination operands 

(register file or local memory) at the write stage. 

The TEX engine (Figure 5c) is devoted to the execution of global 

memory fetch instructions in TEX clauses. The TEX instruction 

bytes are stored into a TEX instruction buffer after being fetched 

and decoded. Memory addresses for each work-item in the wave- 

front are read from the register file and a read request to the global 

memory hierarchy is performed at the read stage. Completed 

global memory reads are handled in order by the write stage. The 

fetched data is stored into the corresponding locations of the regis- 

ter file for each work-item. The lifetime of a memory read is mod- 

eled in detail throughout the global memory hierarchy, as specified 

in the following sections. 

 

 Memory Subsystem 
The GPU memory subsystem contains different components for 

data storage and transfer. With Multi2Sim, the memory subsys- 

tem is highly configurable, including customizable settings for the 

number of cache levels, memory capacities, block sizes, number of 

banks, and ports. A description of the memory components for the 

Evergreen model follows: 

Register file (GPRs). Multi2Sim provides a model with no con- 

tention for register file accesses. In a given cycle, the register can be 

accessed by the TEX and ALU engines simultaneously by differ- 

ent wavefronts. Work-items within and among wavefronts always 

access different register sets. 

Local Memory. A separate local memory module is present in 

each compute unit, and is modeled in Multi2Sim with a config- 

urable latency, number of banks, ports, and allocation chunk size. 

In an OpenCL kernel, accesses to local memory are defined by the 

programmer by specifying a variable’s scope, whose accesses are 

then compiled into distinct assembly instructions. Contention to lo- 

cal memory is modeled by serializing accesses to the same memory 

bank whenever no read or write port is available. Also, memory 

access coalescing is considered by grouping those accesses from 

different work-items to the same memory block. 

Global memory. The GPU global memory is accessible by all 

compute units. It is presented to the programmer as a separate 

memory scope, and implemented as a memory hierarchy managed 

by hardware in order to reduce access latency. In Multi2Sim, the 

global memory hierarchy has a configurable number of cache levels 

and interconnects. A possible configuration is shown in Figure 6a, 

using private L1 caches per compute unit, and multiple L2 caches 

that are shared between subsets of compute units. L1 caches pro- 

vide usually a similar access time as local memory, but they are 

managed transparently by hardware, similarly to how a memory 

hierarchy is managed on a CPU. 

Interconnection networks. Each cache in the global memory 

hierarchy is connected to the lower-level cache (or global memory) 

using an interconnection network. Interconnects are organized as 

point-to-point connections using a switch, whose architecture block 

diagram is presented in Figure 6b. A switch contains two disjoint 

inner subnetworks, each devoted to package transfers in opposite 

directions. 

Cache access queues. Each cache memory has a buffer where 

access requests are enqueued, as shown in Figure 6c. On one hand, 

access buffers allow for asynchronous writes that prevent stalls in 

instruction pipelines. On the other hand, memory access coalesc- 

ing is handled in access buffers at every level of the global mem- 

ory hierarchy (both caches and global memory).   Each sequence 

of subsequent entries in the access queue reading or writing to the 

same cache block are grouped into one single actual memory ac- 

cess. The coalescing degree depends on the memory block size, 
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Figure 5: Block diagram of the execution engine pipelines. 

 

 
Figure 6: Components of the GPU global memory hierarchy, as modeled in Multi2Sim. 

 

the access queue size, and the memory access pattern, and is a very 

performance sensitive metric measurable with Multi2Sim. 

 
4. EXPERIMENTAL EVALUATION 

This section presents a set of experiments aimed at validating and 

demonstrating the range of functional and architectural simulation 

features available with Multi2Sim. All simulations are based on 

a baseline GPU model resembling the commercial AMD Radeon 

5870 GPU, whose hardware parameters are summarized in Table 1. 

For the simulator performance studies, simulations were run on 

a machine with four quad-core Intel Xeon processors (2.27GHz, 

8MB cache, 24GB DDR3). Experimental evaluations were per- 

formed using a subset of the AMD OpenCL SDK [1] applications, 

representing a wide range of application behaviors and memory 

access patterns [16]. The applications discussed in this paper are 

listed in Table 2, where we include a short description of the pro- 

grams and the corresponding input dataset characteristics. 

 Validation 
Our validation methodology for establishing the fidelity of the 

GPU simulator considered the correctness of both the functional 

and architectural simulation models, though we follow two differ- 

ent validation methodologies. For the functional simulator, the cor- 

rectness of the instruction decoder is validated by comparing the 

disassembled code to the Evergreen output that is generated by the 

AMD compiler. We also validate the correctness of each bench- 

mark’s execution by comparing the simulated application output 

with the output of the application run directly on the CPU. All sim- 

ulations generate functionally correct results for all programs stud- 

ied and input problem sets. 

Regarding the fidelity of the architectural model, Multi2Sim’s 

performance results have been compared against native execution 

performance (native here refers to the actual Radeon 5870 hard- 

ware), using ten different input sizes within the ranges shown in 

Table 2 (column Input Range). Since our architectural model is 

cycle-based, and the native execution is measured as kernel execu- 

tion time, it is challenging to compare our metrics directly. To con- 



Dogo Rangsang Research Journal                                                 UGC Care Group I Journal 

ISSN : 2347-7180                                                          Vol-08 Issue-14 No. 01 February : 2021 

Page | 733                                                                                         Copyright @ 2021 Authors 

DCT 

MatixMultiplication 

Sobel Filter 
Binomial Option 

DCT 

MatixMultiplication 

Sobel Filter 

Binomial Option 

N
a
ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
) 

S
im

u
la

ti
o
n
 i
n
a
c
c
u
ra

c
y
 (

%
) 

8 8 
35 

 

7 7 30 

 
25 

6 6 

20 

5 5 
15 

 

4 4 10 

 

3 3 
5
 

 

0 

2 2 

 

1 1 

 
0 

1 2 3 4 5 6 7 8 9     10 
Input Set Number 

 
0   

1 2 3 4 5 6 7 8 9    10 

Input Set Number 

 
c) Average error percentage between the 

a) Simulated execution time reported by b) Native execution time on the AMD Radeon native execution time and simulated execution 

Multi2Sim. 5870. 
time for APP SDK benchmarks. 

 

Figure 7: Validation for the architectural simulation, comparing simulated and native absolute execution times. 

 

 
 

 
 

 

a) Correlation between simulated execution 

times and native execution times. 

 

100 
 

80 
 

60 
 

40 
 

20 
 

0 
100 

80 

60 

40 

20 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Comparison of cache hit rate in simulated and native executions, along with measured difference in 

overall execution time. Workloads are sorted from compute bound to memory bound. 
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Figure 8: Validation for architectural simulation, comparing trends between simulated and native execution times. 

 

 

vert simulated cycles into time, we use the documented ALU clock 

frequency of 850MHz of the 5870 hardware. The native execution 

time is computed as the average time of 1000 kernel executions for 

each benchmark. Native kernel execution time was measured us- 

ing the AMD APP profiler [2]. The execution time provided by the 

APP profiler does not include overheads such as kernel setup and 

host-device I/O [2]. 

Figure 7a and Figure 7b plot simulated execution time and native 

execution time performance trends, respectively (only four bench- 

marks are shown for clarity). Figure 7c shows the percentage dif- 

ference in performance for a larger selection of benchmarks. The 

value shown for each benchmark in Figure 7c is the average of 

the absolute percent error for each input of the benchmark. For 

those cases where simulation accuracy decreases, Figure 8 shows 

detailed trends, leading to the following analysis. 

In Figure 8a, we show the correlation between the native execu- 

tion time and the simulated execution time for the studied bench- 

marks. For some of the benchmarks (e.g., Histogram or Recursive- 

Gauss), execution times vary significantly. However, we still see 

a strong correlation between each of the native execution points 

and their associated simulator results for all benchmarks. In other 

words, a change in the problem size for a benchmark has the same 

relative performance impact for both native and simulated execu- 

tions. The linear trend-line is represented using a curve-fitting al- 

gorithm that minimizes the squared distances between every data 

point and itself. For the benchmarks that are modeled accurately 

using the simulator, the data points lie on the 45◦ line. The rea- 

son for the occurrence of divergent slopes can be attributed to the 

lack of precise representation of the memory hierarchy in the 5870 

GPU, including the following factors: 

Specialized Memory Path Design. The AMD Radeon 5870 

consists of two paths from compute units to memory [2], each with 

different performance characteristics. The fast path performs only 

basic operations, such as loads and stores for 32-bit data types. The 

complete path supports additional advanced operations, including 

atomics and stores for sub-32-bit data types. This design has been 

deprecated in later GPU architectures for a more conventional lay- 

out [17], which is similar to the one currently implemented in 

Multi2Sim. 

Cache Interconnects. The specification of the interconnection 

network between the L1 and L2 caches has not been published. 

We use an approximation where four L2 caches are shared between 

compute units (Table 1). 
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Table 1: Baseline GPU simulation parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9: Simulation slowdowns over native execution for func- 

tional and architectural simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2: List of OpenCL benchmarks used for experiments. 

Column Input base contains the baseline problem size used, and 

column Input range contains the range of problem sizes used 

during simulator validation. 

 

Cache Parameters. The latency and associativity of the dif- 

ferent levels of the cache hierarchy are not known. Some sources 

of simulation inaccuracy can be attributed to cache parameters, as 

shown in Figure 8, where the percent error is minimum for the cases 

where the native cache hit ratios and simulated cache hit ratios vary 

the least. 

 Simulation Speed 
For the benchmarks used in this paper, Multi2Sim’s simulation 

overhead is plotted in Figure 9 as a function of the slowdown over 

native execution time. The average functional simulation slow- 

down is 8700 (113s), and the average architectural simulation 

time is 44000   (595s). It should be noted that simulation time 

is not necessarily related to native execution time (e.g., simulat- 

ing one 100-cycle latency instruction is faster than simulating ten 

1-cycle instructions), so these results only aim to provide some rep- 

resentative samples of simulation overhead. 

Simulation performance has been also evaluated for an architec- 

tural simulation on GPGPUSim, an NVIDIA-based GPU simula- 

tor [10]. This simulator has been used as experimental support for 

recent studies on GPU computing, exploring alternative memory 

controller implementations [18] and dynamic grouping of threads 

(work-items) to minimize thread divergence penalty [15], for ex- 

ample. To enable this comparison, the APP SDK benchmarks were 

adapted to run on GPGPUSim. Figure 9c shows the performance 

slowdown over native execution, which averages about 90000 
(1350s). 

 Benchmark Characterization 
As a case study of GPU simulation, this section presents a brief 

characterization of OpenCL benchmarks carried out on Multi2Sim, 

based on instruction classification, VLIW bundle occupancy, and 

control flow divergence. These statistics are dynamic in nature, 

and are reported by Multi2Sim as part of its simulation reports. 

Figure 10a shows Evergreen instruction mixes executed by each 

OpenCL kernel. The instruction categories are control flow in- 

structions (jumps, stack operations, and synchronizations), global 

memory reads, global memory writes, local memory accesses, and 

arithmetic-logic operations. Arithmetic-logic operations form the 

bulk of executed instructions (these are GPU-friendly workloads). 

Figure 10b represents the average occupancy of VLIW bundles 
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a) Classification of instruction types. 

 
 

b) VLIW bundles occupancy. 
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c) Control flow divergence. 

 

Figure 10: Examples of benchmarks characterization, based on program features relevant to GPU performance. IPC is calculated 

as total number of instructions the for entire kernel, divided by total cycles to execute the entire kernel. 

 

 

executed in the stream cores of the GPU’s ALU engine. If a VLIW 

instruction uses less than 5 slots, there will be idle VLIW lanes in 

the stream core, resulting in an underutilization of available exe- 

cution resources. The Evergreen compiler tries to maximize the 

VLIW slot occupancy, but there is an upper limit imposed by the 

available instruction-level parallelism in the kernel code. Results 

show that we rarely utilize all 5 slots (except for SobelFilter thanks 

to its high fraction of ALU instructions), and the worst case of only 

one single filled slot is encountered frequently. 

Finally, Figure 10c illustrates the control flow divergence effect 

among work-items. When work-items within a wavefront execut- 

ing in a SIMD fashion diverge on branch conditions, the entire 

wavefront must go through all possible execution paths. Thus, fre- 

quent work-item divergence has a negative impact on performance. 

For each benchmark in Figure 10c, each color stride within a bar 

represents a different control flow path through the program. If a 

bar has one single stride, then only one path was taken by all work- 

items for that kernel. If there are n strides, then n different control 

flow paths were taken by different work-items. Notice that different 

colors are used here with the only purpose of delimiting bar strides, 

but no specific meaning is assigned to each color. The size of each 

stride represents the percentage of work-items that took that con- 

trol flow path for the kernel. Results show benchmarks with the 

following divergence characteristics: 

• No control flow divergence at all (URNG, DCT). 

Groups of divergence with a logarithmic decreasing size 

due to different number of loop iterations (Reduction, 

DwtHaar1D). 

Multiple divergence groups depending on input data (Bino- 

mialOption2). 

 Architectural Exploration 
The architectural GPU model provided in Multi2Sim allows re- 

searchers to perform large design space evaluations. As a sample 

of the simulation flexibility, this section presents three case studies, 

where performance significantly varies for different input parame- 

ter values. In each case, we compare two benchmarks with respect 
 

 

2The darker color for BinomialOption is caused by many small di- 
vergence regions represented in the same bar. 

to their architectural sensitivity. Performance is measured using 

the number of instructions per cycle (IPC), where the instruction 

count is incremented by one for a whole wavefront, regardless of 

the number of comprising work-items. 

Figure 11a shows performance scaling with respect to the num- 

ber of compute units. The total memory bandwidth provided by 

global memory is shared by all compute units, so increasing the 

number of compute units decreases the available bandwidth per ex- 

ecuted work-group. The available memory bandwidth for the de- 

vice in this experiment only increases between compute unit counts 

which are a multiple of 5 when a new L2 is added (Table 1). When 

the total bandwidth is exhausted, the trend (as seen between 10- 

15 and 15-20 compute units) flattens. This point is clearly ob- 

served when we increase the number of compute units in compute- 

intensive kernels with high ALU-to-Fetch instruction ratios (e.g., 

URNG) and less so in memory-intensive benchmarks (e.g., His- 

togram). 

Figure 11b presents the performance achieved by varying the 

number of stream cores per compute unit. In the BinomialOption 

kernel we observe a step function, where each step corresponds to 

a multiple of the wavefront size (64). This behavior is due to the 

fact that the number of stream cores determines the number of sub- 

wavefronts (or time-multiplexed slots) that stream cores deal with 

for each VLIW bundle. When an increase in the number of stream 

cores causes a decrease in the number of subwavefronts (e.g., 15 to 

16, 21 to 22, and 31 to 32), performance improves. When the num- 

ber of stream cores matches the number of work-items per wave- 

front, the bottleneck due to a serialized stream core utilization dis- 

appears. This effect is not observed for ScanLargeArrays due to a 

lower wavefront occupancy. 

Figure 11c plots the impact of increasing the L1 cache size. For 

benchmarks that lack temporal locality and exhibit large strided ac- 

cesses in the data stream, performance is insensitive to increasing 

cache size, as seen in Reduction. In contrast, benchmarks with 

locality are more sensitive to changes in the L1 cache size, as ob- 

served for FloydWarshall. 

 

5. RELATED WORK 
While numerous mature CPU simulators at various levels are 

available, GPU simulators are still in their infancy. There continues 

to be a growing need for architectural GPU simulators that model 

• 

• 
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a) Scaling the number of compute units. b) Scaling the number of stream cores. c) Scaling L1 cache size. 

 
Figure 11: Architectural exploration, showing results for those benchmarks with interesting performance trends. 

 

 

a GPU at the ISA level.   And in the near future, we will see a 

more pressing need for a true CPU-GPU heterogeneous simulation 

framework. This section briefly summarizes existing simulators 

targeting GPUs. 

Barra [12] is an ISA-level functional simulator targeting the 

NVIDIA G80 GPUs. It runs CUDA executables without any mod- 

ification. Since the NVIDIA’s G80 ISA specification is not pub- 

licly available, the simulator relies on a reverse-engineered ISA 

provided by another academic project. Similar to our approach, 

Barra intercepts API calls to the CUDA library and reroutes them 

to the simulator. Unfortunately, it is limited to GPU functional sim- 

ulation, lacking an architectural simulation model. 

GPGPUSim [10] is a detailed simulator that models a GPU ar- 

chitecture similar to NVIDIA’s architecture. It includes a shader 

core, interconnects, thread block (work-group) scheduling, and 

memory hierarchy. Multi2Sim models a different GPU ISA and ar- 

chitecture (Evergreen). GPGPUSim can provide us with important 

insight into design problems for GPUs. However, Multi2Sim also 

supports CPU simulation within the same tool enabling additional 

architectural research into heterogeneous architectures. 

Ocelot [13] is a widely used functional simulator and dynamic 

compilation framework that works at a virtual ISA level.   Tak- 

ing NVIDIA’s CUDA PTX code as input, it can either emulate or 

dynamically translate it to multiple platforms such as x86 CPUs, 

NVIDIA GPUs, and AMD GPUs. Ocelot has objectives different 

than GPU architectural simulation, so there is an extensive func- 

tionality not provided or targeted by Multi2Sim, which makes them 

complementary tools. 

When compared to previous work, Multi2Sim is unique in the 

following aspects. First, it models the native ISA of a commercially 

available GPU. Second, it provides an architectural simulation of a 

real GPU with tractable accuracy. Third, Multi2Sim is a CPU-GPU 

heterogeneous simulation framework, which can be used to evalu- 

ate upcoming architectures where the CPU and GPU are merged on 

silicon and share a common memory address space [8]. 

 
6. CONCLUSIONS 

In this paper we have presented Multi2Sim, a full-fledged sim- 

ulation framework that supports both fast functional and detailed 

architectural simulation for x86 CPUs and Evergreen GPUs at the 

ISA level. It is modular, fully configurable, and easy to use. The 

toolset is actively maintained and is available as a free, open-source 

project at www.multi2sim.org, together with packages of bench- 

marks, a complete user guide, and active mailing lists and forums. 

Ongoing work for Multi2Sim includes expanding benchmark 

support by increasing Evergreen ISA coverage. Future releases will 

include a model for the AMD Fusion architecture, where the CPU 

and GPU share a common global memory hierarchy and address 

space. Supporting shared memory for heterogeneous architectures 

highlights the potential of Multi2Sim, as no other simulator can 

provide useful architectural statistics in this type of environment. 

Current development also includes support for OpenGL applica- 

tions and exploration into OpenCL language extensions. Since 

Multi2Sim is currently being used by a number of leading research 

groups, we believe this is a great opportunity to accelerate research 

on heterogeneous, parallel architectures. 
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