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Abstract— The cloud computing architecture is based on 
virtualized servers that use sandboxing to offer separation 
between guest OSes. Previous research that took use of 
hardware-level information leaks to access sensitive data across 
co-located virtual machines showed how ineffective this isolation 
was (VMs). To counter these threats, cloud service providers and 
virtualization firms have deactivated functions like 
deduplication. 

In this paper, we provide a fine-grain cross-core cache attack 
that takes advantage of last level cache access time variations. 
Huge pages are exploited by the attack to cross VM boundaries 
without the need for deduplication. The attack is extremely 
viable because the victim System doesn't require any 
configuration changes. The target and victim OS can still be 
located on different cores of the system; only machine co-location 
is necessary. Our new approach, which is currently only 
applicable to L1 cache, is a version of the prime and probe cache 
attack. Our attack, on the other hand, targets the shared L3 
cache in a manner that is similar to the flush and reload assault. 
In fact, by altering the enormous page size, our attack may be 
made to function. 

I. INTRODUCTION 

The end of exponential growth of single core performance 

in the past decade has helped creating a new industry selling 

computing infrastructure as a service (IaaS) popularly referred 

to as cloud computing. Instead of financing and maintaining 

expensive workstations and servers, companies can rent the 

resources from cloud providers just when needed and only 

for the duration of the need, thereby significantly cutting 

IT costs. A number of well-known tech companies such as 

Google, Amazon AWS, EMC come to mind when mention- 

ing cloud computing. Popular user-oriented examples include 

cloud backed storage service providers like Dropbox in the 

personal computing space and Box.net in the enterprise. These 

are just a couple of examples among numerous businesses en- 

abled by cloud backed compute and storage offerings such as 

Amazon’s EC2 compute and S3 storage solutions, respectively. 

Nevertheless, like any emerging technology, cloud services 

have also encountered their unique security challenges. The 

problem stems from the fact that most security technologies 

were developed for a world of isolated servers. These servers 

were subsequently transferred to virtualized servers hosting a 

number of guest OS’s without any adjustments. 

A new class of security vulnerabilities arises due to one 

of the most important principles that cloud systems are based 

on: co-residency and multi-tenancy. The benefit of cloud com- 

puting comes from resource sharing, implying that multiple 

customers will utilize the same hardware of the same physical 

machine instead of assigning a dedicated server per user. 

Despite the benefits that co-residency bestows, namely main- 

tenance and electricity cost reduction, it also implies that users 

run their virtual machines (VM) in the same hardware only 

separated by the virtualization layer provided by the Virtual 

Machine Manager (VMM). In theory sandboxing techniques 

should provide the required isolation between VMs, but of 

course the devil is in the details. 

A serious threat to VM isolation (and therefore the cus- 

tomer’s privacy) comes from side channel attacks which ex- 

ploit subtle information leakage channels at the microarchitec- 

tural level. If side channel attacks can circumvent the logical 

isolation provided by the hypervisor, critical pieces of informa- 

tion such as cryptographic keys might be stolen. In particular, 

co-residency creates a scenario where microarchitectural side 

channels can potentially be exploited. A large number of 

microarchitectural attacks targeting cryptographic keys have 

already been extensively studied and successfully applied in 

non-virtualized scenarios. For instance, cache attacks are based 

on access time variations when retrieving data from the cache 

and from the memory, as proposed by Bernstein [1] or Osvik 

et al. [2]. Both studies manage to recover AES secret keys 

by monitoring the cache utilization. Modern memory saving 

features like Kernel Samepage Merging (KSM) [3], [4] have 

also been shown to threaten the security of cryptographic 

processes as proven by Gullasch et.al [5], recovering AES keys 

with as few as 100 encryptions. However, despite the success 

of these attacks in non-virtualized scenarios, still very little 

research has been done aiming in securing the implementation 

of cryptosystems in the virtualized setting. 

It was not until 5 years ago, when motivated by the 

work done by Ristenpart et al. [6], that the first successful 

implementations of side channel attacks inside VMs started to 

appear in the community. In fact, Ristenpart et al. were not 
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only able to co-locate two virtual machines hosted by Amazon 

EC2 on the same physical hardware, but also managed to 

recover key strokes used by a victim VM. In consequence, 

they showed for the first time that side channel attacks can 

be implemented in the cloud to break through the isolation 

provided by sandboxing techniques. 

From that point on, researches have been focusing on recov- 

ering fine grain information with new and known side channel 

techniques targeting weak cryptographic implementations in- 

side VMs, e.g. El Gamal [7] or AES [8]. The Flush+Reload 

technique has proven to be particularly effective when memory 

deduplication features are enabled by the VMM. Indeed, 

Yarom et al. [9] demonstrated attack that recovered RSA keys 

across VMs running in different cores and hosted by KVM and 

VMware. Later Irazoqui et al. [10] used the same technique 

to recover AES keys across VMware VMs. The relevance of 

these studies is highlighted by the prompt security update by 

VMware, making memory deduplication an opt-in feature that 

was formerly enabled by default. Recognizing the potential for 

a security compromise, Amazon never enabled deduplication 

on their EC2 compute cloud servers. 

Even though mechanisms that prevent these attacks have 

been implemented, the discussion still remains open in the 

community. Indeed, new side channel attacks (such as the 

one proposed in this work) compromising the VM isolation 

techniques may arise, consequently requiring new countermea- 

sures. 

 
Our Contribution 

In this work, we introduce a novel cross-core and cross- 

VM cache-based side-channel attack that exploits the shared 

L3 cache. The attack takes advantage of the additional physical 

address knowledge gained by the usage of huge size pages. 

Thus, the attack is not only applicable in non-virtualized 

environments but also in the cloud, since huge pages is enabled 

by default in all common hypervisors, i.e, Xen, VMware 

and KVM. Unlike the popular Flush+Reload attack [9], the 

new attack does not rely on deduplication features (no longer 

enabled by default in VMware and never enabled on Amazon 

AWS servers) and therefore, it can be applied with hypervisors 

not considered in [9], [10] like Xen. Furthermore, the attack is 

nearly undetectable by the victim, since only a small number 

of sets are profiled in the L3 cache. 

The viability of the new side channel attack is demonstrated 

on AES in both non-virtualized and virtualized cross VM sce- 

narios. The attack is compared to previous attacks performed 

on AES in the cloud [11], [10]. The new attack is significantly 

more efficient than [11], [10] and achieves similar efficiency 

as [10]. The attack requires very little time to succeed, i.e, the 

AES key is recovered in less than 3 minutes in fully virtualized 

Xen 4.1 and less than 2 minutes in VMware ESXI 5.5. 

In summary, this work 

– introduces a new side channel technique targeting the L3 

cache enabled by the use of huge size memory pages. 

– Shows that the attack can be applied in the cloud since 

most of the hypervisors allow the usage of huge size 

pages by the guest OSs. 

– Presents the viability of the new side channel technique 

by recovering AES keys when attacker and victim are 

located in different cores. 

– Demonstrates that the attack is also practical by recov- 

ering the AES key in less than 3 minutes in virtualized 

settings. 

We summarize existing cache-based side-channel attacks 

as well as virtual address translation and cache addressing 

in Section II. The new side channel attack is introduced in 

Section III. Results are presented in Section V. Before con- 

cluding in Section VII possible countermeasures are discussed 

in Section VI. 

II. BACKGROUND 

In this section we give a brief overview of the background 

needed to understand the new attack presented in this work. 

After summarizing cache side channel attacks, their history 

and the improvements that have been developed over the last 

15 years, a short explanation of Virtual Address Cache Map- 

ping and the previous Prime+Probe technique are provided. 

A. Cache Side Channel Attacks 

Cache side channel attacks take advantage of the informa- 

tion leakage stemming from microarchitectural time differ- 

ences when data is retrieved from the cache rather than the 

memory. The cache is a small memory placed between the 

CPU and the RAM to avoid the big latency added by the 

retrieval of the data. Modern processors usually have more 

than one level of cache to improve the efficiency of memory 

accesses. Caches base their functionality on two different 

principles, i.e, temporal and spatial locality. The first one 

predicts that data accessed recently will be accessed soon, 

whereas the latter one predicts that data in nearby locations 

to the accessed data will also be accessed soon. Thus, when 

a value is fetched from memory by the CPU, a copy of that 

value will be placed in the cache, together with nearby memory 

values to reduce the latency of future accesses. 

Obviously, data in cache can be accessed much faster than 

data only present in memory. This is also true for multilevel 

caches, where data accessed from the L1 cache will experience 

lower latencies than data accessed from subsequent cache 

levels. These time differences are used to decide whether a 

specific portion of the memory resides in the cache—implying 

that the data has been accessed recently. The resulting in- 

formation leakage posses a risk especially for cryptographic 

algorithms, which might lead to compromise of secret keys. 

Although many spy processes have been introduced targeting 

the L1 cache, implying core co-location, lately cross-core spy 

processes have gained most of the attention. In the latter 

case, typically the Last Level Cache (LLC) acts as a covert 

channel, since it is usually shared by all the cores in most 

modern processors. Cross-core cache side channel attacks are 

particularly dangerous in cloud settings, where more than one 
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user co-reside in the same hardware, and the chance of two 

users being co-located on different cores is high. 

Previous Cache Attacks The cache was first considered to 

be a suitable covert channel for the unauthorized extraction 

of information in 1992 by Hu [12]. Kesley et al. [13] also 

mentioned the possibility of cache attacks based on the cache 

hit/miss ratio. Later, cache attack examples were studied theo- 

retically by Page [14] whereas Tsunoo et al. [15] investigated 

timing leakage due to internal table look up collisions. 

However it was not until 2004 when the first practical 

implementations of cache attacks were studied. For instance, 

Bernstein [1] implemented a cache timing attack targeting 

AES based on the existing microarchitectural leakage when 

different memory position are loaded in the cache. He used this 

leakage to recover the full AES key in some implementations. 

At the same time Osvik et al. [2] investigated the impact of 

two different trace driven attacks on AES: Evict + Time and 

Prime+Probe. They showed that both methods can be applied 

in spy processes to recover AES keys. One year later Bonneau 

and Mironov exploited the cache collisions due to internal 

table look ups in AES to obtain the secret key [16]. 

A similar collision timing attack was presented by Acıiçmez 

et al. [17] targeting the first and second encryption rounds 

of AES while Neve and Seifert [18] studied the impact of 

access driven cache attacks in the last round of AES. In 2007 

Acıiçmez proved that AES and the data cache were not the 

only possible target of cache side channel attacks [19]. He 

discovered leakages in the instruction cache during public key 

encryptions and applied cache side channel attacks to recover 

RSA keys. 

However, most of the attacks mentioned above were imple- 

mented as spy processes in a native OS environment, reducing 

the practical impact of the attacks in realistic scenarios. It was 

not until 2009 when Ristenpart et al. managed to co-locate 

two virtual machines in a public cloud achieving the usage of 

the same CPU [6] that cross VM attacks on the public cloud 

were considered practical. Their experiments in the Amazon 

EC2 public cloud [20] achieved a co-residency success rate of 

up to 40% with the desired target by using different properties 

like IP range and instance type. The work also demonstrated 

that cache usage can be analyzed to deduce secret keystrokes 

used by a potential victim. Hence, the attack demonstrated for 

the first time that microarchitectural side channel attacks that 

require co-location are a potential threat in the cloud setting. 

Further co-residency detection methods such as traffic analysis 

later were studied, e.g. by Bates et al. [21]. 

The research made on detecting co-residency motivated 

many researchers to apply known side channel techniques 

in the cloud. For instance, Zhang et al. [22] used the above 

mentioned Prime+Probe technique to detect whether any other 

tenant was co-located in the same hardware. Shortly later 

again Zhang et al. [7] recovered El Gamal encryption keys by 

monitoring the L1 instruction cache in a virtualized setting, 

again with the Prime+Probe spy process. Their experiments 

were carried out in Xen VMs and they had to apply a 

hidden Markov model to reduce the noise present in their 

measurements. Bernstein’s attack was also tried in virtualized 

environments, first by Weiss et al. [8] in ARM processors and 

then by Irazoqui et al. in VMware or Xen [11]. 

At the same time new spy processes and improvements over 

previous techniques were investigated in non-virtualized sce- 

narios. Chen et al. presented an improvement over Acıiçmez’s 

technique to monitor the instruction cache and recover a RSA 

key [23], whereas Aly et al. [24] studied an improvement 

on the detection method for the Bernstein’s attack. Cache 

collision attacks on AES and instruction cache attacks on 

DSA were also further investigated by Spreitzer and Plos [25] 

and Acıiçmez et al. [26], respectively. On the other hand, 

Gullasch et al. [5] studied a new side channel technique 

that would later acquire the name of Flush+Reload and that 

is based on memory saving features like Kernel Samepage 

Merging (KSM). They were able to recover a full AES key by 

monitoring the data cache while getting control of the Control 

Fair Scheduler (CFS) [27]. This new method proved that 

successful cache attacks can still be implemented in modern 

processors, contrary to the claim of [28]. 

More recently, Yarom et al. used the Flush+Reload tech- 

nique to attack the RSA implementation of Libgcrypt [9]. 

Furthermore, they showed that their attack is applicable in a 

cross-core and cross-VM setting. Hence, it could be applied 

in cloud environments, particularly in the VMMs implement- 

ing memory deduplication features like VMware or KVM. 

Shortly later, Benger et al. applied the same technique to 

recover ECDSA keys [29]. Irazoqui et al. demonstrated that 

Flush+Reload can also be applied to recover AES keys 

without the need of controlling the CFS, and also proved the 

viability of their method across VMware VMs [10]. Finally, 

Zang et al. [30] showed that Flush+Reload can recover sen- 

sitive information from co-located processes in PaaS clouds. 

In a concurrent work, Yarom et.al [31] used the same 

technique described in this paper to recover a full RSA key in 

a sliding window implementation by recovering the positions 

where each ciphertext table entry is accessed. 

B. Virtual Address Translation and Cache Addressing 

In this work we present an attack that takes advantage of 

some known information in the virtual to physical address 

mapping process. Thus, we give a brief overview about 

the procedure followed by modern processors to access and 

address data in the cache [32]. 

In modern computing, processes use virtual memory to 

access requested memory locations. Indeed processes do not 

have direct access to the physical memory, but use virtual 

addresses that are then mapped to physical addresses by the 

Memory Management Unit (MMU). This virtual address space 

is managed by the Operating System. The main benefits of 

virtual memory are security (processes are isolated from real 

memory) and use of more memory than physically available 

due to paging techniques. 

The memory is divided into fixed length continuous blocks 

called memory pages. The virtual memory allows the usage 
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Fig. 1. Cache accesses when it is physically addressed. 

 

of these memory pages even when they are not allocated in 

the main memory. When a specific process needs a page not 

present in the main memory, a page fault occurs and the page 

has to be loaded from the auxiliary disk storage. Therefore, a 

translation stage is needed to map virtual addresses to physical 

addresses prior to the memory access. In fact, cloud systems 

have two translation processes, i.e, guest OS to VMM virtual 

address and VMM virtual address to physical address. The 

first translation is handled by shadow page tables while the 

second one is handled by the MMU. This adds an abstraction 

layer with the physical memory that is handled by the VMM. 

During translation, the virtual address is split into two fields: 

the offset field and the page field. The length of both fields 

depends directly on the page size. Indeed, if the page size is 

p bytes, the lower log2(p) bits of the virtual address will be 

considered as the page offset, while the rest will be considered 

as the page number. Only the page number is processed by 

the MMU and needs to be translated from virtual to physical 

page number. The page offset remains untouched and will have 

the same value for both the physical and virtual address. Thus, 

the user still knows some bits of the physical address. Modern 

processors usually work with 4 KB pages and 48 bit virtual 

addresses, yielding a 12 bit offset and the remaining bits as 

virtual page number. 

In order to avoid the latency of virtual to physical ad- 

dress translation, modern architectures include a Translation 

Lookaside Buffer (TLB) that holds the most recently translated 

addresses. The TLB acts like a small cache that is first checked 

prior to the MMU. One way to avoid TLB misses for large 

data processes is to increase the page size so that the memory 

is divided into fewer pages [33], [34], [35]. Since the possible 

virtual to physical translation tags have been significantly 

reduced, the CPU will observe less TLB misses than with 4 KB 

pages. This is the reason why most modern processors support 

the use of huge size pages, which typically have a size of at 

least 1 MB. This feature is particularly effective in virtualized 

settings, where virtual machines are typically rented to avoid 

the intensive use of hardware resources on private computers. 

In fact, most well known VMM providers support the use of 

huge size pages by guest OSs to improve the performance of 

those heavy load processes [36], [37], [38]. 

Cache Addressing: Caches are physically tagged, i.e, the 

physical address is used to decide the position that the data 

will occupy in the cache. With b-byte size cache lines and m-

way set associative caches (with n number of sets), the lower 

log2(b) bits of the physical address are used to index the byte 

in a cache line, while the following log2(n) bits select the 

set that the memory line is mapped to in the cache. A 

graphical example of the procedure carried out to address the 

data in the cache can be seen in Figure 1. Recall that if a 

page size of 4 KB is used, the offset field is 12 bits long. If 

log2(n)+log2(b) is not bigger than 12, the set that a cache line 

is going to occupy can be addressed by the offset. In this case 

we say that the cache is virtually addressed, since the position 

occupied by a cache line can be determined by the virtual 

address. In contrast, if more than 12 bits are needed to address 

the corresponding set, we say that the cache is physically 

addressed, since only the physical address can determine the 

location of a cache line. Note that when huge size pages are 

used, the offset field is longer, and therefore bigger caches can 

be virtually addressed. As we will see, this information can 

be used to mount a cross-VM attack in the L3 cache. 

 
C. The Prime+Probe Technique 

Our new attack is based on the methodology of the known 

Prime+Probe technique. Prime+Probe is a cache-based side 

channel attack technique used in [2], [22], [7] that can be 

classified as an access driven cache attack. The spy process 

ascertains which of the sets have been accessed in the cache 

by a victim. The attack is carried out in 3 stages: 

– Priming stage: In this stage, the attacker fills the mon- 

itored cache with his own cache lines. This is achieved 

simply by accessing his own made up data. 
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– Victim accessing stage: In this stage the attacker waits 

for the victim to access some positions in the cache, 

causing the eviction of some of the cache lines that were 

primed in the first stage. 

– Probing stage: In this stage the attacker accesses the 

priming data again. When the attacker reloads data from 

a set that has been used by the victim, some of the primed 

cache lines have been evicted, causing a higher probe 

time. However if the victim did not use any of the cache 

lines in a monitored set, all the primed cache lines will 

still reside in the cache causing a low probe time. 

The Prime+Probe side channel attack has some limitations. 

First, it can only be applied in small caches (typically the 

L1 cache), since only a few bits of the virtual address are 

known. Second, the employment of such a spy process in small 

caches restricts its application to processes co-located on the 

same core. Finally, modern processors have very similar access 

times for L1 and L2 caches, only differing in a few cycles, 

which makes the detection method noisy and challenging. For 

instance, this challenge was also experienced in [7], where the 

authors had to apply a Hidden Markov Model in addition to 

the Prime+Probe technique to deal with noisy measurements. 

 
III. THE S$A ATTACK 

In this section we present the technical details of our S$A 

attack. Later we demonstrate the viability of the attack on 

the OpenSSL1.0.1.f’s C-implementation of AES [39] to 

achieve a full AES key recovery in a scenario where the 

attacker and the victim are co-located on the same machine but 

run on different cores. Our S$A attack has several advantages 

over the previous cache side channel attacks on AES: 

– Our S$A attack is the first efficient cross-core cache 

attack that does not take advantage of deduplication 

features, yet succeeds in retrieving key information 

across VM boundaries. While some previous attacks, 

e.g. Flush+Reload rely on deduplication, other attacks 

such as Prime+Probe were also applied in the cloud but 

assumed to be co-located in the same core with the target 

process. In contrast, the new S$A attack detects accesses 

made to the last level cache by using huge size pages to 

allocate the attacker’s data. Since the last level of cache is 

usually shared among all the cores in modern processors, 

our spy process can detect cache accesses even when 

the victim is co-located in a different core on the same 

machine; 

– We achieve almost the same efficiency as the 

Flush+Reload attack with the S$A spy process. Other 

attacks like Bernstein’s attack require a much higher 

number of encryptions to get partial information of the 

AES key; 

– The S$A can be considered a non-intrusive cache attack. 

In the case of AES only 4 sets from the last level cache 

need to be monitored to recover a full AES encryption 

key. 

A. S$A enabled by Huge Pages 

The S$A attack proposed in this work, is enabled by making 

use of huge pages and thereby eliminating a major obstacle 

that normally restricts the Prime+Probe attack to target the 

L1 cache. A similar method was first discussed by Hund et 

al. [40] to bypass the ASLR in a Windows OS. As explained 

in Section II, a user does not use the physical memory directly. 

Instead, the user is assigned a virtual memory so that a 

translation stage is performed from virtual to physical memory 

at the hardware level. The address translation step creates an 

additional challenge to the attacker since real addresses of the 

variables of the target process are unknown to him. However 

this translation is only performed in some of the higher order 

bits of the virtual address, while a lower portion, named the 

offset, remains untouched. Since caches are addressed by the 

physical address, if we have cache line size of b bytes, the 

lower log2(b) bits of the address will be used to resolve the 

corresponding byte in the cache line. Furthermore if the cache 

is set-associative and for instance divided into n sets, then the 

next log2(n) bits of the address will select the set that each 

memory data is going to occupy in the cache. The log2(b)-bits 

that form the byte address within a cache line, are contained 

within the offset field. However, depending on the cache size 

the following field which contains the set address may exceed 

the offset boundary. The offsets allow addressing within a 

memory page. The OS’s Memory Management Unit (MMU) 

keeps track of which page belongs to which process. The 

page size can be adjusted to better match the needs of the 

application. Smaller pages require more time for the MMU to 

resolve. 

Here we focus on the default 4 KB page size and the larger 

page sizes provided under the common name of Huge pages. 

As we shall see, the choice of page size will make a significant 

difference in the attackers ability to carry out a successful 

attack on a particular cache level: 

– 4 KB pages: For 4 KB pages, the lower 12-bit offset of 

the virtual address is not translated while the remaining 

bits are forwarded to the Memory Management Unit. In 

modern processors the cache line size is usually set as 

64 bytes. This leaves 6 bits untouched by the Memory 

Management Unit while translating regular pages. As 

shown in the top of Figure 2 the page offset is known 

to the attacker. Therefore, the attacker knows the 6-bit 

byte address plus 6 additional bits that can only resolve 

accesses to small size caches (64 sets at most). This is 

the main reason why techniques such as Prime+Probe 

have only targeted the L1 cache, since it is the only one 

permitting the attacker to have full control of the bits 

resolving the set. Therefore, the small page size indirectly 

prevents attacks targeting big size caches, i.e. the L2 and 

L3 caches. 

– Huge pages: The scenario is different if we work with 

huge size pages. Typical huge page sizes are at 1 MB 

or even greater. This means that the offset field in the 

page translation process is larger, with 20 bits or more 
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remaining untouched during page translation. Observe 

the example presented in Figure 2. For instance, assume 

that our computer has 3 levels of cache, with the last 

one shared, and the L1, L2 and L3 caches are divided 

into 64, 512 and 4096 sets, respectively. The first lowest 

6-bits of the offset are used for addressing the 64 byte 

long cache lines. The following 6 bits are used to resolve 

the set addresses in the L1 cache. For the L2 and L3 

caches this field is 9 and 12-bits wide, respectively. In 

this case, a huge page size of 256 KB (18 bit offset) 

or higher will give the attacker full control of the set 

occupied by his data in all three levels of cache, i.e. 

L1, L2 and L3 caches. A 256 KB or higher page size, 

will enable an attacker to target individual lines of the 

entire L3 cache. The significance of targeting the last 

level cache becomes apparent when one considers the 

access time gap between the last level cache and the 

memory, which is much more pronounced compared to 

the access time difference between the L1 and L2 caches. 

Therefore, using huge pages makes it possible to reach 

a higher resolution Prime+Probe style attack. 

B. The S$A Attack 

The S$A technique takes advantage of the control of the 

lower k bits in the virtual address that we gain with the huge 

size pages. These are the main steps that our spy process will 

follow to detect accesses to the last level cache: 

– Step 1 Allocation of huge size pages: The spy process is 

based on the control that the attacker gains on the virtual 

address when using huge size pages. Therefore the spy 

process has to have access to the available huge pages, 

which requires administrator rights. Recall that this is not 

a problem in the cloud scenario where the attacker has 

administrator privileges to his guest OS. 

– Step 2 Prime the desired set in the last level cache: 

In this step the attacker creates data that will occupy 

one of the sets in the last level cache. By controlling the 

virtual address, the attacker knows the set that the created 

data will occupy in the last level cache. Once sufficiently 

many lines are created to occupy the set, the attacker 

primes it and ensures that the set is filled. Typically the 

last level caches are inclusive. Thus we will not only fill 

the shared last level cache set but also some sets in the 

upper level caches. 

– Step 3 Reprime to ensure that our data only resides 

in last level cache: Priming all cache levels can lead to 

misspredictions due to the different access times between 

the last level of cache and the upper levels. Since we 

clearly want to distinguish between accesses from the 

last level cache and memory, we reprime our upper level 

caches. The basic idea is to be sure to evict our data 

from the upper level caches, but not from the last level 

cache. Therefore we ensure that our reprime data goes to 

a different set in the last level cache, but to the same set 

in the upper level caches. 

– Step 4: Victim process runs: After the two priming 

stages, the victim runs the target process. Since one of the 

sets in the last level cache is already filled, if the targeted 

process uses the monitored set, one of the primed lines 

is going to be evicted. Remember we are priming the 

last level cache, so evictions will cause memory lines to 

reside in the memory. If the monitored set is not used, 

all the primed lines are going to reside in the last level 

cache after the victim’s process execution. 
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Fig. 3. Histograms of 10,000 access times in the probe stage when all the lines are in the L3 cache and when all except one are in the cache (and the other 
one in the memory). 

 

– Step 5: Probe and measure: Once the victim’s process 

has finished, the spy process probes the primed memory 

lines and measures the time to probe them all. If one 

or more lines have been evicted by the targeted process, 

they will be loaded from the memory and we will see a 

higher probe time. However if all the lines still reside in 

the set, then we will see a shorter probe time. 

The last step can be made more concrete with the exper- 

iment results summarized in Figure 3. The experiment was 

performed in native execution (no VM) on an intel i5-650 

that has a 16-way associative last level cache. It can be seen 

that when all the lines reside in the last level cache we obtain 

very precise probe timings with average around 250 cycles 

and with very little variance. However when one of the lines 

is evicted from last level cache and resides in memory, both 

the access time and the variance are higher. We conclude that 

both types of accesses are clearly distinguishable. 

For further clarification of the prime and reprime stages 

we present an example in Figure 4. Assume that we want 

to monitor set 0 in the last level cache. The last level cache 

has 1024 sets, and the upper level caches have only 64 sets. 

Assume that the memory line size is 64 bytes and that the 

associativity for this cache is 8 and 4 for the last level cache 

and the upper level caches, respectively. In the example we 

also assume that all the caches are inclusive. We know that 

bits 0    5 will select the corresponding byte in the memory 

line. We set our data so that the virtual address is 0 from bit 6 

to bit 15, in order to ensure that we are filling set 0 in the last 

level cache. We have to take into account that not only the last 

level cache will be filled, but also the upper level caches. The 

reprime stage evicts the blue lines in the upper level caches 

and replaces them with the yellow lines, which will go to a 

different set in the last level cache. With this approach, we 

ensure that the lines we are working with only reside in set 0 

of the last level cache. 

Handling Cache Slices: Typically the last level of cache is 

divided into slices [41], [42], [33]. This means that if the 

specifications say that we have a 4 MB last level cache, 

this might be divided into two (or more) slices of 2 MB 

each. Suppose now that the last level cache is a m-way set 

associative cache, and that it has n sets. If the last level cache 

is divided into two slices, we would be addressing n/2 sets 

instead of n sets. Depending on the slice selection method that 

the architecture implements, our data occupies slice 0 or slice 

1. Recall that the last level of cache is usually shared among 

all the cores. This means that if the cache is not divided into 

slices, two cores will not be able to access data in the same 

set in the same clock cycle. However if the cache is divided 

in two slices, there is a 50% chance that two different cores 

are accessing different slices. Therefore, the cores can access 

data in the same set in the same clock cycle. 

The division of the last level cache into slices makes it 

necessary to add another step to the S$A. Depending on the 

algorithm used to select the corresponding slice, the selection 

of the lines that fill one of the sets of one of the slices can be 

difficult. However we can always identify the lines that fill a 

specific set in a slice by measuring the reload time of those 

lines. If we are working with an m-way associative cache, we 

need m lines to fill one of the sets in one of the slices. We 

can verify that we found those specific lines when priming and 

probing m + 1 lines gives a significantly higher reload time, 

since the (m+1)th line evicts one of the previous ones. Using 

this method, it is straightforward to try and identify such cache 

lines for each slice. 

The Intel i5-650 processor used in our experiments has a 

two-sliced last level cache. The slice where the data is going to 
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Fig. 4. Prime and reprime stages to ensure we monitor the last level cache. 

 

be located is selected with the (l + 1)th bit, assuming we have 

l  bits to address the set and cache line byte. If the (l + 1)th 
bit is 0, the data will be stored in slice 0, whereas if the bit 

is a 1, the data will be stored in the slice 1. 

IV. S$A APPLIED TO AES 

In this section we proceed to explain how the S$A spy 

process can be applied to attack AES. We use the C reference 

implementation of OpenSSL1.0.1f library which uses 4 

different T-tables during the AES execution. The implementa- 

tion of AES is based on the execution of three main operations, 

i.e., a table lookup operation, a MixColumns operation and 

a key addition operation. For AES-128 these operations are 

repeatedly executed for 9 rounds, whereas the last round only 

implements the table look up and key addition operations. 

OpenSSL uses 4 different 1 KB sized T-tables for the 10 

rounds. Recovering one round key is sufficient for AES-128, 

as the key scheduling is invertible. 

We use the last round as our targeted round for convenience. 

Since the 10th round does not implement the MixColumns op- 

eration, the ciphertext directly depends on the T-table position 

accessed and the last round key. Assume Si to be the value of 

the ith byte prior to the last round T-table look up operation. 

Then the ciphertext byte Ci will be: 

cache line holds 16 T-table positions for OpenSSL 1.0.1f. 

Furthermore the sets that each of these lines occupy in the 

cache increase sequentially, i.e, if T [0 15] occupies set 0, 

then T [16 31] occupies set 1..etc. Since each encryption 

makes 40 accesses to each of the T-tables, the probability of 

not accessing one of the T-tables memory lines is: 

Prob[no accessT [i]] = (1 − (15/16))40 ≈ 8%. (2) 

Thus, if the attacker knows which set each of the T-table 

memory lines occupies, S$A will detect that the set is not 

accessed 8% of the time. We use the same procedure as in [10] 

to determine the key used in the last round operation. Each 

ciphertext value is going to be assigned a counter that will 

depend on the usage of the monitored T-table line. Recall that 

the use of the monitored T-table memory line could have taken 

place in any of the 10 rounds of AES. However, since the 

accesses are profiled according to the corresponding ciphertext 

value, the attacker has two options: 

– Assign an access counter: Assign an access counter to 

each possible ciphertext byte value Ci that increments 

each time the monitored T-table line is accessed. In this 

scenario, once enough measurements have been taken, 

the ciphertext values corresponding to the monitored T- 

C  = T [S ] ⊕ K10 (1) 
table line will present higher counters than the rest. 

– 

where Tj is the corresponding T-table applied to the ith byte 

and K10. It can be observed that if the ciphertext and the T- 

table positions are known, we can guess the key by a simple 

XOR operation. We assume the ciphertext to be always known 

by the attacker. Therefore the attacker will use the S$A spy 

process to guess the T-table position that has been used in the 

encryption and consequently, obtain the key. 

Since S$A will decide which table look up position has 

been used by monitoring memory accesses, we need to know 

how the T-tables are handled in memory. With 64 byte 

memory lines, each T-table occupies 16 cache lines and each 

possible ciphertext byte value Ci that increments each 

time the monitored T-table line is not accessed. Thus, 

once enough measurements have been taken, the cipher- 

text values corresponding to the monitored T-table line 

will present minimum values. 

Measuring microarchitectural timings implies dealing with 

noise that increases the measured time, e.g., TLB misses and 

context switches. Since in our attack scenario this noise is most 

of the time only biased in one direction (increasing access 

times), we decide to use the miss counter, since it is less 

susceptible to noise, hence ensuring very low false positives. 

Assign a miss counter: Assign a miss counter to each 

X X X ................. X X X NO0 0 0 0 . . . . 0 0 0 X X X X X X 
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Fig. 5. Histograms of 500 access times monitored in the probe stage for a) a set used by a T-table memory line and b) a set not used by a T-able memory 
line. Measurements are taken in the Xen 4.1 cross-VM scenario. 

 

Thus, once enough measurements have been collected by 

S$A we will see that 16 ciphertext values have significantly 

higher access counters than the rest. The key is obtained by 

solving Equation (1), i.e, by XOR-ing each of the ciphertext 

values with each of the values in the monitored T-table 

memory line. This operation outputs sets of possible keys for 

each ciphertext value, while the correct key is present in all 

of them. 

Locating the Set of the T-Tables: The previous description 

implicitly assumes that the attacker knows the location, i.e. 

the sets, that each T-table occupies in the shared level cache. 

A simple approach to gain this knowledge is to prime and 

probe every set in the cache, and analyze the timing behavior 

for a few random AES encryptions. The T-table based AES 

implementation leaves a distinctive fingerprint on the cache, 

as T-table size as well as the access frequency (92% per line 

per execution) are known. Once the T-tables are detected, the 

attack can be performed on a single line per table. Neverthe- 

less, this locating process can take a significant amount of time 

when the number of sets is sufficiently high in the outermost 

shared cache. 

An alternative, more efficient approach is to take advantage 

of the shared library page alignment that some OSs like Linux 

implement. Assuming that the victim is not using huge size 

pages for the encryption process, the shared library is aligned 

at a 4 KB page boundary. This gives us some information 

to narrow down the search space, since the lower 12 bits 

of the virtual address will not be translated. Thus, we know 

the offset fi modulo 64 of each T-table memory line and 

the T-table location process has been reduced by a factor of 

64. Furthermore, we only have to locate one T-table memory 

line per memory page, since the remaining table occupies the 

consecutive sets in the last level cache. 

Attack stages: Putting all together, these are the main stages 

that the we follow to attack AES with S$A 

– Step 1: Last level cache profile stage: The first stage 

to perform the attack is to gain knowledge about the 

structure of the last level cache, the number of slices, 

and the lines that fill one of the sets in the last level 

cache. 

– Step 2: T-table set location stage: The attacker has 

to know which set in the last level cache each T-table 

occupies, since these are the sets that need to be primed 

to obtain the key. 

– Step 3: Measurement stage: The attacker primes and 

reprimes the desired sets, requests encryptions and probes 

again to check whether the monitored sets have been used 

or not. 

– Step 4: Key recovery stage: Finally, the attacker utilizes 

the measurements taken in Step 3 to derive the last round 

key used by the AES server. 

 
V. EXPERIMENT SETUP AND RESULTS 

 

In this section we analyze our experiment setup and the 

results obtained in native machine, single VM and in the cross- 

VM scenarios. We also include a comparison with previous 

attacks that were performed in virtualized scenarios targeting 

AES. 
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Fig. 6. Miss counter values for ciphertext 0 normalized to the maximum 
value. The key is e1 and we are monitoring the last 8 values of the T-table 
(since the table starts in the middle of a memory line). 

 

 

A. Testbed Setup 

The machine used for all our experiments is a dual core 

Nehalem Intel i5-650 [43] clocked at 3.2 GHz. This machine 

works with 64 byte cache lines and has private 8-way associa- 

tive L1 and L2 caches of size 215 and 218 bytes, respectively. 

In contrast, the 16-way associative L3 cache is shared among 

all the cores and has a size of 222 bytes, divided into two 

slices. Consequently, the L3 cache will have 212 sets in total. 

Therefore 6 bits are needed to address the byte address in a 

cache line and 12 more bits to specify the set in the L3 cache. 

The huge page size is set to 2 MB, which ensures a set field 

length of 21 bits that are untouched in the virtual to physical 

address translation stage. All the guest OSs use Ubuntu 12.04, 

while the VMMs used in our cloud experiments are Xen 4.1 

fully virtualized and VMware ESXI 5.5. Both allow the usage 

of huge size pages by guest OSs [44], [38], [45]. 

The target process is going to use the C reference imple- 

mentation of OpenSSL1.0.1f, which is the default if the 

library is configured with no-asm and no-hw options. We 

would like to remark that these are not the default OpenSSL 

installation options in most of the products. 

The attack scenario is going to be the same one as in [1], 

[10], where one process/VM is handling encryption requests 

with an secret key. As in [10], the attacker’s process/VM is 

co-located with the encryption server, but on different cores. 

We assume synchronization with the server, i.e, the attacker 

starts the S$A spy process and then sends random plaintexts to 

the encryption server. The communication between encryption 

server and attacker is carried out via socket connections. Upon 

the reception of the ciphertext, the attacker measures the 

L3 cache usage by the S$A spy process. All measurements 

are taken by the attackers process/VM with the rdtscp 

function, which not only reads the time stamp counters but 

also ensures that all previous processes have finished before 

Fig. 7. Number of key bytes correctly recovered vs number of encryptions 
needed for native OS, single VM and cross-VM scenarios. 

 

 

its execution [46]. 

B. The Cross-Core Cross-VM Attack 

We perform the attack in three different scenarios: native 

machine, single VM and cross-VM. In the native and single 

VM scenarios, we assume that the huge size pages are set to 

be used by any non-root process running in the OS. Recall 

that in the cross-VM scenario, the attacker has administrator 

rights in his own OS. 

The first step is to recognize the access pattern of the L3 

cache in our Intel i5-650. Using S$A we detect that the L3 

cache is divided in more than one slice, since generating 17 

random lines that occupy the set 0 in the cache does not output 

higher probe timings. The spy process helps us to understand 

that the cache is divided into two slices, and that the slice 

selection method is based on the parity of the 17th bit, i.e, the 

first non set addressing bit. Thus we need 16 odd lines to fill 

a set in the odd slice, whereas we need 16 even lines to fill a 

specific set in the even slice. 

The second step is to recognize the set that each T-table 

cache line occupies in the L3 cache. For that purpose we 

monitor each of the possible sets according to the offset 

obtained from the linux shared library alignment feature. 

Recall that if the offset modulo 64 f0 of one of the T-tables 

is known, we only need check the sets that are 64 positions 

apart, starting from f0. By sending random plaintexts the set 

holding a T-table cache line is used around 90% of the times, 

while around 10% of the times the set will remain unused. The 

difference between a set allocating a T-table cache line and a 

set not allocating a T-table cache line can be graphically seen 

in Figure 5, where 500 random encryptions were monitored 

with S$A for both cases in a cross-VM scenario in Xen 4.1. 

It can be observed that monitoring an unused set results in 

more stable timings in the range of 200-300 cycles. However 

monitoring a set used by the T-tables outputs higher time 
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TABLE I 
COMPARISON  OF  CROSS-VM CACHE  SIDE-CHANNEL  ATTACKS  ON  AES 

Attack Platform Methodology OpenSSL Traces 

Spy-Process based Attacks: 

Collision timing [16] Pentium 4E Time measurement 0.9.8a1 300.000 
Prime+probe [2] Pentium 4E L1 cache prime-probing 0.9.8a 16.000 
Evict+time [2] Athlon 64 L1 cache evicting 0.9.8a 500.000 

Flush+Reload (CFS)2[5] Pentium M Flush+reload w/CFS 0.9.8m 100 

Flush+Reload [10] i5-3320M L3 cache Flush+reload 0.9.8a 8.000 

Bernstein [24] Core2Duo Time measurement 1.0.1c 222 

 

 

 

 

 
 

1 OpenSSL 0.9.8a uses a less noisier implementation. 
2 The attack is performed taking control of the CFS. 
3 Huge Pages have to be configured to allow non-root processes to use them. 
4 Only parts of the key were recovered, not the whole key. 
5 The attack is only possible if deduplication is enabled by the VMM. Transparent Page Sharing is no 

longer enabled by default in VMware. Amazon never enabled deduplication on all their AWS servers. 

 

values around 90% of the time, whereas we still see some 

lower time values below 300 around 10% of the times. Note 

that the key used by the AES server is irrelevant in this step, 

since the set used by the T-table cache lines is going to be 

independent of the key. 

The last step is to run S$A to recover the AES key used by 

the AES server. We consider as valid ciphertexts for the key 

recovery step those that are at least below half the average 

of the overall timings. This threshold is based on empirical 

results that can be seen in Figure 6. The figure presents the 

miss counter value for all the possible ciphertext values of C0, 

when the last line in the corresponding T-table is monitored. 

The key in this case is 0xe1 and the measurements are taken 

in a cross-VM scenario in Xen 4.1. In this case only 8 values 

take low miss counter values because the T-table finishes in the 

middle of a cache line. These values are clearly distinguishable 

from the rest and appear in opposite sides of the empirical 

threshold. 

Results for the three scenarios are presented in Figure 7, 

where it can be observed that the noisier the scenario is, e.g. 

in the cross-VM scenario, the more monitored encryptions 

are needed to recover the key. The plot shows the number 

of correctly guessed key bytes vs. the number of encryptions 

needed. Recall that the maximum number of correctly guessed 

key bytes is 16 for AES-128. The attack only needs 150.000 

encryptions to succeed on recovering the full AES key in 

the native OS scenario. Due to the higher noise in the cloud 

setting, the single VM recovers the full key with 250.000 

encryptions. The cross-VM scenario was analyzed in two 

popular hypervisors, Xen and VMware, requiring 650.000 and 

500.000 encryptions to recover the 16 key bytes respectively. 

We believe that Xen requires a higher number of encryptions 

due to the higher noise caused by the usage of a fully 

virtualized hypervisor. It is important to remark that the attack 

is completed in only 9 and 35 seconds, respectively, for the 

native and single VM scenarios. In the cross VM scenario, 

the attack succeeds in recovering the full key in 90 and 150 

seconds in VMware and Xen, respectively. Recall that in 

the cross-VM scenario the external IP communication adds 

significant latency. 

C. Comparison with previous attacks 

We compare the efficiency of the attack presented in this 

work with previously proposed attacks that targeted the AES. 

The comparison is presented in Table I. We make the following 

observations: 

– Our attack is close to the efficiency achieved by the 

Flush+Reload attack in non-virtualized environments, 

and improves over previously proposed attacks. However, 

huge pages are required to be configured so that their 

usage by non-root processes is allowed. 

– Our new S$A attack is more efficient than Bernstein’s 

attack in the cloud, which does not recover the entire 

key in the cloud even with a significantly higher number 

of encryptions. 

– In the cloud, S$A again requires more encryptions than 

Flush+Reload but not as much as to become impractical. 

The attack can still be realized under 3 minutes in XEN 

and under 2 in VMware. However, it should be noted that 

S$A does not take advantage of memory deduplication 

process which is crucial for the cross-VM Flush+Reload 

attack. The deduplication feature (called Transparent 

Page Sharing in VMware) is now disabled by default in 

VMware [47]. Moreover, we have also confirmed with 

Amazon that deduplication was never enabled on all of 

their AWS servers due to security concerns. 

Thus, the S$A attack turns VMMs that are not vulnerable to 

Flush+Reload due to the lack of memory deduplication into a 

Flush+Reload [10] i5-3320M L3 cache Flush+reload 1.0.1f 100.000 

S$A3
 i5-650 L3 cache S$A 1.0.1f 150.000 

Cross-VM Attacks: 

Bernstein [11], [10]4
 

Flush+Reload (VMware)5[10] 

 
i5-3320M 

i5-3320M 

 
Time measurement 
L3 cache Flush+Reload 

 
1.0.1f 

1.0.1f 

 

230 

400.000 

S$A (Xen) i5-650 L3 cache S$A 1.0.1f 650.000 

S$A (VMware) i5-650 L3 cache S$A 1.0.1f 500.000 
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valid target for cross-VM attacks. The only requirement is that 

guest OSs are allowed to use huge size pages. This feature is 

implemented at the OS level, and is not administered by the 

VMM. 

VI. APPLICABILITY   AND   COUNTERMEASURES 

In this section we shortly comment on the applicability of 

this attack beyond the scope of AES software implementations 

and discuss ways how this attack can be prevented. 

A. Applicability of S$A 

As described earlier, the S$A attack is a cross-core cross- 

VM attack. S$A targets the shared level of cache (typically 

L3) in a SMP multiprocessor, hence can be used across 

cores. That is, the afttack works even if victim and spy are 

running on different cores in the same CPU. Unlike other 

cross-VM attacks, S$A does not require deduplication of the 

targeted data. Previous attacks use deduplication to solve two 

independent problems. The obvious one is the detection of 

cache accesses to extract secret information of the victim. 

However, deduplication also solves the location problem, i.e. 

automates the detection of where the leaking data of the 

target is stored in cache. In S$A, these two problems become 

independent. Hence, the attack is more challenging for the 

adversary, as the location problem needs to be solved before 

information can be extracted. However, since the extraction 

mechanism is the same, the S$A is applicable in all scenarios 

where Flush+Reload can be applied. We claim the S$A attack 

to be a substitute for the Flush+Reload attack whenever 

deduplication is not available. The added cost is the location 

step and a slightly decreased temporal resolution, since the 

(re-)priming needs to fill and check an entire set, not just a 

single line of cache. Hence, although this work demonstrates 

the applicability to AES only, the S$A attack is applicable 

in all cases where the Flush+Reload can be applied and has 

been applied. In other words, S$A can be applied to attack 

the public key cryptosystems targeted in [7], [9], [29]. This 

also means that focusing on countermeasures for AES is not 

helpful, since those will not prevent attacks on other crypto 

schemes also vulnerable to this attack. 

However, the S$A attack succeeds due to two main charac- 

teristics: the inclusiveness of the LLC in Intel processors and 

the usage of huge pages by client VMs. The first characteristic 

is not fulfilled in AMD processors, i.e, data located in L1 or 

L2 caches does not have to be present in the LLC. Therefore, 

when the victim accesses a particular memory block, it does 

not directly occupy a position in the LLC but resides in the 

upper level caches first. In this situation, our S$A attack does 

not detect the usage of the leaking memory block. 

The second characteristic, to the best of our knowledge, 

is accomplished by most of the well known hypervisors. 

However, we did not succeed on implementing the attack in 

Citrix Xen 6.2. The main reason seems to be that neither the 

guest VMs nor the hypervisor are allowed to utilize huge size 

pages. This restriction makes our attack impossible to succeed 

in the LLC. 

B. AES-specific Countermeasures 

Cache-based side channels are not a new phenomenon, 

hence numerous countermeasures have been proposed. The 

most obvious one is the use of AES-NI or other AES hardware 

extensions, if available on the processor. A good discussion of 

that and several other countermeasures like data independent 

memory accesses and smaller T-tables can be found in [48]. 

C. S$A-specific Countermeasures 

Next, we discuss countermeasures that hinder the ex- 

ploitability of the shared level cache and thereby prevent the 

S$A attack. 

Disable Huge Size Pages: In the particular case of the S$A 

cache side channel attack, if huge size pages are not allowed 

to be used by the guests the attack is no longer possible. The 

decision of using the huge size pages could still be done only 

by the VMM, depending on certain parameters based on the 

length or the memory resources needed by the code. 

Private L3 Cache Slices: One way to avoid the cache leakage 

that S$A uses is to make the cache slices private per VM, 

similar to the countermeasure suggested in [49]. This means 

that a particular VM is not allowed to interfere with the cache 

slice that another co-located VM is using. In this scenario 

the attacker does not interfere with the victim’s cache slice 

and therefore cannot decide whether a specific memory line 

was used with S$A. This however, requires modifications to 

the cache arbitration mechanism and has the adverse affect of 

reducing the size of the cache slices made available to a single 

VM. It also limits the number of Guest VMs to the number 

of slices. 

Hardware Masking of Addresses: Another possible solution 

is to apply a mask (implemented at the hardware level) to the 

offset field based on some of the non-set addressing bits in the 

physical address when huge size pages are used. Since the user 

no longer has control over the offset field, he cannot prime the 

specific set that he wants to target in the L3 cache and cannot 

decide whether the set was used or not by the victim. 

Shadow Page Tables as Masking Option: In this case the 

shadow page tables that VMMs use for a virtual to virtual 

translation would play a more important role. For instance, 

the shadow page tables could not only handle the translation 

from VM virtual memory to VMM virtual memory, but also 

apply a mask based on the non cache-addressing bits. Thereby, 

the guest user does not know the masking value applied by the 

VM, and he cannot control the set that his data will occupy 

in the L3 cache. 

VII. CONCLUSION 

S$A: A new deduplication free L3 cache side channel 

technique: We proposed a new side channel technique that 

is applied in the L3 cache and therefore can be applied in 

cross-core scenarios. The new side channel technique bases 

its methodology in the usage of huge size pages, which give 

extra information about the position that each memory location 

occupies in the L3 cache. 
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Targeting the cloud environment: We demonstrated that the 

new side channel technique can also be implemented in the 

cloud, particularly in Xen 4.1 and VMware ESXI 5.5, where 

the usage of huge size pages by the guest OSs is allowed. 

Recall that the vast majority of the VMMs allow the usage of 

huge size pages, making S$A a suitable target for all of them. 

Applying the attack on AES: We demonstrated the viability 

of the new side channel technique by recovering AES keys 

monitoring only 4 sets in the L3 cache in both virtualized 

and non-virtualized scenarios. In the noisier scenario the 

attack succeeds to recover the full AES key in less than 

3 minutes. Thus, we showed that the efficiency of S$A is 

close to the efficiency achieved by Flush+Reload (which uses 

memory deduplication techniques) and is significantly higher 

than Bernstein’s attack. 

VIII. DISCLOSURE 

We have disclosed our attack to the security teams of 

VMware, Amazon AWS and Citrix. 
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Xeon  PhiŹ  Coprocessor  ,”  https://software.intel.com/sites/default/files/ 
Large_pages_mic_0.pdf. 

[35] P. Weisberg and Y. Wiseman, “Using 4KB Page Size for Virtual Memory 
is Obsolete,” in Proceedings of the 10th IEEE International Conference 
on Information   Reuse   &   Integration,   ser.   IRI’09.   Piscataway, 
NJ, USA: IEEE Press, 2009, pp. 262–265. [Online]. Available: 
http://dl.acm.org/citation.cfm?id=1689250.1689298 

[36] “VMware Large Page performance ,” http://www.vmware.com/files/pdf/ 
large_pg_performance.pdf. 

[37] “Huge Page Configuration in KVM,” http://www-01.ibm.com/support/ 
knowledgecenter/linuxonibm/liaat/liaattunconfighp.htm?lang=en. 

[38] “X-XEN : Huge Page Support in Xen,” https://www.kernel.org/doc/ols/ 
2011/ols2011-gadre.pdf. 

[39] “Advanced Encryption Standard,” http://csrc.nist.gov/publications/fips/ 
fips197/fips-197.pdf. 

[40] R. Hund, C. Willems, and T. Holz, “Practical timing side channel 
attacks against kernel space aslr,” in Proceedings of the 2013 IEEE 
Symposium on Security and Privacy, ser. SP ’13. Washington, DC, 
USA: IEEE Computer Society, 2013, pp. 191–205. [Online]. Available: 
http://dx.doi.org/10.1109/SP.2013.23 

[41] L. Zhao, R. Iyer, M. Upton, and D. Newell, “Towards Hybrid Last 
Level Caches for Chip-multiprocessors,” SIGARCH Comput. Archit. 
News, vol. 36, no. 2, pp. 56–63, May 2008. [Online]. Available: 
http://doi.acm.org/10.1145/1399972.1399982 

[42] “Intel Ivy Bridge Cache Replacement Policy,” http://blog.stuffedcow.net/ 
2013/01/ivb-cache-replacement/. 
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