
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 821 Copyright @ 2021 Authors

A Shared Cache Attack that Ignores VM Sandboxing and Operates Across Cores, S$A,

and Its Application to AES

Mr. GOPAL BEHERA*, Dr.SACHINANDAN MOHANTY

Dept. OF Computer Science and Engineering, NIT , BBSR

gopalbehera@thenalanda.com*, sachinandanmohanty@thenalanda.com

Abstract— The cloud computing architecture is based on
virtualized servers that use sandboxing to offer separation
between guest OSes. Previous research that took use of
hardware-level information leaks to access sensitive data across
co-located virtual machines showed how ineffective this isolation
was (VMs). To counter these threats, cloud service providers and
virtualization firms have deactivated functions like
deduplication.

In this paper, we provide a fine-grain cross-core cache attack
that takes advantage of last level cache access time variations.
Huge pages are exploited by the attack to cross VM boundaries
without the need for deduplication. The attack is extremely
viable because the victim System doesn't require any
configuration changes. The target and victim OS can still be
located on different cores of the system; only machine co-location
is necessary. Our new approach, which is currently only
applicable to L1 cache, is a version of the prime and probe cache
attack. Our attack, on the other hand, targets the shared L3
cache in a manner that is similar to the flush and reload assault.
In fact, by altering the enormous page size, our attack may be
made to function.

I. INTRODUCTION

The end of exponential growth of single core performance

in the past decade has helped creating a new industry selling

computing infrastructure as a service (IaaS) popularly referred

to as cloud computing. Instead of financing and maintaining

expensive workstations and servers, companies can rent the

resources from cloud providers just when needed and only

for the duration of the need, thereby significantly cutting

IT costs. A number of well-known tech companies such as

Google, Amazon AWS, EMC come to mind when mention-

ing cloud computing. Popular user-oriented examples include

cloud backed storage service providers like Dropbox in the

personal computing space and Box.net in the enterprise. These

are just a couple of examples among numerous businesses en-

abled by cloud backed compute and storage offerings such as

Amazon’s EC2 compute and S3 storage solutions, respectively.

Nevertheless, like any emerging technology, cloud services

have also encountered their unique security challenges. The

problem stems from the fact that most security technologies

were developed for a world of isolated servers. These servers

were subsequently transferred to virtualized servers hosting a

number of guest OS’s without any adjustments.

A new class of security vulnerabilities arises due to one

of the most important principles that cloud systems are based

on: co-residency and multi-tenancy. The benefit of cloud com-

puting comes from resource sharing, implying that multiple

customers will utilize the same hardware of the same physical

machine instead of assigning a dedicated server per user.

Despite the benefits that co-residency bestows, namely main-

tenance and electricity cost reduction, it also implies that users

run their virtual machines (VM) in the same hardware only

separated by the virtualization layer provided by the Virtual

Machine Manager (VMM). In theory sandboxing techniques

should provide the required isolation between VMs, but of

course the devil is in the details.

A serious threat to VM isolation (and therefore the cus-

tomer’s privacy) comes from side channel attacks which ex-

ploit subtle information leakage channels at the microarchitec-

tural level. If side channel attacks can circumvent the logical

isolation provided by the hypervisor, critical pieces of informa-

tion such as cryptographic keys might be stolen. In particular,

co-residency creates a scenario where microarchitectural side

channels can potentially be exploited. A large number of

microarchitectural attacks targeting cryptographic keys have

already been extensively studied and successfully applied in

non-virtualized scenarios. For instance, cache attacks are based

on access time variations when retrieving data from the cache

and from the memory, as proposed by Bernstein [1] or Osvik

et al. [2]. Both studies manage to recover AES secret keys

by monitoring the cache utilization. Modern memory saving

features like Kernel Samepage Merging (KSM) [3], [4] have

also been shown to threaten the security of cryptographic

processes as proven by Gullasch et.al [5], recovering AES keys

with as few as 100 encryptions. However, despite the success

of these attacks in non-virtualized scenarios, still very little

research has been done aiming in securing the implementation

of cryptosystems in the virtualized setting.

It was not until 5 years ago, when motivated by the

work done by Ristenpart et al. [6], that the first successful

implementations of side channel attacks inside VMs started to

appear in the community. In fact, Ristenpart et al. were not

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 822 Copyright @ 2021 Authors

only able to co-locate two virtual machines hosted by Amazon

EC2 on the same physical hardware, but also managed to

recover key strokes used by a victim VM. In consequence,

they showed for the first time that side channel attacks can

be implemented in the cloud to break through the isolation

provided by sandboxing techniques.

From that point on, researches have been focusing on recov-

ering fine grain information with new and known side channel

techniques targeting weak cryptographic implementations in-

side VMs, e.g. El Gamal [7] or AES [8]. The Flush+Reload

technique has proven to be particularly effective when memory

deduplication features are enabled by the VMM. Indeed,

Yarom et al. [9] demonstrated attack that recovered RSA keys

across VMs running in different cores and hosted by KVM and

VMware. Later Irazoqui et al. [10] used the same technique

to recover AES keys across VMware VMs. The relevance of

these studies is highlighted by the prompt security update by

VMware, making memory deduplication an opt-in feature that

was formerly enabled by default. Recognizing the potential for

a security compromise, Amazon never enabled deduplication

on their EC2 compute cloud servers.

Even though mechanisms that prevent these attacks have

been implemented, the discussion still remains open in the

community. Indeed, new side channel attacks (such as the

one proposed in this work) compromising the VM isolation

techniques may arise, consequently requiring new countermea-

sures.

Our Contribution

In this work, we introduce a novel cross-core and cross-

VM cache-based side-channel attack that exploits the shared

L3 cache. The attack takes advantage of the additional physical

address knowledge gained by the usage of huge size pages.

Thus, the attack is not only applicable in non-virtualized

environments but also in the cloud, since huge pages is enabled

by default in all common hypervisors, i.e, Xen, VMware

and KVM. Unlike the popular Flush+Reload attack [9], the

new attack does not rely on deduplication features (no longer

enabled by default in VMware and never enabled on Amazon

AWS servers) and therefore, it can be applied with hypervisors

not considered in [9], [10] like Xen. Furthermore, the attack is

nearly undetectable by the victim, since only a small number

of sets are profiled in the L3 cache.

The viability of the new side channel attack is demonstrated

on AES in both non-virtualized and virtualized cross VM sce-

narios. The attack is compared to previous attacks performed

on AES in the cloud [11], [10]. The new attack is significantly

more efficient than [11], [10] and achieves similar efficiency

as [10]. The attack requires very little time to succeed, i.e, the

AES key is recovered in less than 3 minutes in fully virtualized

Xen 4.1 and less than 2 minutes in VMware ESXI 5.5.

In summary, this work

– introduces a new side channel technique targeting the L3

cache enabled by the use of huge size memory pages.

– Shows that the attack can be applied in the cloud since

most of the hypervisors allow the usage of huge size

pages by the guest OSs.

– Presents the viability of the new side channel technique

by recovering AES keys when attacker and victim are

located in different cores.

– Demonstrates that the attack is also practical by recov-

ering the AES key in less than 3 minutes in virtualized

settings.

We summarize existing cache-based side-channel attacks

as well as virtual address translation and cache addressing

in Section II. The new side channel attack is introduced in

Section III. Results are presented in Section V. Before con-

cluding in Section VII possible countermeasures are discussed

in Section VI.

II. BACKGROUND

In this section we give a brief overview of the background

needed to understand the new attack presented in this work.

After summarizing cache side channel attacks, their history

and the improvements that have been developed over the last

15 years, a short explanation of Virtual Address Cache Map-

ping and the previous Prime+Probe technique are provided.

A. Cache Side Channel Attacks

Cache side channel attacks take advantage of the informa-

tion leakage stemming from microarchitectural time differ-

ences when data is retrieved from the cache rather than the

memory. The cache is a small memory placed between the

CPU and the RAM to avoid the big latency added by the

retrieval of the data. Modern processors usually have more

than one level of cache to improve the efficiency of memory

accesses. Caches base their functionality on two different

principles, i.e, temporal and spatial locality. The first one

predicts that data accessed recently will be accessed soon,

whereas the latter one predicts that data in nearby locations

to the accessed data will also be accessed soon. Thus, when

a value is fetched from memory by the CPU, a copy of that

value will be placed in the cache, together with nearby memory

values to reduce the latency of future accesses.

Obviously, data in cache can be accessed much faster than

data only present in memory. This is also true for multilevel

caches, where data accessed from the L1 cache will experience

lower latencies than data accessed from subsequent cache

levels. These time differences are used to decide whether a

specific portion of the memory resides in the cache—implying

that the data has been accessed recently. The resulting in-

formation leakage posses a risk especially for cryptographic

algorithms, which might lead to compromise of secret keys.

Although many spy processes have been introduced targeting

the L1 cache, implying core co-location, lately cross-core spy

processes have gained most of the attention. In the latter

case, typically the Last Level Cache (LLC) acts as a covert

channel, since it is usually shared by all the cores in most

modern processors. Cross-core cache side channel attacks are

particularly dangerous in cloud settings, where more than one

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 823 Copyright @ 2021 Authors

user co-reside in the same hardware, and the chance of two

users being co-located on different cores is high.

Previous Cache Attacks The cache was first considered to

be a suitable covert channel for the unauthorized extraction

of information in 1992 by Hu [12]. Kesley et al. [13] also

mentioned the possibility of cache attacks based on the cache

hit/miss ratio. Later, cache attack examples were studied theo-

retically by Page [14] whereas Tsunoo et al. [15] investigated

timing leakage due to internal table look up collisions.

However it was not until 2004 when the first practical

implementations of cache attacks were studied. For instance,

Bernstein [1] implemented a cache timing attack targeting

AES based on the existing microarchitectural leakage when

different memory position are loaded in the cache. He used this

leakage to recover the full AES key in some implementations.

At the same time Osvik et al. [2] investigated the impact of

two different trace driven attacks on AES: Evict + Time and

Prime+Probe. They showed that both methods can be applied

in spy processes to recover AES keys. One year later Bonneau

and Mironov exploited the cache collisions due to internal

table look ups in AES to obtain the secret key [16].

A similar collision timing attack was presented by Acıiçmez

et al. [17] targeting the first and second encryption rounds

of AES while Neve and Seifert [18] studied the impact of

access driven cache attacks in the last round of AES. In 2007

Acıiçmez proved that AES and the data cache were not the

only possible target of cache side channel attacks [19]. He

discovered leakages in the instruction cache during public key

encryptions and applied cache side channel attacks to recover

RSA keys.

However, most of the attacks mentioned above were imple-

mented as spy processes in a native OS environment, reducing

the practical impact of the attacks in realistic scenarios. It was

not until 2009 when Ristenpart et al. managed to co-locate

two virtual machines in a public cloud achieving the usage of

the same CPU [6] that cross VM attacks on the public cloud

were considered practical. Their experiments in the Amazon

EC2 public cloud [20] achieved a co-residency success rate of

up to 40% with the desired target by using different properties

like IP range and instance type. The work also demonstrated

that cache usage can be analyzed to deduce secret keystrokes

used by a potential victim. Hence, the attack demonstrated for

the first time that microarchitectural side channel attacks that

require co-location are a potential threat in the cloud setting.

Further co-residency detection methods such as traffic analysis

later were studied, e.g. by Bates et al. [21].

The research made on detecting co-residency motivated

many researchers to apply known side channel techniques

in the cloud. For instance, Zhang et al. [22] used the above

mentioned Prime+Probe technique to detect whether any other

tenant was co-located in the same hardware. Shortly later

again Zhang et al. [7] recovered El Gamal encryption keys by

monitoring the L1 instruction cache in a virtualized setting,

again with the Prime+Probe spy process. Their experiments

were carried out in Xen VMs and they had to apply a

hidden Markov model to reduce the noise present in their

measurements. Bernstein’s attack was also tried in virtualized

environments, first by Weiss et al. [8] in ARM processors and

then by Irazoqui et al. in VMware or Xen [11].

At the same time new spy processes and improvements over

previous techniques were investigated in non-virtualized sce-

narios. Chen et al. presented an improvement over Acıiçmez’s

technique to monitor the instruction cache and recover a RSA

key [23], whereas Aly et al. [24] studied an improvement

on the detection method for the Bernstein’s attack. Cache

collision attacks on AES and instruction cache attacks on

DSA were also further investigated by Spreitzer and Plos [25]

and Acıiçmez et al. [26], respectively. On the other hand,

Gullasch et al. [5] studied a new side channel technique

that would later acquire the name of Flush+Reload and that

is based on memory saving features like Kernel Samepage

Merging (KSM). They were able to recover a full AES key by

monitoring the data cache while getting control of the Control

Fair Scheduler (CFS) [27]. This new method proved that

successful cache attacks can still be implemented in modern

processors, contrary to the claim of [28].

More recently, Yarom et al. used the Flush+Reload tech-

nique to attack the RSA implementation of Libgcrypt [9].

Furthermore, they showed that their attack is applicable in a

cross-core and cross-VM setting. Hence, it could be applied

in cloud environments, particularly in the VMMs implement-

ing memory deduplication features like VMware or KVM.

Shortly later, Benger et al. applied the same technique to

recover ECDSA keys [29]. Irazoqui et al. demonstrated that

Flush+Reload can also be applied to recover AES keys

without the need of controlling the CFS, and also proved the

viability of their method across VMware VMs [10]. Finally,

Zang et al. [30] showed that Flush+Reload can recover sen-

sitive information from co-located processes in PaaS clouds.

In a concurrent work, Yarom et.al [31] used the same

technique described in this paper to recover a full RSA key in

a sliding window implementation by recovering the positions

where each ciphertext table entry is accessed.

B. Virtual Address Translation and Cache Addressing

In this work we present an attack that takes advantage of

some known information in the virtual to physical address

mapping process. Thus, we give a brief overview about

the procedure followed by modern processors to access and

address data in the cache [32].

In modern computing, processes use virtual memory to

access requested memory locations. Indeed processes do not

have direct access to the physical memory, but use virtual

addresses that are then mapped to physical addresses by the

Memory Management Unit (MMU). This virtual address space

is managed by the Operating System. The main benefits of

virtual memory are security (processes are isolated from real

memory) and use of more memory than physically available

due to paging techniques.

The memory is divided into fixed length continuous blocks

called memory pages. The virtual memory allows the usage

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 824 Copyright @ 2021 Authors

CACHE

S0

S1

.

.

.

SN
.

Cache tag Set Byte

Offset Physical Page

MMU

Offset Virtual Page

tag B0 Bn

tag B0 Bn
 .

 .

 .

.

ta.g B0 Bn

Fig. 1. Cache accesses when it is physically addressed.

of these memory pages even when they are not allocated in

the main memory. When a specific process needs a page not

present in the main memory, a page fault occurs and the page

has to be loaded from the auxiliary disk storage. Therefore, a

translation stage is needed to map virtual addresses to physical

addresses prior to the memory access. In fact, cloud systems

have two translation processes, i.e, guest OS to VMM virtual

address and VMM virtual address to physical address. The

first translation is handled by shadow page tables while the

second one is handled by the MMU. This adds an abstraction

layer with the physical memory that is handled by the VMM.

During translation, the virtual address is split into two fields:

the offset field and the page field. The length of both fields

depends directly on the page size. Indeed, if the page size is

p bytes, the lower log2(p) bits of the virtual address will be

considered as the page offset, while the rest will be considered

as the page number. Only the page number is processed by

the MMU and needs to be translated from virtual to physical

page number. The page offset remains untouched and will have

the same value for both the physical and virtual address. Thus,

the user still knows some bits of the physical address. Modern

processors usually work with 4 KB pages and 48 bit virtual

addresses, yielding a 12 bit offset and the remaining bits as

virtual page number.

In order to avoid the latency of virtual to physical ad-

dress translation, modern architectures include a Translation

Lookaside Buffer (TLB) that holds the most recently translated

addresses. The TLB acts like a small cache that is first checked

prior to the MMU. One way to avoid TLB misses for large

data processes is to increase the page size so that the memory

is divided into fewer pages [33], [34], [35]. Since the possible

virtual to physical translation tags have been significantly

reduced, the CPU will observe less TLB misses than with 4 KB

pages. This is the reason why most modern processors support

the use of huge size pages, which typically have a size of at

least 1 MB. This feature is particularly effective in virtualized

settings, where virtual machines are typically rented to avoid

the intensive use of hardware resources on private computers.

In fact, most well known VMM providers support the use of

huge size pages by guest OSs to improve the performance of

those heavy load processes [36], [37], [38].

Cache Addressing: Caches are physically tagged, i.e, the

physical address is used to decide the position that the data

will occupy in the cache. With b-byte size cache lines and m-

way set associative caches (with n number of sets), the lower

log2(b) bits of the physical address are used to index the byte

in a cache line, while the following log2(n) bits select the

set that the memory line is mapped to in the cache. A

graphical example of the procedure carried out to address the

data in the cache can be seen in Figure 1. Recall that if a

page size of 4 KB is used, the offset field is 12 bits long. If

log2(n)+log2(b) is not bigger than 12, the set that a cache line

is going to occupy can be addressed by the offset. In this case

we say that the cache is virtually addressed, since the position

occupied by a cache line can be determined by the virtual

address. In contrast, if more than 12 bits are needed to address

the corresponding set, we say that the cache is physically

addressed, since only the physical address can determine the

location of a cache line. Note that when huge size pages are

used, the offset field is longer, and therefore bigger caches can

be virtually addressed. As we will see, this information can

be used to mount a cross-VM attack in the L3 cache.

C. The Prime+Probe Technique

Our new attack is based on the methodology of the known

Prime+Probe technique. Prime+Probe is a cache-based side

channel attack technique used in [2], [22], [7] that can be

classified as an access driven cache attack. The spy process

ascertains which of the sets have been accessed in the cache

by a victim. The attack is carried out in 3 stages:

– Priming stage: In this stage, the attacker fills the mon-

itored cache with his own cache lines. This is achieved

simply by accessing his own made up data.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 825 Copyright @ 2021 Authors

– Victim accessing stage: In this stage the attacker waits

for the victim to access some positions in the cache,

causing the eviction of some of the cache lines that were

primed in the first stage.

– Probing stage: In this stage the attacker accesses the

priming data again. When the attacker reloads data from

a set that has been used by the victim, some of the primed

cache lines have been evicted, causing a higher probe

time. However if the victim did not use any of the cache

lines in a monitored set, all the primed cache lines will

still reside in the cache causing a low probe time.

The Prime+Probe side channel attack has some limitations.

First, it can only be applied in small caches (typically the

L1 cache), since only a few bits of the virtual address are

known. Second, the employment of such a spy process in small

caches restricts its application to processes co-located on the

same core. Finally, modern processors have very similar access

times for L1 and L2 caches, only differing in a few cycles,

which makes the detection method noisy and challenging. For

instance, this challenge was also experienced in [7], where the

authors had to apply a Hidden Markov Model in addition to

the Prime+Probe technique to deal with noisy measurements.

III. THE S$A ATTACK

In this section we present the technical details of our S$A

attack. Later we demonstrate the viability of the attack on

the OpenSSL1.0.1.f’s C-implementation of AES [39] to

achieve a full AES key recovery in a scenario where the

attacker and the victim are co-located on the same machine but

run on different cores. Our S$A attack has several advantages

over the previous cache side channel attacks on AES:

– Our S$A attack is the first efficient cross-core cache

attack that does not take advantage of deduplication

features, yet succeeds in retrieving key information

across VM boundaries. While some previous attacks,

e.g. Flush+Reload rely on deduplication, other attacks

such as Prime+Probe were also applied in the cloud but

assumed to be co-located in the same core with the target

process. In contrast, the new S$A attack detects accesses

made to the last level cache by using huge size pages to

allocate the attacker’s data. Since the last level of cache is

usually shared among all the cores in modern processors,

our spy process can detect cache accesses even when

the victim is co-located in a different core on the same

machine;

– We achieve almost the same efficiency as the

Flush+Reload attack with the S$A spy process. Other

attacks like Bernstein’s attack require a much higher

number of encryptions to get partial information of the

AES key;

– The S$A can be considered a non-intrusive cache attack.

In the case of AES only 4 sets from the last level cache

need to be monitored to recover a full AES encryption

key.

A. S$A enabled by Huge Pages

The S$A attack proposed in this work, is enabled by making

use of huge pages and thereby eliminating a major obstacle

that normally restricts the Prime+Probe attack to target the

L1 cache. A similar method was first discussed by Hund et

al. [40] to bypass the ASLR in a Windows OS. As explained

in Section II, a user does not use the physical memory directly.

Instead, the user is assigned a virtual memory so that a

translation stage is performed from virtual to physical memory

at the hardware level. The address translation step creates an

additional challenge to the attacker since real addresses of the

variables of the target process are unknown to him. However

this translation is only performed in some of the higher order

bits of the virtual address, while a lower portion, named the

offset, remains untouched. Since caches are addressed by the

physical address, if we have cache line size of b bytes, the

lower log2(b) bits of the address will be used to resolve the

corresponding byte in the cache line. Furthermore if the cache

is set-associative and for instance divided into n sets, then the

next log2(n) bits of the address will select the set that each

memory data is going to occupy in the cache. The log2(b)-bits

that form the byte address within a cache line, are contained

within the offset field. However, depending on the cache size

the following field which contains the set address may exceed

the offset boundary. The offsets allow addressing within a

memory page. The OS’s Memory Management Unit (MMU)

keeps track of which page belongs to which process. The

page size can be adjusted to better match the needs of the

application. Smaller pages require more time for the MMU to

resolve.

Here we focus on the default 4 KB page size and the larger

page sizes provided under the common name of Huge pages.

As we shall see, the choice of page size will make a significant

difference in the attackers ability to carry out a successful

attack on a particular cache level:

– 4 KB pages: For 4 KB pages, the lower 12-bit offset of

the virtual address is not translated while the remaining

bits are forwarded to the Memory Management Unit. In

modern processors the cache line size is usually set as

64 bytes. This leaves 6 bits untouched by the Memory

Management Unit while translating regular pages. As

shown in the top of Figure 2 the page offset is known

to the attacker. Therefore, the attacker knows the 6-bit

byte address plus 6 additional bits that can only resolve

accesses to small size caches (64 sets at most). This is

the main reason why techniques such as Prime+Probe

have only targeted the L1 cache, since it is the only one

permitting the attacker to have full control of the bits

resolving the set. Therefore, the small page size indirectly

prevents attacks targeting big size caches, i.e. the L2 and

L3 caches.

– Huge pages: The scenario is different if we work with

huge size pages. Typical huge page sizes are at 1 MB

or even greater. This means that the offset field in the

page translation process is larger, with 20 bits or more

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 826 Copyright @ 2021 Authors

12 bits

Virtual
Address

Virtual

Address

4 KB page
Offset=12 bits

256 KB page
Offset=18bits

18 bits

Fig. 2. Regular Page (4 KB, top) and Huge Page (256 KB, bottom) virtual to physical address mapping for an Intel x86 processor. For Huge pages the entire
L3 cache sets become transparently accessible even with virtual addressing.

remaining untouched during page translation. Observe

the example presented in Figure 2. For instance, assume

that our computer has 3 levels of cache, with the last

one shared, and the L1, L2 and L3 caches are divided

into 64, 512 and 4096 sets, respectively. The first lowest

6-bits of the offset are used for addressing the 64 byte

long cache lines. The following 6 bits are used to resolve

the set addresses in the L1 cache. For the L2 and L3

caches this field is 9 and 12-bits wide, respectively. In

this case, a huge page size of 256 KB (18 bit offset)

or higher will give the attacker full control of the set

occupied by his data in all three levels of cache, i.e.

L1, L2 and L3 caches. A 256 KB or higher page size,

will enable an attacker to target individual lines of the

entire L3 cache. The significance of targeting the last

level cache becomes apparent when one considers the

access time gap between the last level cache and the

memory, which is much more pronounced compared to

the access time difference between the L1 and L2 caches.

Therefore, using huge pages makes it possible to reach

a higher resolution Prime+Probe style attack.

B. The S$A Attack

The S$A technique takes advantage of the control of the

lower k bits in the virtual address that we gain with the huge

size pages. These are the main steps that our spy process will

follow to detect accesses to the last level cache:

– Step 1 Allocation of huge size pages: The spy process is

based on the control that the attacker gains on the virtual

address when using huge size pages. Therefore the spy

process has to have access to the available huge pages,

which requires administrator rights. Recall that this is not

a problem in the cloud scenario where the attacker has

administrator privileges to his guest OS.

– Step 2 Prime the desired set in the last level cache:

In this step the attacker creates data that will occupy

one of the sets in the last level cache. By controlling the

virtual address, the attacker knows the set that the created

data will occupy in the last level cache. Once sufficiently

many lines are created to occupy the set, the attacker

primes it and ensures that the set is filled. Typically the

last level caches are inclusive. Thus we will not only fill

the shared last level cache set but also some sets in the

upper level caches.

– Step 3 Reprime to ensure that our data only resides

in last level cache: Priming all cache levels can lead to

misspredictions due to the different access times between

the last level of cache and the upper levels. Since we

clearly want to distinguish between accesses from the

last level cache and memory, we reprime our upper level

caches. The basic idea is to be sure to evict our data

from the upper level caches, but not from the last level

cache. Therefore we ensure that our reprime data goes to

a different set in the last level cache, but to the same set

in the upper level caches.

– Step 4: Victim process runs: After the two priming

stages, the victim runs the target process. Since one of the

sets in the last level cache is already filled, if the targeted

process uses the monitored set, one of the primed lines

is going to be evicted. Remember we are priming the

last level cache, so evictions will cause memory lines to

reside in the memory. If the monitored set is not used,

all the primed lines are going to reside in the last level

cache after the victim’s process execution.

BA
6

12

L3

9

L2

6

L1

?

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 827 Copyright @ 2021 Authors

L3 cache AccessTime histogram

Memory AccessTime histogram

−

1

0.05

0.8

0.04

0.6

0.03

0.4

0.02

0.2

0.01

0 0
100 200 300 400 500 600 700

Hardware cycles

Fig. 3. Histograms of 10,000 access times in the probe stage when all the lines are in the L3 cache and when all except one are in the cache (and the other
one in the memory).

– Step 5: Probe and measure: Once the victim’s process

has finished, the spy process probes the primed memory

lines and measures the time to probe them all. If one

or more lines have been evicted by the targeted process,

they will be loaded from the memory and we will see a

higher probe time. However if all the lines still reside in

the set, then we will see a shorter probe time.

The last step can be made more concrete with the exper-

iment results summarized in Figure 3. The experiment was

performed in native execution (no VM) on an intel i5-650

that has a 16-way associative last level cache. It can be seen

that when all the lines reside in the last level cache we obtain

very precise probe timings with average around 250 cycles

and with very little variance. However when one of the lines

is evicted from last level cache and resides in memory, both

the access time and the variance are higher. We conclude that

both types of accesses are clearly distinguishable.

For further clarification of the prime and reprime stages

we present an example in Figure 4. Assume that we want

to monitor set 0 in the last level cache. The last level cache

has 1024 sets, and the upper level caches have only 64 sets.

Assume that the memory line size is 64 bytes and that the

associativity for this cache is 8 and 4 for the last level cache

and the upper level caches, respectively. In the example we

also assume that all the caches are inclusive. We know that

bits 0 5 will select the corresponding byte in the memory

line. We set our data so that the virtual address is 0 from bit 6

to bit 15, in order to ensure that we are filling set 0 in the last

level cache. We have to take into account that not only the last

level cache will be filled, but also the upper level caches. The

reprime stage evicts the blue lines in the upper level caches

and replaces them with the yellow lines, which will go to a

different set in the last level cache. With this approach, we

ensure that the lines we are working with only reside in set 0

of the last level cache.

Handling Cache Slices: Typically the last level of cache is

divided into slices [41], [42], [33]. This means that if the

specifications say that we have a 4 MB last level cache,

this might be divided into two (or more) slices of 2 MB

each. Suppose now that the last level cache is a m-way set

associative cache, and that it has n sets. If the last level cache

is divided into two slices, we would be addressing n/2 sets

instead of n sets. Depending on the slice selection method that

the architecture implements, our data occupies slice 0 or slice

1. Recall that the last level of cache is usually shared among

all the cores. This means that if the cache is not divided into

slices, two cores will not be able to access data in the same

set in the same clock cycle. However if the cache is divided

in two slices, there is a 50% chance that two different cores

are accessing different slices. Therefore, the cores can access

data in the same set in the same clock cycle.

The division of the last level cache into slices makes it

necessary to add another step to the S$A. Depending on the

algorithm used to select the corresponding slice, the selection

of the lines that fill one of the sets of one of the slices can be

difficult. However we can always identify the lines that fill a

specific set in a slice by measuring the reload time of those

lines. If we are working with an m-way associative cache, we

need m lines to fill one of the sets in one of the slices. We

can verify that we found those specific lines when priming and

probing m + 1 lines gives a significantly higher reload time,

since the (m+1)th line evicts one of the previous ones. Using

this method, it is straightforward to try and identify such cache

lines for each slice.

The Intel i5-650 processor used in our experiments has a

two-sliced last level cache. The slice where the data is going to

P
ro

b
a

b
il

it
y

 c
a

c
h

e
 a

c
c

e
s

s

P
ro

b
a

b
il

it
y

 m
e

m
o

ry
 a

c
c

e
s

s

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 828 Copyright @ 2021 Authors

Rest b16 Set Address b6 Byte Address

Set Address b6 Byte Address Rest b16

−
−

i

i j i i

PRIME

X X X................. X X X 0 0 0 0 0 0 0 X X X X X X

X X X................. X X X 0 0 0 00 0 0 X X X X X X

REPRIME

X X X X X X NO0 0 0 0 0 0 0 X X X X X X

LINE 0
..
..

LINE 7

LINE 0
..

LINE 3

LAST LEVEL CACHE

SET 0

UPPER LEVEL CACHE
SET 0

Fig. 4. Prime and reprime stages to ensure we monitor the last level cache.

be located is selected with the (l + 1)th bit, assuming we have

l bits to address the set and cache line byte. If the (l + 1)th
bit is 0, the data will be stored in slice 0, whereas if the bit

is a 1, the data will be stored in the slice 1.

IV. S$A APPLIED TO AES

In this section we proceed to explain how the S$A spy

process can be applied to attack AES. We use the C reference

implementation of OpenSSL1.0.1f library which uses 4

different T-tables during the AES execution. The implementa-

tion of AES is based on the execution of three main operations,

i.e., a table lookup operation, a MixColumns operation and

a key addition operation. For AES-128 these operations are

repeatedly executed for 9 rounds, whereas the last round only

implements the table look up and key addition operations.

OpenSSL uses 4 different 1 KB sized T-tables for the 10

rounds. Recovering one round key is sufficient for AES-128,

as the key scheduling is invertible.

We use the last round as our targeted round for convenience.

Since the 10th round does not implement the MixColumns op-

eration, the ciphertext directly depends on the T-table position

accessed and the last round key. Assume Si to be the value of

the ith byte prior to the last round T-table look up operation.

Then the ciphertext byte Ci will be:

cache line holds 16 T-table positions for OpenSSL 1.0.1f.

Furthermore the sets that each of these lines occupy in the

cache increase sequentially, i.e, if T [0 15] occupies set 0,

then T [16 31] occupies set 1..etc. Since each encryption

makes 40 accesses to each of the T-tables, the probability of

not accessing one of the T-tables memory lines is:

Prob[no accessT [i]] = (1 − (15/16))40 ≈ 8%. (2)

Thus, if the attacker knows which set each of the T-table

memory lines occupies, S$A will detect that the set is not

accessed 8% of the time. We use the same procedure as in [10]

to determine the key used in the last round operation. Each

ciphertext value is going to be assigned a counter that will

depend on the usage of the monitored T-table line. Recall that

the use of the monitored T-table memory line could have taken

place in any of the 10 rounds of AES. However, since the

accesses are profiled according to the corresponding ciphertext

value, the attacker has two options:

– Assign an access counter: Assign an access counter to

each possible ciphertext byte value Ci that increments

each time the monitored T-table line is accessed. In this

scenario, once enough measurements have been taken,

the ciphertext values corresponding to the monitored T-

C = T [S] ⊕ K10 (1)
table line will present higher counters than the rest.

–

where Tj is the corresponding T-table applied to the ith byte

and K10. It can be observed that if the ciphertext and the T-

table positions are known, we can guess the key by a simple

XOR operation. We assume the ciphertext to be always known

by the attacker. Therefore the attacker will use the S$A spy

process to guess the T-table position that has been used in the

encryption and consequently, obtain the key.

Since S$A will decide which table look up position has

been used by monitoring memory accesses, we need to know

how the T-tables are handled in memory. With 64 byte

memory lines, each T-table occupies 16 cache lines and each

possible ciphertext byte value Ci that increments each

time the monitored T-table line is not accessed. Thus,

once enough measurements have been taken, the cipher-

text values corresponding to the monitored T-table line

will present minimum values.

Measuring microarchitectural timings implies dealing with

noise that increases the measured time, e.g., TLB misses and

context switches. Since in our attack scenario this noise is most

of the time only biased in one direction (increasing access

times), we decide to use the miss counter, since it is less

susceptible to noise, hence ensuring very low false positives.

Assign a miss counter: Assign a miss counter to each

X X X X X X NO0 0 0 0 0 0 0 X X X X X X

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 829 Copyright @ 2021 Authors

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0 200 250 300 350 400 450 500 550 600

Hardware cycles

a)

0
100 150 200 250 300 350

Hardware cycles

b)

Fig. 5. Histograms of 500 access times monitored in the probe stage for a) a set used by a T-table memory line and b) a set not used by a T-able memory
line. Measurements are taken in the Xen 4.1 cross-VM scenario.

Thus, once enough measurements have been collected by

S$A we will see that 16 ciphertext values have significantly

higher access counters than the rest. The key is obtained by

solving Equation (1), i.e, by XOR-ing each of the ciphertext

values with each of the values in the monitored T-table

memory line. This operation outputs sets of possible keys for

each ciphertext value, while the correct key is present in all

of them.

Locating the Set of the T-Tables: The previous description

implicitly assumes that the attacker knows the location, i.e.

the sets, that each T-table occupies in the shared level cache.

A simple approach to gain this knowledge is to prime and

probe every set in the cache, and analyze the timing behavior

for a few random AES encryptions. The T-table based AES

implementation leaves a distinctive fingerprint on the cache,

as T-table size as well as the access frequency (92% per line

per execution) are known. Once the T-tables are detected, the

attack can be performed on a single line per table. Neverthe-

less, this locating process can take a significant amount of time

when the number of sets is sufficiently high in the outermost

shared cache.

An alternative, more efficient approach is to take advantage

of the shared library page alignment that some OSs like Linux

implement. Assuming that the victim is not using huge size

pages for the encryption process, the shared library is aligned

at a 4 KB page boundary. This gives us some information

to narrow down the search space, since the lower 12 bits

of the virtual address will not be translated. Thus, we know

the offset fi modulo 64 of each T-table memory line and

the T-table location process has been reduced by a factor of

64. Furthermore, we only have to locate one T-table memory

line per memory page, since the remaining table occupies the

consecutive sets in the last level cache.

Attack stages: Putting all together, these are the main stages

that the we follow to attack AES with S$A

– Step 1: Last level cache profile stage: The first stage

to perform the attack is to gain knowledge about the

structure of the last level cache, the number of slices,

and the lines that fill one of the sets in the last level

cache.

– Step 2: T-table set location stage: The attacker has

to know which set in the last level cache each T-table

occupies, since these are the sets that need to be primed

to obtain the key.

– Step 3: Measurement stage: The attacker primes and

reprimes the desired sets, requests encryptions and probes

again to check whether the monitored sets have been used

or not.

– Step 4: Key recovery stage: Finally, the attacker utilizes

the measurements taken in Step 3 to derive the last round

key used by the AES server.

V. EXPERIMENT SETUP AND RESULTS

In this section we analyze our experiment setup and the

results obtained in native machine, single VM and in the cross-

VM scenarios. We also include a comparison with previous

attacks that were performed in virtualized scenarios targeting

AES.

gion where T−table Region where T−table
e has not been used line has been used

P
ro

b
a

b
ili

ty

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 830 Copyright @ 2021 Authors

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

22

20

18

16

14

12

10

8

Average/2

6

4

2

0

0 50 100 150 200 250

Ciphertext value

0

0 100 200 300 400 500 600 700

Number of encryptions x1000

Fig. 6. Miss counter values for ciphertext 0 normalized to the maximum
value. The key is e1 and we are monitoring the last 8 values of the T-table
(since the table starts in the middle of a memory line).

A. Testbed Setup

The machine used for all our experiments is a dual core

Nehalem Intel i5-650 [43] clocked at 3.2 GHz. This machine

works with 64 byte cache lines and has private 8-way associa-

tive L1 and L2 caches of size 215 and 218 bytes, respectively.

In contrast, the 16-way associative L3 cache is shared among

all the cores and has a size of 222 bytes, divided into two

slices. Consequently, the L3 cache will have 212 sets in total.

Therefore 6 bits are needed to address the byte address in a

cache line and 12 more bits to specify the set in the L3 cache.

The huge page size is set to 2 MB, which ensures a set field

length of 21 bits that are untouched in the virtual to physical

address translation stage. All the guest OSs use Ubuntu 12.04,

while the VMMs used in our cloud experiments are Xen 4.1

fully virtualized and VMware ESXI 5.5. Both allow the usage

of huge size pages by guest OSs [44], [38], [45].

The target process is going to use the C reference imple-

mentation of OpenSSL1.0.1f, which is the default if the

library is configured with no-asm and no-hw options. We

would like to remark that these are not the default OpenSSL

installation options in most of the products.

The attack scenario is going to be the same one as in [1],

[10], where one process/VM is handling encryption requests

with an secret key. As in [10], the attacker’s process/VM is

co-located with the encryption server, but on different cores.

We assume synchronization with the server, i.e, the attacker

starts the S$A spy process and then sends random plaintexts to

the encryption server. The communication between encryption

server and attacker is carried out via socket connections. Upon

the reception of the ciphertext, the attacker measures the

L3 cache usage by the S$A spy process. All measurements

are taken by the attackers process/VM with the rdtscp

function, which not only reads the time stamp counters but

also ensures that all previous processes have finished before

Fig. 7. Number of key bytes correctly recovered vs number of encryptions
needed for native OS, single VM and cross-VM scenarios.

its execution [46].

B. The Cross-Core Cross-VM Attack

We perform the attack in three different scenarios: native

machine, single VM and cross-VM. In the native and single

VM scenarios, we assume that the huge size pages are set to

be used by any non-root process running in the OS. Recall

that in the cross-VM scenario, the attacker has administrator

rights in his own OS.

The first step is to recognize the access pattern of the L3

cache in our Intel i5-650. Using S$A we detect that the L3

cache is divided in more than one slice, since generating 17

random lines that occupy the set 0 in the cache does not output

higher probe timings. The spy process helps us to understand

that the cache is divided into two slices, and that the slice

selection method is based on the parity of the 17th bit, i.e, the

first non set addressing bit. Thus we need 16 odd lines to fill

a set in the odd slice, whereas we need 16 even lines to fill a

specific set in the even slice.

The second step is to recognize the set that each T-table

cache line occupies in the L3 cache. For that purpose we

monitor each of the possible sets according to the offset

obtained from the linux shared library alignment feature.

Recall that if the offset modulo 64 f0 of one of the T-tables

is known, we only need check the sets that are 64 positions

apart, starting from f0. By sending random plaintexts the set

holding a T-table cache line is used around 90% of the times,

while around 10% of the times the set will remain unused. The

difference between a set allocating a T-table cache line and a

set not allocating a T-table cache line can be graphically seen

in Figure 5, where 500 random encryptions were monitored

with S$A for both cases in a cross-VM scenario in Xen 4.1.

It can be observed that monitoring an unused set results in

more stable timings in the range of 200-300 cycles. However

monitoring a set used by the T-tables outputs higher time

Native OS scenario

XEN Single VM scenario

XEN Cross VM scenario

VMware Cross VM scenario

M
is

s
 c

o
u

n
te

r
v
a

lu
e

 n
o

rm
a

li
z
e

d
 w

it
h

 m
a

x
im

u
m

N
u

m
b

e
r

o
f

k
e

y
 b

y
te

s
 c

o
rr

e
c
tl
y
 g

u
e

s
s
e

d

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 831 Copyright @ 2021 Authors

TABLE I
COMPARISON OF CROSS-VM CACHE SIDE-CHANNEL ATTACKS ON AES

Attack Platform Methodology OpenSSL Traces

Spy-Process based Attacks:

Collision timing [16] Pentium 4E Time measurement 0.9.8a1 300.000
Prime+probe [2] Pentium 4E L1 cache prime-probing 0.9.8a 16.000
Evict+time [2] Athlon 64 L1 cache evicting 0.9.8a 500.000

Flush+Reload (CFS)2[5] Pentium M Flush+reload w/CFS 0.9.8m 100

Flush+Reload [10] i5-3320M L3 cache Flush+reload 0.9.8a 8.000

Bernstein [24] Core2Duo Time measurement 1.0.1c 222

1 OpenSSL 0.9.8a uses a less noisier implementation.
2 The attack is performed taking control of the CFS.
3 Huge Pages have to be configured to allow non-root processes to use them.
4 Only parts of the key were recovered, not the whole key.
5 The attack is only possible if deduplication is enabled by the VMM. Transparent Page Sharing is no

longer enabled by default in VMware. Amazon never enabled deduplication on all their AWS servers.

values around 90% of the time, whereas we still see some

lower time values below 300 around 10% of the times. Note

that the key used by the AES server is irrelevant in this step,

since the set used by the T-table cache lines is going to be

independent of the key.

The last step is to run S$A to recover the AES key used by

the AES server. We consider as valid ciphertexts for the key

recovery step those that are at least below half the average

of the overall timings. This threshold is based on empirical

results that can be seen in Figure 6. The figure presents the

miss counter value for all the possible ciphertext values of C0,

when the last line in the corresponding T-table is monitored.

The key in this case is 0xe1 and the measurements are taken

in a cross-VM scenario in Xen 4.1. In this case only 8 values

take low miss counter values because the T-table finishes in the

middle of a cache line. These values are clearly distinguishable

from the rest and appear in opposite sides of the empirical

threshold.

Results for the three scenarios are presented in Figure 7,

where it can be observed that the noisier the scenario is, e.g.

in the cross-VM scenario, the more monitored encryptions

are needed to recover the key. The plot shows the number

of correctly guessed key bytes vs. the number of encryptions

needed. Recall that the maximum number of correctly guessed

key bytes is 16 for AES-128. The attack only needs 150.000

encryptions to succeed on recovering the full AES key in

the native OS scenario. Due to the higher noise in the cloud

setting, the single VM recovers the full key with 250.000

encryptions. The cross-VM scenario was analyzed in two

popular hypervisors, Xen and VMware, requiring 650.000 and

500.000 encryptions to recover the 16 key bytes respectively.

We believe that Xen requires a higher number of encryptions

due to the higher noise caused by the usage of a fully

virtualized hypervisor. It is important to remark that the attack

is completed in only 9 and 35 seconds, respectively, for the

native and single VM scenarios. In the cross VM scenario,

the attack succeeds in recovering the full key in 90 and 150

seconds in VMware and Xen, respectively. Recall that in

the cross-VM scenario the external IP communication adds

significant latency.

C. Comparison with previous attacks

We compare the efficiency of the attack presented in this

work with previously proposed attacks that targeted the AES.

The comparison is presented in Table I. We make the following

observations:

– Our attack is close to the efficiency achieved by the

Flush+Reload attack in non-virtualized environments,

and improves over previously proposed attacks. However,

huge pages are required to be configured so that their

usage by non-root processes is allowed.

– Our new S$A attack is more efficient than Bernstein’s

attack in the cloud, which does not recover the entire

key in the cloud even with a significantly higher number

of encryptions.

– In the cloud, S$A again requires more encryptions than

Flush+Reload but not as much as to become impractical.

The attack can still be realized under 3 minutes in XEN

and under 2 in VMware. However, it should be noted that

S$A does not take advantage of memory deduplication

process which is crucial for the cross-VM Flush+Reload

attack. The deduplication feature (called Transparent

Page Sharing in VMware) is now disabled by default in

VMware [47]. Moreover, we have also confirmed with

Amazon that deduplication was never enabled on all of

their AWS servers due to security concerns.

Thus, the S$A attack turns VMMs that are not vulnerable to

Flush+Reload due to the lack of memory deduplication into a

Flush+Reload [10] i5-3320M L3 cache Flush+reload 1.0.1f 100.000

S$A3
 i5-650 L3 cache S$A 1.0.1f 150.000

Cross-VM Attacks:

Bernstein [11], [10]4

Flush+Reload (VMware)5[10]

i5-3320M

i5-3320M

Time measurement
L3 cache Flush+Reload

1.0.1f

1.0.1f

230

400.000

S$A (Xen) i5-650 L3 cache S$A 1.0.1f 650.000

S$A (VMware) i5-650 L3 cache S$A 1.0.1f 500.000

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 832 Copyright @ 2021 Authors

valid target for cross-VM attacks. The only requirement is that

guest OSs are allowed to use huge size pages. This feature is

implemented at the OS level, and is not administered by the

VMM.

VI. APPLICABILITY AND COUNTERMEASURES

In this section we shortly comment on the applicability of

this attack beyond the scope of AES software implementations

and discuss ways how this attack can be prevented.

A. Applicability of S$A

As described earlier, the S$A attack is a cross-core cross-

VM attack. S$A targets the shared level of cache (typically

L3) in a SMP multiprocessor, hence can be used across

cores. That is, the afttack works even if victim and spy are

running on different cores in the same CPU. Unlike other

cross-VM attacks, S$A does not require deduplication of the

targeted data. Previous attacks use deduplication to solve two

independent problems. The obvious one is the detection of

cache accesses to extract secret information of the victim.

However, deduplication also solves the location problem, i.e.

automates the detection of where the leaking data of the

target is stored in cache. In S$A, these two problems become

independent. Hence, the attack is more challenging for the

adversary, as the location problem needs to be solved before

information can be extracted. However, since the extraction

mechanism is the same, the S$A is applicable in all scenarios

where Flush+Reload can be applied. We claim the S$A attack

to be a substitute for the Flush+Reload attack whenever

deduplication is not available. The added cost is the location

step and a slightly decreased temporal resolution, since the

(re-)priming needs to fill and check an entire set, not just a

single line of cache. Hence, although this work demonstrates

the applicability to AES only, the S$A attack is applicable

in all cases where the Flush+Reload can be applied and has

been applied. In other words, S$A can be applied to attack

the public key cryptosystems targeted in [7], [9], [29]. This

also means that focusing on countermeasures for AES is not

helpful, since those will not prevent attacks on other crypto

schemes also vulnerable to this attack.

However, the S$A attack succeeds due to two main charac-

teristics: the inclusiveness of the LLC in Intel processors and

the usage of huge pages by client VMs. The first characteristic

is not fulfilled in AMD processors, i.e, data located in L1 or

L2 caches does not have to be present in the LLC. Therefore,

when the victim accesses a particular memory block, it does

not directly occupy a position in the LLC but resides in the

upper level caches first. In this situation, our S$A attack does

not detect the usage of the leaking memory block.

The second characteristic, to the best of our knowledge,

is accomplished by most of the well known hypervisors.

However, we did not succeed on implementing the attack in

Citrix Xen 6.2. The main reason seems to be that neither the

guest VMs nor the hypervisor are allowed to utilize huge size

pages. This restriction makes our attack impossible to succeed

in the LLC.

B. AES-specific Countermeasures

Cache-based side channels are not a new phenomenon,

hence numerous countermeasures have been proposed. The

most obvious one is the use of AES-NI or other AES hardware

extensions, if available on the processor. A good discussion of

that and several other countermeasures like data independent

memory accesses and smaller T-tables can be found in [48].

C. S$A-specific Countermeasures

Next, we discuss countermeasures that hinder the ex-

ploitability of the shared level cache and thereby prevent the

S$A attack.

Disable Huge Size Pages: In the particular case of the S$A

cache side channel attack, if huge size pages are not allowed

to be used by the guests the attack is no longer possible. The

decision of using the huge size pages could still be done only

by the VMM, depending on certain parameters based on the

length or the memory resources needed by the code.

Private L3 Cache Slices: One way to avoid the cache leakage

that S$A uses is to make the cache slices private per VM,

similar to the countermeasure suggested in [49]. This means

that a particular VM is not allowed to interfere with the cache

slice that another co-located VM is using. In this scenario

the attacker does not interfere with the victim’s cache slice

and therefore cannot decide whether a specific memory line

was used with S$A. This however, requires modifications to

the cache arbitration mechanism and has the adverse affect of

reducing the size of the cache slices made available to a single

VM. It also limits the number of Guest VMs to the number

of slices.

Hardware Masking of Addresses: Another possible solution

is to apply a mask (implemented at the hardware level) to the

offset field based on some of the non-set addressing bits in the

physical address when huge size pages are used. Since the user

no longer has control over the offset field, he cannot prime the

specific set that he wants to target in the L3 cache and cannot

decide whether the set was used or not by the victim.

Shadow Page Tables as Masking Option: In this case the

shadow page tables that VMMs use for a virtual to virtual

translation would play a more important role. For instance,

the shadow page tables could not only handle the translation

from VM virtual memory to VMM virtual memory, but also

apply a mask based on the non cache-addressing bits. Thereby,

the guest user does not know the masking value applied by the

VM, and he cannot control the set that his data will occupy

in the L3 cache.

VII. CONCLUSION

S$A: A new deduplication free L3 cache side channel

technique: We proposed a new side channel technique that

is applied in the L3 cache and therefore can be applied in

cross-core scenarios. The new side channel technique bases

its methodology in the usage of huge size pages, which give

extra information about the position that each memory location

occupies in the L3 cache.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 833 Copyright @ 2021 Authors

Targeting the cloud environment: We demonstrated that the

new side channel technique can also be implemented in the

cloud, particularly in Xen 4.1 and VMware ESXI 5.5, where

the usage of huge size pages by the guest OSs is allowed.

Recall that the vast majority of the VMMs allow the usage of

huge size pages, making S$A a suitable target for all of them.

Applying the attack on AES: We demonstrated the viability

of the new side channel technique by recovering AES keys

monitoring only 4 sets in the L3 cache in both virtualized

and non-virtualized scenarios. In the noisier scenario the

attack succeeds to recover the full AES key in less than

3 minutes. Thus, we showed that the efficiency of S$A is

close to the efficiency achieved by Flush+Reload (which uses

memory deduplication techniques) and is significantly higher

than Bernstein’s attack.

VIII. DISCLOSURE

We have disclosed our attack to the security teams of

VMware, Amazon AWS and Citrix.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foun-

dation, under grant CNS-1318919. We would like to thank the

anonymous reviewers of S&P 2015 for their helpful comments.

We would also like to thank Craig Shue for his help on

understanding huge page allocation procedures.

REFERENCES

[1] D. J. Bernstein, “Cache-timing attacks on AES,” 2004, URL:

http://cr.yp.to/papers.html#cachetiming.
[2] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and

Countermeasures: The Case of AES,” in Proceedings of the 2006 The
Cryptographers’ Track at the RSA Conference on Topics in Cryptology,
ser. CT-RSA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 1–20.
[Online]. Available: http://dx.doi.org/10.1007/11605805_1

[3] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using KSM,” in Proceedings of the linux symposium, 2009, pp. 19–28.

[4] “Kernel Samepage Merging,” April 2014, http://kernelnewbies.org/
Linux_2_6_32\#head-d3f32e41df508090810388a57efce73f52660ccb/.

[5] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice,” in Proceedings
of the 2011 IEEE Symposium on Security and Privacy, ser. SP ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 490–505.
[Online]. Available: http://dx.doi.org/10.1109/SP.2011.22

[6] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: Exploring information leakage in third-party
compute clouds,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 199–212. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653687

[7] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security, ser.
CCS ’12. New York, NY, USA: ACM, 2012, pp. 305–316. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382230

[8] M. Weiss, B. Heinz, and F. Stumpf, “A Cache Timing Attack on AES
in Virtualization Environments,” in 14th International Conference on
Financial Cryptography and Data Security (Financial Crypto 2012),
ser. Lecture Notes in Computer Science. Springer, 2012.

[9] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack,” in
23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp. 719–
732. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

[10] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a Minute!
A fast, Cross-VM Attack on AES.” in RAID, 2014, pp. 299–319.

[11] ——, “Fine grain cross-vm attacks on xen and vmware,” in 2014 IEEE
Fourth International Conference on Big Data and Cloud Computing,
BDCloud 2014, Sydney, Australia, December 3-5, 2014, 2014, pp. 737–
744. [Online]. Available: http://dx.doi.org/10.1109/BDCloud.2014.102

[12] W.-M. Hu, “Lattice Scheduling and Covert Channels,” in Proceedings
of the 1992 IEEE Symposium on Security and Privacy, ser. SP
’92. Washington, DC, USA: IEEE Computer Society, 1992, pp. 52–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=882488.884165

[13] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side Channel
Cryptanalysis of Product Ciphers,” J. Comput. Secur., vol. 8, no. 2,3,
pp. 141–158, Aug. 2000. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1297828.1297833

[14] D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel,” 2002.

[15] Y. Tsunoo, T. Saito, T. Suzaki, and M. Shigeri, “Cryptanalysis of
DES implemented on computers with cache,” in Proc. of CHES 2003,
Springer LNCS. Springer-Verlag, 2003, pp. 62–76.

[16] J. Bonneau, “Robust Final-Round Cache-Trace Attacks Against
AES.” IACR Cryptology ePrint Archive, vol. 2006, p. 374, 2006.
[Online]. Available: http://dblp.uni-trier.de/db/journals/iacr/iacr2006.
html#Bonneau06

[17] O. Aciiçmez, W. Schindler, and Çetin K. Koç, “Cache Based Remote
Timing Attack on the AES,” in Topics in Cryptology CT-RSA 2007, The
Cryptographers Track at the RSA Conference 2007. Springer-Verlag,
2007, pp. 271–286.

[18] M. Neve and J.-P. Seifert, “Advances on Access-Driven Cache Attacks
on AES,” in Selected Areas in Cryptography, ser. Lecture Notes
in Computer Science, E. Biham and A. Youssef, Eds. Springer
Berlin Heidelberg, 2007, vol. 4356, pp. 147–162. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74462-7_11

[19] O. Aciiçmez, “Yet Another MicroArchitectural Attack:: Exploiting I-
Cache,” in Proceedings of the 2007 ACM Workshop on Computer
Security Architecture, ser. CSAW ’07. New York, NY, USA:
ACM, 2007, pp. 11–18. [Online]. Available: http://doi.acm.org/10.1145/
1314466.1314469

[20] “Amazon Web Services,” http://aws.amazon.com/es/.
[21] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler,

“Detecting Co-residency with Active Traffic Analysis Techniques,” in
Proceedings of the 2012 ACM Workshop on Cloud Computing Security
Workshop, ser. CCSW ’12. New York, NY, USA: ACM, 2012, pp. 1–
12. [Online]. Available: http://doi.acm.org/10.1145/2381913.2381915

[22] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone: Co-
residency Detection in the Cloud via Side-Channel Analysis,” in
Proceedings of the 2011 IEEE Symposium on Security and Privacy,
ser. SP ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 313–328. [Online]. Available: http://dx.doi.org/10.1109/SP.2011.31

[23] C. X.-C. Chen Cai-Sen, Wang Tao and Z. Ping, “An Improved Trace
Driven Instruction Cache Timing Attack on RSA,” Cryptology ePrint
Archive, Report 2011/557, 2011, http://eprint.iacr.org/.

[24] H. Aly and M. ElGayyar, “Attacking AES Using Bernstein’s Attack on
Modern Processors,” in AFRICACRYPT, 2013, pp. 127–139.

[25] R. Spreitzer and T. Plos, “On the Applicability of Time-Driven
Cache Attacks on Mobile Devices,” in Network and System Security
- NSS 2013, 7th International Conference, Madrid, Spain, June 3-4,
2013, Proceedings, ser. Lecture Notes in COMPUTER Science, R. S.
Javier Lopez, Xinyi Huang, Ed., vol. 7873. Springer, 2013, pp. 656 –
662.

[26] O. Aciiçmez, B. B. Brumley, and P. Grabher, “New Results
on Instruction Cache Attacks.” in CHES, ser. Lecture Notes
in Computer Science, S. Mangard and F.-X. Standaert, Eds.,
vol. 6225. Springer, 2010, pp. 110–124. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ches/ches2010.html#AciicmezBG10

[27] “CFS scheduler,” April 2014, https://www.kernel.org/doc/
Documentation/scheduler/sched-design-CFS.txt.

[28] K. Mowery, S. Keelveedhi, and H. Shacham, “Are AES x86 Cache
Timing Attacks Still Feasible?” in Proceedings of the 2012 ACM
Workshop on Cloud Computing Security Workshop, ser. CCSW ’12.
New York, NY, USA: ACM, 2012, pp. 19–24. [Online]. Available:
http://doi.acm.org/10.1145/2381913.2381917

[29] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom, “"Ooh Aah... Just
a Little Bit": A Small Amount of Side Channel Can Go a Long Way.”
in CHES, 2014, pp. 75–92.

http://cr.yp.to/papers.html#cachetiming
http://dx.doi.org/10.1007/11605805_1
http://kernelnewbies.org/
http://dx.doi.org/10.1109/SP.2011.22
http://doi.acm.org/10.1145/1653662.1653687
http://doi.acm.org/10.1145/2382196.2382230
http://www.usenix.org/conference/
http://dx.doi.org/10.1109/BDCloud.2014.102
http://dl.acm.org/citation.cfm?id=882488.884165
http://dl.acm.org/citation
http://dblp.uni-trier.de/db/journals/iacr/iacr2006
http://dx.doi.org/10.1007/978-3-540-74462-7_11
http://doi.acm.org/10.1145/
http://aws.amazon.com/es/
http://doi.acm.org/10.1145/2381913.2381915
http://dx.doi.org/10.1109/SP.2011.31
http://eprint.iacr.org/
http://dblp.uni-trier.de/db/conf/ches/ches2010.html#AciicmezBG10
http://www.kernel.org/doc/
http://www.kernel.org/doc/
http://doi.acm.org/10.1145/2381913.2381917

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 834 Copyright @ 2021 Authors

[30] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-
channel attacks in paas clouds,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 990–1003. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660356

[31] Fangfei Liu and Yuval Yarom and Qian Ge and Gernot Heiser and Ruby
B. Lee, “Last level cache side channel attacks are practical,” in 36th
IEEE Symposium on Security and Privacy (S&P 2015), San Jose, CA,
2015.

[32] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[33] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches Through
OS-Level Page Allocation,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
39. Washington, DC, USA: IEEE Computer Society, 2006, pp. 455–
468. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2006.31

[34] “How to Use Huge Pages to Improve Application Performance on Intelő

Xeon PhiŹ Coprocessor ,” https://software.intel.com/sites/default/files/
Large_pages_mic_0.pdf.

[35] P. Weisberg and Y. Wiseman, “Using 4KB Page Size for Virtual Memory
is Obsolete,” in Proceedings of the 10th IEEE International Conference
on Information Reuse & Integration, ser. IRI’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 262–265. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1689250.1689298

[36] “VMware Large Page performance ,” http://www.vmware.com/files/pdf/
large_pg_performance.pdf.

[37] “Huge Page Configuration in KVM,” http://www-01.ibm.com/support/
knowledgecenter/linuxonibm/liaat/liaattunconfighp.htm?lang=en.

[38] “X-XEN : Huge Page Support in Xen,” https://www.kernel.org/doc/ols/
2011/ols2011-gadre.pdf.

[39] “Advanced Encryption Standard,” http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

[40] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space aslr,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 191–205. [Online]. Available:
http://dx.doi.org/10.1109/SP.2013.23

[41] L. Zhao, R. Iyer, M. Upton, and D. Newell, “Towards Hybrid Last
Level Caches for Chip-multiprocessors,” SIGARCH Comput. Archit.
News, vol. 36, no. 2, pp. 56–63, May 2008. [Online]. Available:
http://doi.acm.org/10.1145/1399972.1399982

[42] “Intel Ivy Bridge Cache Replacement Policy,” http://blog.stuffedcow.net/
2013/01/ivb-cache-replacement/.

[43] “Intelő CoreŹ i5-650 Processor ,” http://ark.intel.com/es/products/43546/
Intel-Core-i5-650-Processor-4M-Cache-3_20-GHz.

[44] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[45] “Xen 4.1 Release Notes,” http://wiki.xen.org/wiki/Xen_4.1_Release_
Notes.

[46] “How to Benchmark Code Execution Times on Intelő IA-
32 and IA-64 Instruction Set Architectures,” http://www.intel.
com/content/dam/www/public/us/en/documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.pdf.

[47] “Transparent Page Sharing: new default set-
ting,” http://blogs.vmware.com/security/2014/10/
transparent-page-sharing-additional-management-capabilities-new-default-settings.
html.

[48] E. Tromer, D. Osvik, and A. Shamir, “Efficient Cache Attacks on AES,
and Countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp. 37–71,
2010. [Online]. Available: http://dx.doi.org/10.1007/s00145-009-9049-y

[49] Z. Wang and R. B. Lee, “New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, ser. ISCA ’07.
New York, NY, USA: ACM, 2007, pp. 494–505. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250723

http://doi.acm.org/10.1145/2660267.2660356
http://dx.doi.org/10.1109/MICRO.2006.31
http://dl.acm.org/citation.cfm?id=1689250.1689298
http://www.vmware.com/files/pdf/
http://www-01.ibm.com/support/
http://www.kernel.org/doc/ols/
http://www.kernel.org/doc/ols/
http://csrc.nist.gov/publications/fips/
http://dx.doi.org/10.1109/SP.2013.23
http://doi.acm.org/10.1145/1399972.1399982
http://blog.stuffedcow.net/
http://ark.intel.com/es/products/43546/
http://wiki.xen.org/wiki/Xen_4.1_Release_
http://blogs.vmware.com/security/2014/10/
http://dx.doi.org/10.1007/s00145-009-9049-y
http://doi.acm.org/10.1145/1250662.1250723

