
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 835 Copyright @ 2021 Authors

A Survey of the Non-Inclusion Property in Non - linear and non Caches

Dr. AMARESH SAHUDr. B.PURNA SATYANARAYANA

Dept. OF Computer Science and Engineering, NIT , BBSR

amareshsahoo@thenalanda.com*, bpurnasatyanarayana@thenalanda.com

Abstract

Memory systems are becoming the focal point of computer

architecture. We are expected to witness an increase in on-chip

cache memory in the coming years, barring the development of

novel micro- architecture techniques that boost processor

speed. Recent designs frequently use three tiers of on-chip

cache memory. More advanced cache design methodologies

and possibly a reevaluation of some cache concepts are

required due to the increasing reliance on on-chip caching. The

inclusion property, in our opinion, is a strong contender for

these ideas. This characteristic, while simplifies memory

coherence protocols in multiprocessor systems, duplicates data

over many levels of cache, which results in an inefficient use

of cache memory space on the chip. In addition, stringent

enforcement of the inclusion condition implies a "ripple effect"

during updates, where one update at one cache level may

trigger many updates at higher levels of the hierarchy. Many

non-inclusion cache techniques for upcoming cache systems

are covered in this research. We offer a couple of design

options for non-inclusive cache designs. We demonstrate that

the primary benefit of a non-inclusive cache design is its

comparatively high level 2 (L2) hit rate, which reduces the

average memory system access time. L2 miss rates for specFP

and INT are each reduced by 40% and 28%, respectively, via

non-inclusive cache.

Key Words: Cache memory, cache access time, memory

performance, inclusion property, multi-level cache.

1 Introduction

Cache memories have been used to improve the performance

of computer systems by exploiting temporal and spatial

locality characteristics for many years [14]. The very rapid

advances in process technology means that a larger transistor

budget is available to architects each year. In addition to many

innovative microarchitectures to fully utilize this budget with

execution logic, we witness the emergence of larger and more

sophisticated on-chip caches in every consecutive generation

of processors. Because larger cache size means slower cache,

the trend will be toward increasing the length of cache

hierarchy, that is, increasing the number of cache levels. A

quick glance at die photos of recent processors should be

sufficient to notice the reliance of architects on cache memory

to put chip area to use.

With the advent of multiple CPU cores on a chip, more and

more sophisticated on-chip caches are appearing on the scene

while the sizes are growing at the same time. At the far end of

the complexity spectrum, IBM’s POWER4 architecture [16]

has a 1.5MB L2 cache shared among its two processor cores

and organized as three slices, the IBM’s POWER5 has L2

cache of size 1.875MB with a 36MB off-chip L3 [13], and

Intel Itanium [18] has a 3-level on-chip cache with combined

capacity of 3MB. As the size and complexity of on-chip

caches increase, the need to decrease miss rates gains

additional significance, together with access time.

The inclusion property, which dictates that the contents of a

lower level cache be a subset of those of a higher level cache,

is highly desired in a multiprocessor system primarily because

it facilitates memory controller and processor design by

limiting the effects of cache coherence messages to higher

levels in the memory hierarchy. Overall performance is

improved when the lower level caches are isolated from the

effects of coherence checks and invalidations by the inclusion

property. However, a cache design that enforces inclusion is

inherently wasteful of space and bandwidth: Every cache line

in lower levels is duplicated in the higher levels, and updates

in lower levels trigger many more updates in other levels,

wasting bandwidth. If the current trends of larger cache lines

and more sophisticated caches continue, the inclusion property

should be considered a prime candidate as part of a rethinking

of multi-level cache design.

The main advantages that can be gained by forcing non-

inclusion are the following.

• Context switches will be faster, because fewer messages

will need to be moved up the hierarchy for the write backs

and invalidations.

• The effective size of the cache system increases because

we are getting rid of data duplication. This is very

important when two consecutive cache levels have large

cache size, namely L2 and L3 caches, or when using

Chip-multiprocessor and the aggregate level 1 caches are

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 836 Copyright @ 2021 Authors

similar in size to level 2 cache, as in Piranha [3].

• Conflict misses in the second level cache are reduced.

This is due to the fact that heavily referenced blocks are

moved to the first level cache, leaving room for other

blocks to come in the second level cache. This implicitly

increases the associativity of the second level cache

assuming that the non inclusion will be applied to level

one and level 2 caches.

• We can save in bandwidth, because fewer updates will

need to be done when a block is dirty and is written back

to memory. In which case, the block will not need to be

written back to all the higher level caches in the hierarchy

until reaching the memory.

In this paper, we aim to gain insight into the effects of non-

inclusive multi-level caches on performance. Several different

designs where the caches up and down the hierarchy are

mutually exclusive presented, their performance is compared

to a basic cache architecture.

We will also discuss potential solutions to cache coherence,

when non-inclusive caches are used in multiprocessor systems.

The rest of the paper is organized as follows. Section 2

gives an overview of the related work on improving cache

performance through caches that may violate inclusion

property. The proposed model, called non-inclusive cache

(NIC) is presented in Section 3. The NIC is evaluated experi-

mentally in Section 4, followed by discussion of findings.

Section 5 concludes and summarizes the paper, and outlines

some of the future work we intend to do on this subject.

2 Related Work

Important issues in cache memory design and multi-level on-

chip caches have been studied in great detail. A comprehensive

introduction to cache concepts can be found in

[14] and multi-level cache design issues are introduced in [19].

The main idea and concept behind the inclusion properties

for multi-level cache hierarchies was analyzed by Baer et al. in

[2]. The possibility of relaxing the inclusion property has been

identified in some details in several studies. The most

extensive work has certainly been done within the context of

prefetching, which implies the violation of inclusion property

in many cases. An extensive survey of prefetching techniques

is presented in [17]. Also non-inclusion has been used in

Piranha [3], because the aggregate L1 capacity of all the

processing elements of the chip multiprocessor is 1MB, and

maintaining inclusion with the 1MB L2 available wastes space

due to the duplicate data. However, in order to maintain intra-

chip coherence, duplicate copies of L1 tags and state are kept

in L2. An algorithm for exclusive cache hierarchies has been

studied in [20], and showed some improvement, however, at

the expense of the hardware complexity.

As part of their work on tradeoffs inherent in on-chip multi-

level cache design, Jouppi and Wilton [19] proposed an

exclusive caching scheme similar to the swapping scheme we

caching yielded performance improvements, they also

suggested that maintaining the inclusion property between the

sum of the first two levels of caches and a third level of off-

chip caching can be a solution to the problem of simplifying

the design of cache-coherent multiprocessors when exclusion

is used.

McFarling [8] described a multi-level cache design called

dynamic exclusion which used tags to denote in which level in

the hierarchy an instruction cache block will be kept. Using a

finite state machine to identify instruction cache access

patterns, this approach resulted in important reductions in the

miss rate of direct-mapped instruction caches.

Run-time cache bypassing methods [5, 6] propose using

memory reference behavior to place the data in the cache

hierarchy. This method uses sets of cache blocks called

macroblocks and maintains a central table (MAT: Memory

Address Table) to keep track of dynamically inferred usage

patterns. This data is then used to move cache blocks in the

hierarchy, violating the inclusion property at times.

Another interesting idea, is partitioning L1 cache into

mutually exclusive cache in order to overcome wire delay, is

presented in [9]. Based on the results of previous work done

on the subject, it is evident that the success of a particular non-

inclusion strategy depends heavily on the method by which

cache blocks are moved up and down the cache hierarchy.

This is discussed in the next section.

3 Non-Inclusive Cache (NIC) Model

In a conventional cache memory system, when there is a

cache miss at any level, the block is brought from the memory

into all cache levels. If this cache block is rarely referenced

again, then it has a high chance of displacing some more useful

data from the cache, which consequently degrades the overall

performance of the cache. This problem, of useful data being

displaced by less useful ones, can be tackled in two different

ways. The first method keeps track of the reference patterns,

and the references that are less likely to be referenced again are

not brought into the cache, and are brought directly to the

processor. An example of this method is the run-time cache

bypassing methods [5, 6]. The second method is relaxing the

inclusion property.

The inclusion property can be categorized into three main

groups. The first one is the inclusive scheme. This is the

conventional one where the lower level caches1 are subsets of

the higher level ones. This has been considered the standard

due to its simplicity. Cache hierarchy in almost all the current

processors is inclusive. The second category is the partially

inclusive cache hierarchy. In this case, some blocks may be

included in both cache levels and some are not. The third

category is the mutually exclusive cache hierarchy where a

block cannot be present in two cache levels at the same time.

The second category needs a lot of bookkeeping, does not

make use of the whole cache area, and does not simplify

coherence. Hence, we will concentrate in this paper on the

analyzed. They found that a non-inclusive cache strategy is

fairly effective in reducing level 2 conflict misses. In addition

to finding that a combination of set associativity and exclusive

1 Throughout this paper, when we mention lower level, we mean the

level closer to the processor.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 837 Copyright @ 2021 Authors

third category, which is the mutually exclusive cache. From

that point on, when we mention non-inclusion, we will be

talking about mutually exclusive caches.

The duplication of data that results initially from the inclu-

sion property can be avoided if we use a non-inclusive cache

system. Non-inclusion relaxes the constraint of each cache

level being a superset of the higher levels in the hierarchy.

Hence, a block can exist in level 1 cache without necessarily

existing in level 2 cache. However, the blind application of

this concept might not yield the expected performance.

A crucial factor for the high performance of such a system is

the algorithm by which blocks move up and down in the cache

hierarchy. We have chosen to evaluate three different non-

inclusive cache designs of varying sophistication. While we

assumed that the memory hierarchy only contained two cache

levels, the ideas presented in this paper can be extended to

cache hierarchies with an arbitrary number of levels. The cache

block sizes are assumed to be equal for all levels that violate

inclusion, for simplicity but without loss of generality.

Basic: This is the most basic scheme, and is used to test the

validity of the basic concept of non-inclusion. In this scheme a

miss in both cache levels brings the block into level 2 from the

memory, and the required data is delivered to the processor.

We have decided to opt for this scheme of moving the newly

imported block to level 2 instead of level 1 in order not to

pollute level 1 with a block that may be referenced only once.

If the block is referenced for a second time, before it is

replaced from level 2, then it means it has temporal locality,

and thus, gets upgraded to level 1 cache. Therefore, the main

difference from a traditional inclusive cache hierarchy is that

the processor can accept data from either level 1 cache or level

2 cache, but not both. If level 1 misses and level 2 hits, the

block at level 2 migrates to level 1, and the displaced block

from level 1 (if any), moves to level 2. Hence, level 2 cache

acts as a victim cache [7] for level 1. We do not access L1 and

L2 simultaneously, as this will not be power efficient.

Autonomous Prefetching (AP): This scheme is similar to

the basic scheme, except that when the block migrates from

level 2 to level 1, the successor of that block is prefetched into

the level 2 cache. This scheme can be developed further by

using well-established techniques from the prefetching

literature [17], like prefetching multiple successor blocks, at

the cost of higher complexity. Figure 1 gives the state

transition diagram of the basic and AP methods.

It is to be noted that a hit in L1 does not trigger any actions

or state transition in the basic or AP methods.

Controlled Swapping (CS): Represents a further

enhancement over the basic scheme. This scheme introduces a

saturating counter for each block in both cache levels. Our

counter concept borrows from the run-time cache bypassing

concept [5, 6] to provide a simple means of tracking reference

patterns. If the block hits at level 1, its counter is incremented.

If the block hits at level 2, its counter is incremented and

compared to the counter of the block at level 1, that would

have been displaced if the block at level 2 migrates to level 1.

If the counter at level 2 is higher than the one at level 1, the

swapping is done in a similar fashion to the basic scheme, and

both counters are reset. However, if the counter at level 1 is

higher or equal, the block that hit at level 2 remains at level 2

and the counter at level 1 is decremented. If both cache levels

miss, the block is brought into level 2 and both its counter and

the corresponding counter at level 1 are reset.

Figure 1: Non-inclusion state diagram

Figure 2 shows the main actions which are done by a non-

inclusive cache. First, a block comes from the memory to the

Figure 2: Main actions in non-inclusive cache system

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 838 Copyright @ 2021 Authors

L2 cache. This is better than bringing it directly to L1,

because L1 is checked first and is the fastest, hence we need to

be careful not to displace useful data from it. If we find that

the block is referenced several times, then the second action is

the upgrade, where a block moves to a level closer to the

processor. This happens when a block is referenced several

times (twice in the basic system and the autonomous

prefetching, and depending on the counters in the controlled

swapping). When a block is upgraded, it may displace another

block, depending on the associativity of the cache in the lower

level. The upgrade and displace actions form a kind of swap-

ping. The inclusive cache does not have this swapping action.

It is to be noted that the block is also brought from memory

in case of prefetching. Prefetching is more efficient in case of

non-inclusive cache because it has more space for data, due to

the elimination of duplicating data.

 Hardware Cost

The cost of having non-inclusive cache is not high. It is

similar to the hardware needed for run-time memory

management for example. For the basic system, all we need

are two multiplexers, and a buffer. The first one is at the

vicinity of the processor, to choose data coming from L1 or

L2. The second multiplexer is connecting the non-inclusive

cache hierarchy, to the main memory or the higher level cache,

similar to what is shown in Figure 3. In case of an L1 miss

and L2 hit, the block at L2 migrates to L1, and the

corresponding block at L1, if any, moves to L2. There are two

moves here, from L1 to L2, and from L2 to L1. This swap

operation needs a buffer in order to be accomplished. The

displaced block from L1 is copied to the buffer, then the new

block is brought from L2. Finally, the block at the buffer is

copied to L2.

For the AP system, the extra hardware needed, in addition to

what is needed for the basic system, is the prefetching

hardware. The amount of hardware needed here depends on

the type and technique of prefetching [17]. A comparison of

the different hardware prefetching techniques and their cost is

beyond the scope of this paper. However, the technique

presented in this paper requires a small adder to calculate the

address of the data to be prefetched.

Figure 3: A suggested design of two level non-inclusive cache

Finally, for the CS system, the extra hardware required,

above the basic non-inclusive system, is the addition of a

counter for each cache block at both L1 and L2 cache. From

our preliminary experiments, we found that a two-bit counter

is enough for efficient working. Moreover, a comparator is

needed to compare the two counters, and trigger block

swapping, if needed.

Taking into account the large cache sizes, the hardware

requirement for a non-inclusive cache is not high.

 NIC in Multiprocessor Systems

The main reason the inclusive caches have gained such wide

acceptance is its simplicity in handling coherence in case of

multiprocessor systems. However, non-inclusive caches can

also handle coherence with easiness. There are many solutions

for handling coherence using non-inclusive caches.

• With systems that have three levels of caches or more,

such as Intel Itanium [18], we can have non-inclusion

between L1 and L2, and inclusion with L3 or the level

nearest to the system bus, as shown in Figure 4.

• A technique used in Piranha [4] is to duplicate the tags of

L1 in L2 cache, or the cache nearest to the bus.

• Another way of handling coherence in non-inclusive

environment is to have a separate table with the tags of all

the non-inclusive caches. This table is used for

invalidation, using directory-based techniques instead of

snoopy.

However, evaluating these techniques is out of the scope of

this paper and will not be considered further.

Figure 4: L1-L2 non-inclusive and L3 inclusive

4 Experimental Evaluation

In this section we present a detailed quantitative evaluation

of the presented technique. Such an evaluation is important to

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 839 Copyright @ 2021 Authors

study the performance gain that can be obtained from the NIC

model, and to see how efficient it is with standard benchmarks.

 Experimental Methodology and Setup

For our microarchitectural simulations, we used a modified

version of the out-of-order processor simulator of the

Simplescalar 3.0 tool set [4], for the PISA (portable ISA)

instruction set. Table 1 shows the parameters we used for the

simulation. Although the table shows the usage of a bimodal

branch predictor, we have obtained similar results by using a

hybrid branch predictor of two-level and bimodal. However,

due to space as well as to avoid redundancy, we have not

included those results. Cache latencies have been obtained

using CACTI [12] to get the access latency. We used integer

and floating point benchmarks from the SPEC2000 suite with

reference inputs. The benchmarks have been compiled using

the Simplescalar PISA gcc cross-compiler with the

optimizations specified in the makefile provided with the suite.

Each benchmark was simulated for 500M instructions after

skipping the startup phase as described in [10].

 Miss Rates. The first set of experiments involves the

miss rate at level 1 cache. We expected a conventional cache

to be slightly better than the non-inclusive cache because in

case of cache misses, the blocks are brought into level 2 cache

first in the non-inclusive cache, not to level 1 directly as the

case would be in a conventional cache. Therefore, a future

access to the same block will still incur a level 1 cache miss

penalty. However, this scheme has the advantage of avoiding

cache pollution due to rarely referenced blocks. The results

are shown in Figure 5. The conventional cache design has

slightly lower miss rate. The second best scheme is the

autonomous prefetching. This because in AP the prefetching

is not causing cache pollution and is offsetting the

disadvantage of moving the block to L2 first. The only

exception is twolf. This is due to the fact that many references

are used one or two times, hence they cause cache pollution,

which is removed by the basic non-inclusion scheme. The

simple prefetching done in AP, does not perform well for

twolf, hence the miss rate is higher. The controlled swapping

scheme performs the worst, as the block movements to level 1

are delayed further due to the counters. CS is used to see

Table 1: Simplescalar simulator parameters

Parameter Value

Decode Width 4

Issue width 4

Commit width 4

Instruction Fetch Queue Size 4

Branch Predictor Bimodal with 2048 table size

Instruction Fetch Queue Size 4

Load/Store Queue Size 4

BTB Configuration 512 sets, associativity 4

Return Address Stack Size 8

L1 – Icache 32KB, 4-way set assoc., LRU, 32 byte line size, 1 cycle access lat.

L2 - Icache 256KB, 4-way set assoc., LRU 64 byte line size, 6 cycle access lat.

L1 – Dcache 64KB, 2-way set assoc., LRU, 32 byte line size, 1 cycle access lat.

L2 - Dcache 512KB, 4-way set assoc., LRU 32 byte line size, 8 cycle access lat.

Memory Latency 100 cycles for the first chunk, 2 cycles afterwards

Memory Bus Width (in bytes) 8

ALUs available 4 integer ALUs (1 integer multiply/divide)
4 floating point ALUs (1 floating pint multiply/divide)

In [10] the authors have made a profiling study about the

characteristics of each benchmark (such as percentage of each

type of instructions, basic blocks profiling, etc). This profiling

is simulation infrastructure independent, a characteristic of the

benchmark. Therefore, we used their suggested number of

instructions to skip. For the controlled swapping method, we

used 2-bit saturating counters for each block. Table 2 shows

the total number of loads and stores committed. We present

the results of data cache only.

 Experiments and Discussion

In this section we present and analyze our simulation results.

Table 2: Total number of loads and stores committed

Integer

Bench.

of

Ref.

FP

BENCH.

of

Ref.

bzip2 235864202 ammp 255247899

gcc 389188032 applu 127876490

gzip 150676316 apsi 187965389

mcf 282954558 art 212728035

parser 260534355 equake 161264237

perl 248595729 mesa 249097078

twolf 254806912 swim 136862642

vortex 275013769 wupwise 175958198

vpr 214718042

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 840 Copyright @ 2021 Authors

whether we can filter more unwanted references.

The miss rates for the level 2 cache are shown in Figure 6.

In contrast to level 1, the conventional cache has the higher

miss rate in this case, and by a large margin. This is primarily

due to the duplication of data: the extra data included in the

level 2 cache in case of the inclusive scheme is much smaller

than the extra data in the non-inclusive schemes.

Furthermore, the conflict miss is reduced in L2 cache due to

the fact that the highly referenced blocks move to L1, leaving

room to more blocks to come from memory. AP is performing

the best in L2. Because of the fact that the larger size of L2

cache, coupled with its conflict miss reduction, results in much

less pollution caused by the simple prefetching scheme used.

The effect of non-inclusion is very apparent in the SpecFP

results, where the conventional cache has very high L2 miss

rate.

 Instruction per Cycle. Figure 7 shows the instruc-

tions committed per cycle. All the schemes give comparable

performance. On average, autonomous prefetching slightly

outperforms the other schemes. The reason for the comparable

IPC, although L2 miss rate is lower for the non-inclusive

hierarchy, is due to the data that are referenced once or twice.

The data that are referenced once, cause cache miss for both

Figure 5: Level 1 data cache miss rate

Figure 6: Level 2 data cache miss rate

Figure 7: Instructions committed per cycle

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 841 Copyright @ 2021 Authors

inclusive and non-inclusive caches. The data that are

referenced twice, will miss in the first access, and will hit in

the second. However, the access time for the second time is

lower in the inclusive cache, due to the fact that L1 responds,

while in the non-inclusive cache, L2 responds, after L1 misses.

Only when the data is referenced for the second time, in the

non-inclusive hierarchy, it is upgraded to L1, after which the

response will be higher.

We tried to enhance the autonomous prefetching even

further by controlling the prefetching. The underlying idea

was that some prefetched data might not be needed and it

might displace useful data. The controlled prefetching

attempts to prevent this by adding a reference bit to each block

at level 2 cache. When a block is displaced from level 1 and

inserted into level 2, it has its reference bit set. We do not

prefetch the successor of the block which migrated to level 1

unless the reference bit of the block that will be displaced from

level 2 cache due to this prefetch is not set. If this reference bit

is set, no prefetching takes place at this time and the bit is

reset. Despite these measures, we found that the performance

of the controlled prefetching scheme was very close to that of

the basic scheme. An explanation of this finding lies in the

fact that the prefetched data is more often useful than not due

to the locality of reference of most applications of the

Spec2000. Therefore, we do not present results for the

controlled prefetching in this paper. It is worth mentioning

here that if both cache levels are accessed simultaneously, an

improvement is expected in IPC for the non-inclusive cache

more than the conventional cache. This is due mainly to the

fact that in the non-inclusive scheme we are accessing new

data by accessing both caches, not duplicated data with some

new data like the conventional scheme.

However, for power issues, we decided to access them in

sequence, as done in any conventional cache.

 Prefetching in Inclusive vs Non-Inclusive

Hierarchy. In order to assess the effect of prefetching on an

inclusive versus non-inclusive cache, and also to see whether

the low miss rate of AP is due to the non-inclusion or the

prefetching, in this section we compare the L2 miss rate as

well as the IPC of an inclusive traditional hierarchy with

prefetching and the AP scheme. Both of them are using the

same simple prefetching technique that we have described

earlier. AP is a non-inclusive cache hierarchy, and the

traditional scheme is in inclusive hierarchy.

As we can see from Figure 8, the AP has much lower L2

miss rate. This is due to the fact that a blind prefetching can

easily pollute the cache. When the cache size is smaller, it

becomes even more sensitive to the pollution. Since a non-

inclusive cache is in reality of bigger size than the inclusive

one, due to the elimination of data replication, the pollution

has less effect on the non-inclusive cache. This is also

reflected in the IPC, shown in Figure 9, where AP has higher

IPC than a traditional prefetching scheme. Prefetching did not

help some benchmarks, such as ammp, art, and mcf, in the

inclusive scheme. On the contrary, prefetching has caused

pollution to the caches for those benchmarks, negatively

affecting the performance. As we have seen, the pollution

caused by prefetching has offset the lower access time of the

inclusive cache hierarchy, and made it worse than the non-

inclusive one.

 Bandwidth Utilization. Besides cache performance

and its effect on overall system performance, it is important to

study the bandwidth consumed in the memory hierarchy. This

means the amount of data moving between L1, L2, and

memory. The importance of bandwidth is related to the power

dissipated from wires, which constitute a significant portion of

the total power dissipated by the memory system. Moreover,

high bandwidth exposes wire delay and can affect

performance. In order to be technology independent in our

measurements, we calculated the bandwidth as bytes per cycle.

Figure 10 shows the bandwidth consumed by the schemes.

The first thing we notice is that AP is consuming more

bandwidth than the other schemes. This is expected because of

the extra traffic caused by the prefetching. CS scheme is

performing the best together with the conventional system.

We found that most of the bandwidth consumed in the non-

inclusion basic scheme as well as the CS scheme is between

L1 and L2 caches, due to the upgrade of blocks from L1 to

L2or vice versa. Most of the bandwidth consumed by the

conventional scheme is from L2 to main memory, hence

causing congestion in the system bus, harming the overall

system performance. The system bus is usually used by the

Figure 8: Level 2 data cache miss rate of AP and inclusive prefetch

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 842 Copyright @ 2021 Authors

processor, as well as as devices such as DMA or graphics

adapter. However, since in our simulations we did not model

bus congestion, the aforementioned facts about the bandwidth

have not affected the IPC.

 Power Implication. In this section we discuss the

power implication of the proposed schemes at level 1 and level

2 data caches because, in this paper, we apply non-inclusion in

the data cache hierarchy only.

Power consumption is now a pivotal factor in any system.

For portable devices, it is important because of the battery life.

For desktop machines, it is important because of the packaging

cost. Caches usually consume a significant amount of power.

Power consumption can be divided into dynamic power and

static power. Dynamic power is due to the switching activity

[15], and many methods have been proposed to deal with it [1].

The other component of power consumption is static power

due to current leakage. This type of power consumption is

becoming increasingly more significant, and the

semiconductor industry association (SIA) predicts that it will

reach 50 percent of the power consumption in the very near

future [11], in the current sub-micron era.

For dynamic power consumption we used CACTI to get

total power dissipation per cache. Then, in order to get a

realistic idea about the behavior of each scheme in terms of

power and energy, we calculated the number of bytes per nJ.

This calculation is done using the following equation.

(effective cache hierarchy size)/ (average energy consumed).

The effective cache size is the amount of unique data. In cache

of the conventional scheme, this size is the size of the level 2

cache, because level 1 is a subset of level 2. In case of non-

inclusive cache, it is the sum of both the size of level 1 and

level 2 caches. The effective size of the three non-inclusive

schemes is the same. We calculated the average energy

consumed as follows.

(energy consumed at L1) + (miss rate of L12)*(energy

consumed at L2).

The logic behind the above equation is that level 1 will be

accessed anyway, but level 2 will be accessed only if L1

misses. Table 3 shows the results obtained. As we can see

from the table, gcc, gzip, perl, twolf, apsi, and swim are -

cheaper, in terms of energy consumed, when using a non

Figure 9: Instructions committed per cycle of AP and inclusive prefetch

Figure 10: Bandwidth used in memory hierarchy (bytes/cycle) including prefetching

2 Unless statead otherwise, L1 always means data cache level 1.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 843 Copyright @ 2021 Authors

inclusive cache. On the other hand, some benchmarks, such as

vpr, equake, and art do not show big gain or loss when using

non-inclusion or inclusion.

Therefore, the performance of non-inclusive cache, in terms

of energy, is application dependent. However, we can see

from the above equation that as the size of caches at each level

increases, which is very likely due to the advances in

technology, the benefit of non-inclusive cache, in terms of

energy, becomes more apparent.

Leakage current is the result of inactivity. That is, if a block

in the cache is not modified for a long time, current will start

leaking, consuming static power. The working of non-

inclusive cache significantly reduces leakage current. This is

because of the modifications done to each cache frame due to

block upgrade. The way the non-inclusive cache works

involves more cache block movements than the traditional

cache. This is due mainly to block upgrade from L1 to L2, and

the swapping. Due to this movement, cache frames receive

more modifications, than traditional caches, and this reduces

the leakage current.

Finally, as we have seen from Section 3.1, the extra

hardware needed for the functionality of the non-inclusive

cache is negligible relative to the big cache size.

Table 3: Bytes per nJ for different configurations
Bench. Conv. Basic AP CS

bzip2 178864.63 165755.4 180683.74 105018.16

gcc 20987.3 23555.27 23573.72 15612.07

gzip 174205.21 183998 195980.86 101820.19

mcf 25080.27 19700.2 22481.82 14590.21

parser 203338.5 171420.6 195980.86 89151.15

perl 614208.06 690984.07 690984.07 690984.07

twolf 82930.72 953790.43 71386.52 43704.91

vortex 312671.76 265017.97 308485.36 157102.07

vpr 127650.95 114183.06 117757.55 71556.27

ammp 29902.58 19234.31 19258.93 17449.79

applu 54864.8 32584.08 37779.2 20817.71

apsi 24108.3 24817.98 24962.08 24675.52

art 26977.32 25276.58 26178.1 23281.91

equake 379149.55 336043.76 347691.58 183998

mesa 539835.26 473526.01 583752.97 290610.96

swim 875564.46 896934.31 985010.02 707223.02

wupwise 464794.33 343720.28 522893.62 256000

5 Conclusions

In this paper we show that non-inclusive strategies can be

particularly effective in reducing cache misses at level 2 in our

2-level on-chip cache scenarios. The IPC numbers are

comparable to those obtained with a conventional cache

system, but the access time is expected to be lower for the non-

inclusive cache strategy due to the lower miss rates at level 2

and the comparable miss rates at level 1 cache. We presented

several schemes for the non-inclusive cache and showed that

non inclusion results in reducing L2 miss rate by 28 percent for

specINT and 40 percent for specFP.

We believe that the results we obtained in this study support

our belief that more performance can be obtained by using

more sophisticated non-inclusive strategies. In our future

work, we wish to explore methods to alleviate the adverse

effect of high level 1 miss rates of non-inclusive caches so that

the performance gain obtained by decreasing the miss rates at

higher levels can be reflected better in overall performance.

Furthermore, we intend to develop mechanisms to allow the

usage of non-inclusive caches in multiprocessor systems, and

study the interaction between cache coherence protocols and

non-inclusive caches in detail.

Acknowledgement

This work was supported in part by a grant from The City

University of New York PSC-CUNY research award program.

References

[1] A. Agarwal, H. Li, and K. Roy, “Drg Cache: A Data

Retention Gated-Round Cache for Low Power,” Proc.

39th Int’l Design Automation Conf., 2002.

[2] Semiconductor Industry Association, International

Technology Roadmap for Semiconductors, 2001.

[3] J. L. Baer and W. H. Wang, “On the Inclusion Properties

of Multi-Level Cache Hierarchies,” Proceedings of the

15th Annual International symposium on Computer

Architecture, 22:73-80, 1988.

[4] L. Barroso K. Gharachorloo, R. McNamara, A.

Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B.

Verghese, “Piranha: A Scalable Architecture Based on

Single-Chip Multiprocessing,” Int’l Symposium on

Computer Architecture (ISCA), 2000.

[5] D. Burger and T. M. Austin, The Simplescalar Tool Set:

Version 2.0, Technical Report, Dept. of CS, Univ. of

Wisconsin-Madison, June 1997.

[6] T. L. Johnson and W-M. Hwu, “Run-Time Adaptive

Cache Hierarchy Management via Reference Analysis,”

Int’l Symposium on Computer Architecture (ISCA),

1997.

[7] T. L. Johson, D. A. Connors, M. C. Merten, and W-M

Hwu. “Run-Time Cache Bypassing,” IEEE Transactions

on Computers, 48(12):1338-1354, 1999.

[8] N. P. Jouppi, “Improving Direct-Mapped Cache

Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffer,” Proc. 17th Int’l

Symposium on Computer Architecture, pp. 364-373, May

1990.

[9] S. McFarling. “Cache Replacement with Dynamic

Exclusion,” Proceedings of the 19th Annual International

Symposium on Computer Architecture, pp. 191-200,

1992.

[10] S. J. E. Wilton and N. P. Jouppi, “Tradeoffs in Two-

Level On-Chip Caching,” Proceedings of the 21st Annual

International Symposium on Computer Architecture, pp.

34-45, 1994.

[11] P. Racunas and Y. N. Patt, “Partitioned First-Level

Cache Design for Clustered Microarchitectures,”

Proceedings of the 17th International Conference on

Supercomputing, pp. 22-31, 2003.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 844 Copyright @ 2021 Authors

[12] S. Sair and M. Charney, Memory Behavior of the

Spec2000 Benchmark Suite, Technical Report RC-21852,

IBM T. J. Watson Research Center, October 2000.

[13] P. Shivakumar and Norman P. Jouppi, An Integrated

Cache Timing, Power, and Area Model, Technical

Report, Western Research Laboratory, 2001.

[14] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J.

Eickemeyer, and J. B. Joyner, “POWER5 System

Microarchitecture,” IBM Journal of Research and

Development, 49(4/5):505-521, 2005.

[15] A. J. Smith, “Cache Memories,” ACM Computing

Surveys, 14(3):473-530, 1982.

[16] C-L Su and A. M. Despain, “Cache Designs for Energy

Efficiency,” Proc. of the 28th Annual Hawaii Inter’l

Conf. on System Sciences, 1995.

[17] J. M. Tendler, J. S. Dodson, Jr, J. S. Fields, H. Le,

and B. Sinharoy, “POWER4 System

[18] S. P. Vanderwiel and D. J. Lilja, “Data Prefetch

Mechanisms,” ACM Computing Surveys, 32(2):174-199,

2000.

[19] D. Weiss, J Wuu, and V. Chin. “The On-Chip 3-MB

Subarray-Based Third-Level Cache on an Itanium

Microprocessor,” IEEE Journal of Solid-State Circuits,

37(11):1523-1529, 2002.

[20] Y. Zheng, B. T. Davis, and M. Jordan, “Performance

Evaluation of Exclusive Cache Hierarchies,” IEEE Int’l

Symposium on Performance Analysis of Systems and

Software (ISPASS), 2004.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 1 Copyright @ 2021 Authors

