

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 845 Copyright @ 2021 Authors

A Sustainable Directory for The many Systems is Cuckoo Directory.

Ms.SUCHITRA MISHRA*, Ms.BANASHREE DASH

Dept. OF Computer Science and Engineering, NIT , BBSR

suchitramishra@thenalanda.com*, banashree@thenalanda.com

Abstract

Scalable on-chip coherence techniques are now
more important than ever because of rising core
counts. The rise in on-chip cores makes the energy and
space requirements of scaling the directories more
apparent. Due to their high associative structure
requirements and correspondingly high power
consumption, duplicate-tag based directories are not
scaleable. By lowering directory associativity, sparse
directories are able to overcome the power barrier.
But, in order to prevent high invalidation rates, more
storage space must be provided. .

We suggest the Cuckoo directory, a scalable
distributed directory that uses little power and space.
Without the energy costs of extensive associative
lookups and without gross capacity over-provisioning,
the cuckoo directory scales to high core counts. The
Cuckoo directory organisation eliminates
invalidations while being up to four times more power-
efficient than the Duplicate-tag directory, 24% more
power-efficient, and up to seven times more area-
efficient than the Sparse directory organisation,
according to simulation on a 16-core CMP with
commercial server and scientific workloads.
According to analytical forecasts, the Cuckoo direct-
ry effectively scales to at least 1024 cores while
maintaining its energy and area advantages.

1. Introduction

Manufacturing technology innovation has led to

rapidly growing on-chip core counts in today’s proces-

sors, highlighting the need for a scalable on-chip cache

coherence mechanism. Adapting prior work from

multi-chip systems [17], cache coherence between pri-

vate caches has been achieved on CMPs with a handful

of cores. However, quickly growing core counts have

exposed the energy and area costs of scaling the exist-

ing coherence mechanisms, requiring innovation to

achieve power-efficient cache coherence with reason-

able area budgets in future CMPs [31,43].

There exist two broad classes of CMP coherence

directories. Duplicate-Tag-based schemes in use by

several designs [7,16,43] are area-efficient, but require

highly associative structures whose power dissipation

precludes scaling to large core counts. Conversely,

Sparse directory schemes [17] are power-efficient, but

incur considerable area cost in over-provisioning the

directory capacity to avoid conflicts in low-associativ-

ity directory structures.

Sparse directory organizations using compressed

representations of sharer bit vectors are myriad

[1,3,10,11,13,17,23,36]. Hierarchical directory organi-

zations [44,45] can enable area-efficient uncompressed

vector storage through multiple serialized lookups.

However, these techniques address only the size of the

sharer vectors, not the number of vectors the directory

must store. Sparse directories experience set conflicts,

forcing evictions of cached blocks that cannot be

simultaneously tracked by the directory. To reduce

conflict frequency and avoid performance loss, exist-

ing Sparse directory implementations over-provision

directory capacity [17,35]. Although compressed and

hierarchical designs are theoretically scalable (power

and area do not grow significantly with core count),

the practical area cost of Sparse directories is excessive

due to capacity over-provisioning.

In this paper, we present the Cuckoo directory, a

scalable distributed directory with nearly constant

power and area utilization per core, regardless of core

count. The Cuckoo organization avoids set conflicts of

traditional Sparse directories, eliminating performance

loss due to forced invalidations without significantly

over-provisioning the directory capacity, achieving

scalable power- and area-efficient CMP coherence.

To avoid set conflicts, the Cuckoo directory uses a

N-ary Cuckoo hash table [15,29], a small associativity

(3- or 4-way) structure whose address bits are passed

through different hash functions, one for each way.

The physical implementation of the Cuckoo directory

closely resembles a set-associative structure, having

nearly identical energy and latency per lookup. How-

ever, unlike the set-associative organization that

always picks a replacement victim from a small set of

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 846 Copyright @ 2021 Authors

conflicting entries, the Cuckoo directory displaces vic-

tims to alternate non-conflicting ways, practically

never resorting to eviction.

We perform full-system simulation of CMPs run-

ning server and scientific workloads to evaluate

coherence directory organizations based on commer-

cial products, industry prototypes, and state-of-the-art

research proposals. We use simulation and analytical

projections to demonstrate that:
• The Cuckoo directory is a practical power- and area-

coherence mechanism. However, even when the L2 is

shared, coherence between the private L1 caches must

scalable directory organization, offering up to 80x

energy-efficiency over the leading area-efficient

Tagless [43] design and more than 7x area-efficiency

over the leading power-efficient Sparse [17] design

at 1024 cores.

• Even at 16 cores, the Cuckoo directory is up to 16x

more energy-efficient than the traditional Duplicate-

Tag directory and up to 6x more area-efficient than

the Sparse organization.

The rest of this paper is organized as follows.

Section 2 provides background on CMP coherence and

Section 3 explains the scalability of prior directory

organizations. Section 4 presents the Cuckoo directory

design and hardware. Section 5 provides a detailed

evaluation of the Cuckoo directory. We present related

work in Section 6 and conclude in Section 7.

2. CMP Coherence Background

Research literature and industry products explore

many different CMP cache hierarchies. The private

organization shown in Figure 1(a) has direct connec-

tions between private L1 and private L2 caches.

Coherence must be explicitly enforced, invalidating all

remotely cached copies of a block on a write and guar-

anteeing that cache misses are satisfied from a peer L2

if that L2 has a dirty copy of the accessed block. The

shared organization shown in Figure 1(b) has small

private L1 caches and a large shared L2 cache. The

address-interleaved shared L2 cache has a unique loca-

tion for each address, eliminating the need for a

be explicitly maintained. While shared and private

organizations form the two extremes, actual designs

may mix or extend these organizations (e.g., with soft-

ware controlled private/shared hierarchies [19] or

three-level hierarchies with private L1 and private L2

caches backed by a shared L3 [35]).

Coherence directories track the privately cached

addresses in address-interleaved physically distributed

directories. To achieve coherence, all accesses from

the private caches interrogate the directory, which

sends coherence requests to the sharers as needed.

Figure 2 shows an example directory operation of a

shared-cache CMP. Statically interleaved home loca-

tions determine which L2 bank and directory slice are

responsible for each address. When a write request for

block a arrives at its home location (bank n in

Figure 2), the L1-directory slice is consulted in parallel

with the L2 tags. If address a is found in the directory,

invalidation requests are sent to all sharers. The pri-

vate-cache organization undergoes a similar procedure,

but the local private L2 cache is consulted first and a

write request is sent to the home directory only in the

case of a miss in the L2 cache.

3. CMP Directory Scalability

As the number of cores grows, the aggregate

directory must increase commensurately. For each pri-

vate cache, a directory slice is added to track the

additional private cache’s blocks. Moreover, the core

count should not affect the organization of each direc-

d d d d

d d d d

Core

Private

Cache

Shared

Cache

(a) private (b) shared

d
Slice

Directory

FIGURE 1. CMP organizations. (a) the interconnect connects
independent private hierarchies (b) the interconnect is used
to access an address-interleaved shared cache

Core

0

Core

1

Core

n

L1-0 L1-1 L1-n

Write(a)

Invalidate(a)

L2

Bank

0

L2

Bank

1

L2

Bank

n

FIGURE 2. Operation of CMP directory. Cache coherence is
enforced with a distributed directory located next to the
lower-level cache banks.

10...0 a

L1

dir

L1

dir

L1

dir

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 847 Copyright @ 2021 Authors

Cache-0
Duplicate-Tag Directory Slices

Cache-1

Cache-2
Sparse Directory Slices

Cache-3

Directory conflict,

evict a4 from Cache-3

FIGURE 3. CMP directory organizations.

a1«0,1,2» a0«0»

a4«3» » a2«2 a3«1,3»

tory slice. If the associativity of each directory slice

grows to accommodate more cores, the aggregate

directory power dissipation grows quadratically. Simi-

200%

50%

13%

3%

1%

100,000%

10,000%

1,000%

100%

10%

Duplicate-Tag Tagless
Sparse 8x In-Cache
Sparse 8x Hier. Sparse 8x Coarse

16 32 64 128 256 512 1024

Core Count (2 caches per core[I+D])

16 32 64 128 256 512 1024

Core Count (2 caches per core[I+D])

larly, if the storage of each directory slice grows to

accommodate more cores, the aggregate directory area

grows quadratically.

The operation of two basic CMP directory organi-

zations is presented in Figure 3. Four private 2-way

set-associative caches are shown with the four distrib-

uted slices of the Duplicate-Tag [7] and Sparse [17]

directory organizations. The directory slices are

address-interleaved and distributed on chip, each slice

tracking blocks in a subset of the private-cache sets.

 Duplicate-Tag Scalability

The Duplicate-Tag organization mirrors the orga-

nization of the private-cache tags, ensuring that there is

always sufficient space in the directory to track all

cached blocks. To construct an invalidation vector, a

lookup in the Duplicate-Tag directory compares all

stored tags in the directory set against the lookup tag,

finding the sharers wherever the tags match.

The Duplicate-Tag associativity must equal the

product of the cache associativity and the number of

caches [6], resulting in designs with large (e.g., 332-

wide [39]) associative directories. The Duplicate- Tag

directory power dissipation for designs with 4- and 8-

way private L1 caches [35] or 16-way private L2

caches is prohibitive even for today’s CMP designs

with a few cores.

Figure 4 presents the per-core area and energy

scalability of directory designs for a system with 16-

way private L2 caches. The aggregate chip energy and

area utilization of the directory are the products of

FIGURE 4. Area (top) and energy (bottom) scalability of
various coherence directory organizations.

the values shown in Figure 4 and the core count. An

increasing core count not only adds new directory

slices to the Duplicate-Tag organization, but also lin-

early increases the associativity of each directory slice,

resulting in non-scalable quadratic growth of the

aggregate energy consumption of all directory slices.

 Sparse Directory Scalability

The Sparse organization reduces directory asso-

ciativity by using the low-order tag bits to extend the

index of the directory storage, reducing the associativ-

ity by increasing the number of directory sets. Because

this operation loses the one-to-one correspondence of

directory entries to cache frames, each directory entry

is extended with explicit sharer information.

Unfortunately, the non-uniform distribution of

entries across directory sets in the Sparse organization

incurs set conflicts, forcing invalidation of cached

blocks tracked by the conflicting directory entries and

reducing system performance. An example of a con-

flict in set a is shown in Figure 3. If blocks a3 and a4

are tracked by the directory and block a2 is accessed,

one of a3 or a4 must be evicted from the private

caches because the directory organization cannot

simultaneously track these three blocks. Reducing the

conflict frequency requires over-provisioning the num-

ber of directory sets and associativity [17]. At the

limit, the in-cache directory organization extends an

a3 a4

c1 c4

c0«0,1» c2«1»
c5«2» c4«3»
c3«2» c1«0,3»

a2 a1

c5 c3

E
n

er
g

y
o

f
1M

B
 L

2
T

ag
 L

o
o

ku
p

A
re

a
o

f
1M

B
 L

2
D

at
a

A
rr

ay

a0 a1

c0 c1

a0 a1 a1 a3 a2 a1 a3 a4

c0 c1 c0 c2 c5 c3 c1 c4

a1 a3

c0 c2

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 848 Copyright @ 2021 Authors

B C Potential

Locations

(step 1) (step 2) (step 3) (done)

FIGURE 5. Cuckoo hash operation. A conflicts with B and D,
B conflicts with A and C. Inserting A displaces B, triggering a
cascade of insertions until C is placed into a vacant location.

C

A

D A
inclusive shared cache’s tags with the sharer informa-

tion, implicitly saving directory tag storage, but

grossly over-provisioning the sharer storage [35]

because the number of tags in the lower-level cache

greatly exceeds the number of tracked blocks in the

private caches.

The traditional Sparse directory uses bit vectors to

track sharers [9]. The bit vectors stored in each direc-

tory entry must grow linearly with core count, in turn

leading to a quadratic growth in the aggregate direc-

tory area as core counts increase. Although energy-

efficient, both the traditional Sparse and the in-cache

designs are impractical for large core counts. At 256

cores, the aggregate vector-based L1 directory could

consume more than 256MB of on-chip storage,

exceeding the capacity of the L2 caches [43].

 Imprecise and Hierarchical Directories

Inexact and hierarchical representations of sharer

vectors enable the reduction of directory storage and

energy overheads at the cost of implementation com-

plexity. For example, the Tagless directory [43]

reduces the number of bits accessed for each directory

operation by encoding a super-set of sharers in a

Duplicate-Tag-like organization while Coarse-grained

and inexact conservative encodings [3,11,13,17,23]

reduce storage area in a Sparse organization.

Figure 4 shows that the Tagless directory is

extremely area-efficient up to 1024 cores. However,

this scalability comes at the cost of significant com-

plexity. More importantly, like the traditional

Duplicate-Tag organization, the bit-widths of either

each read or each update operation of the Tagless

directory increase with the number of cores. Therefore,

the slope of the energy dissipation line for the Tagless

directory in Figure 4 is nearly identical to the Dupli-

cate-Tag organization. Although the energy for each

operation in the Tagless directory is lower than in the

Duplicate-Tag organization by a constant factor, the

Tagless directory’s energy dissipation still grows qua-

dratically with core count, limiting its scalability.

Additionally, hierarchical organizations reduce

directory storage by using coarse bit-vectors at a pri-

mary location and exact sub-bit-vectors at secondary

locations [44,45]. Hierarchical techniques save stor-

age by breaking up large bit vectors and allocating

only the necessary second-level sub-bit-vectors, at the

cost of additional storage to replicate the tags multiple

times, once for each allocated second-level entry.

Figure 4 demonstrates the storage scalability of

the Sparse Coarse [17] design that precisely stores

sharers in the available bits (2*log(#caches) bits) and

falls back to a coarse vector representation in the case

of overflow [24], and Sparse Hierarchical [44,45], a 2-

level hierarchical directory organization. Although

theoretically scalable, these schemes address only the

vector storage inside each entry and not the total num-

ber of directory entries. Set conflicts in the directories

require over-provisioning the number of directory sets

to avoid frequent invalidations, resulting in Sparse

directories that can rival the L2 cache size.

4. Cuckoo Directory Design

We construct the Cuckoo directory to overcome

the power and area scalability limitations of prior tech-

niques. To meet these goals, the Cuckoo directory

associativity and total storage per directory slice

remain nearly constant, regardless of the core count.

The Cuckoo directory relies on the observation

that low-associativity directory tag storage suffers pri-

marily from transitivity of set conflicts. In traditional

cache or directory indexing, if block A conflicts with B

and block B conflicts with C, then A must also conflict

with C. In a 2-way associative structure, there are two

locations where A, B, and C can be stored. If B an C

are present, inserting A must replace either B or C.

 Cuckoo Hashing

Cuckoo hashing [29] can break transitive con-

flicts. The Cuckoo hash uses two independent (direct-

mapped) tables, indexed through two different hash

functions. A new entry is always inserted in one of the

two tables, potentially displacing a valid entry. The

insertion procedure continues with each displaced

entry, alternating probing of the tables until the dis-

placed entry is stored in a vacant position without

displacing another entry.

Figure 5 demonstrates the Cuckoo hash operation.

Block A conflicts with B and D, and block B conflicts

with A and C. In step 1, A is inserted into one of its

two possible locations, displacing B. In step 2, because

B was previously displaced, B is inserted into its alter-

nate location (where it conflicts with C). In step 3, C is

inserted into a vacant alternate location (where it does

not conflict with A), ending the insertion process.

 D

A

 B

C

 D

A

 B

 D

B

 C

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 849 Copyright @ 2021 Authors

To Exchg.

Buffers

hash1 hash2 hash3 hash4

FIGURE 6. 4-way Cuckoo directory hardware. Each direct-
mapped way is indexed through a different hash function.

rs Buffe change Ex
TABLE 1. System parameters.

CMP Size 16 cores

Processing Cores UltraSPARC III ISA

L1 Caches split I/D, 64KB, 2 ways

64-byte blocks, write-back

L2 NUCA Cache 16-core CMP: 1MB per core, 16 ways

64-byte blocks

Main Memory 3 GB memory, 8KB pages

48-bit address space

The Cuckoo hash lookup operation is identical to

the skewed-associative cache [34]. However, the key

difference between the Cuckoo hash and the skewed

organization is the insertion procedure. Whereas the

skewed-associative cache selects a victim from one of

the ways, the Cuckoo organization uses displacement

to iteratively move entries until a non-conflicting loca-

tion is found. Skewed associativity reduces conflict

frequency, roughly doubling the perceived associativ-

ity of the underlying structure, while the Cuckoo hash

provides nearly the equivalent of a fully-associative

the private caches that correspond to the evicted entry.

To maintain a uniform distribution of entries across the

ways, each insertion starts at the way at which the pre-

vious insertion stopped.

Upgrade and eviction requests search the directory

and update the corresponding entries. For read and

write misses from private caches, the directory is

searched for a matching tag. If an entry is found, it is

updated with a new sharer, and, if necessary, an invali-

dation vector based on the entry is produced. If the

accessed tag is not found, a new entry is inserted.

In the shared-cache configurations, the directory

lookup is performed in parallel with the L2 lookup.

Because the L2 cache is a larger and slower structure,

the latency of the directory lookup is not on the critical

path and has absolutely no impact on performance. For

shared-configuration directory updates and for all

requests in the private-cache configurations, multiple

insertion attempts may appear on the critical path.

However, in practice, the frequency of long insertions

is too low (see Figure 10) to have a measurable impact

on performance. Furthermore, long insertions can be

immediately prematurely terminated when a new

structure with the same lookup energy and latency,

albeit with a more complex insertion procedure.

 Hardware Implementation

The Cuckoo directory is an implementation of the

d-ary Cuckoo hash [15] that extends the Cuckoo hash

to more than two tables. Figure 6 depicts a 4-way

Cuckoo directory. To find an element in the Cuckoo

directory, all ways are looked up in parallel using

hashed values of the searched address. Inserting an

entry into the directory requires a lookup followed by a

write of an entry in one of the ways. If the write

replaces a valid directory entry, the insertion procedure

is repeated for the victim entry, iterating until an inser-

tion finds a vacant location.

We limit the maximum number of insertion

attempts to avoid infinite loops. A counter tracks how

many times an insertion procedure passes way 0. If the

counter overflows, the hardware terminates the proce-

dure and discards the most recently displaced entry,

maintaining correctness by invalidating the blocks in

request arrives at the directory, eliminating any poten-
tial effect on the lookup latency of the new request.

5. Evaluation

We analyze coherence directory access patterns

using full-system simulation executing unmodified

applications and operating systems in FLEXUS [42].

FLEXUS extends the Virtutech Simics functional simu-

lator with models of processor tiles with cores, NUCA

cache, on-chip coherence protocol controllers, and on-

chip interconnect. We simulate a tiled CMP where the

lowest-level cache is the L2 cache. We summarize our

tiled architecture parameters in Table 1.

We simulate systems running Solaris 8 and exe-

cuting the workloads listed in Table 2. We include two

scientific workloads and a range of server workloads

from competing vendors, including online transaction

processing, decision support system, and web server

benchmarks. We start simulation from warm system

checkpoints. For server workloads, we measure 100

million instructions after warming the micro-architec-

In
pu

t

Ta
g

&
 S

ha
re

r
B

its
 O

ut

Tag Bits

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 850 Copyright @ 2021 Authors

In
se

rt
io

n
 F

ai
lu

re
 P

ro
b

ab
ili

ty

TABLE 2. Application parameters.

2-ary 3-ary 4-ary 8-ary
6 100%

5
75%

4

3 50%

2
25%

1

0 0%

0.2 0.4 0.6 0.8 1

Occupancy

0.2 0.4 0.6 0.8 1

Occupancy

tural state for 100 million instructions. For scientific

workloads, we warm the micro-architectural state for

four iterations and measure the 5th iteration.

We present results for two system configurations

presented in Section 2. The Shared-L2 configuration

uses a coherence directory that tracks sharers in private

L1 caches. The Private-L2 configuration tracks sharers

in larger private L2 caches. The Private-L2 results are

also representative of a system with a 3-level cache

hierarchy using two private levels and a shared LLC.

 Cuckoo Hash Characteristics

Figure 7 demonstrates the fundamental Cuckoo

directory behavior by presenting an analysis of the d-

ary Cuckoo hashing technique as a function of occu-

pancy. To avoid bias from hash function selection, we

use strong cryptographic functions to index the ways.

The left graph shows the average number of insertion

attempts until a successful insertion without a victim.

The right graph shows the frequency of not finding a

vacant location for a victim entry in 32 insertion

attempts. Results are presented as a function of occu-

pancy, as the curve is affected only by the occupancy

and is completely independent of the total capacity of

the structure.

In case of low occupancy, a vacant location is typ-

ically found on the initial lookup. Below 50%

occupancy, insertions into 3-ary and wider Cuckoo

hash tables either succeed immediately or require only

a single displacement. Furthermore, for up to 65%

occupancy, 3-ary and wider organizations do not expe-

rience insertion failures.

Based on the results of Figure 7, we conclude that

a Cuckoo directory with occupancy 50% or lower

should never invalidate cache blocks due to directory

conflicts, successfully inserting all directory entries, on

average, after only two attempts. Directory occupancy

below 50% is achieved trivially through sizing of the

FIGURE 7. Cuckoo hash characteristics. Average insertion
attempts and insertion failure rate for 100,000 random
values, plotted as a function of occupancy.

Cuckoo directory tables. The maximum number of dis-

tinct tags tracked by a directory slice is equal to the

number of frames in a private cache. Occupancy below

50% is therefore always guaranteed by a 2x over-pro-

visioning of the Cuckoo directory capacity.

 Cuckoo Directory Under-Provisioning

In practice, presence of shared instruction and

shared data blocks limits the number of distinct tags in

the aggregate private caches, leading to a natural

reduction in the directory occupancy and enabling the

Cuckoo directory to function without 2x over-provi-

sioned capacity. We present the average directory

occupancy of our workloads in Figure 8. As expected,

we observe reduced directory occupancy, indicating

that over-provisioning is not needed for the Shared-L2

configuration. For the Private-L2 configuration, deci-

sion support queries and the scientific workloads are

dominated by large private footprints, resulting in pre-

dominantly unique blocks across all private caches,

and calling for a slight Cuckoo directory over-provi-

sioning to achieve the desired occupancy. The ocean

workload demonstrates the extreme case, having

nearly 100% unique private blocks in all caches.

100%

80%

60%

40%

20%

0%

FIGURE 8. Average directory occupancy.

Shared L2 Private L2

OLTP DSS Web Sci

D
ir

ec
to

ry
 O

cc
u

p
an

cy

A
ve

ra
g

e
In

se
rt

io
n

 A
tt

em
p

ts

D
B

2

O
ra

cl
e

Q
ry

2

Q
ry

1
6

Q
ry

1
7

A
pa

ch
e

Z
e

u
s

e
m

3
d

o
ce

a
n

OLTP – Online Transaction Processing (TPC-C v3.0)

DB2 IBM DB2 v8 ESE, 100 warehouses (10 GB),

64 clients, 2 GB buffer pool

Oracle Oracle 10g Server, 100 warehouses (10 GB),

16 clients, 1.4 GB SGA

Web Server (SPECweb99)

Apache Apache HTTP Server v2.0,

16K connections, fastCGI, worker threading

Zeus Zeus Web Server v4.3, 16K connections, fastCGI

DSS – Decision Support Systems (TPC-H)

Qry 2,16,17 IBM DB2 v8 ESE, 480 MB buffer pool, 1 GB database

Scientific

em3d 768K nodes, degree 2, span 5, 15% remote

ocean 1026x1026 grid, 9600s relaxations, 20K res., err 1e-7

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 851 Copyright @ 2021 Authors

Shared L2 Private L2

F
o

rc
ed

 In
va

lid
at

io
n

 R
at

e
(l

in
e)

30
100%

25 75%
20

15 50%

10
25%

5

0 0%

2.5

2.0

1.5

1.0

0.5

0.0

FIGURE 9. Cuckoo directory insertion attempts and failure
rates for Shared-L2 and Private-L2 configurations. Cuckoo
directory sizes are expressed as (number of ways) x (number
of sets). Parenthesized values indicate provisioning factor.

We use the average number of insertion attempts

and forced invalidation rates to determine the mini-

mum Cuckoo directory size. Figure 9 evaluates a wide

range of Cuckoo directory sizes and organizations,

ranging from under-provisioned to over-provisioned.

In addition to an organization’s way and set counts, in

parenthesis, we indicate the provisioning factor. Fac-

tor “1x” indicates a capacity equal to the worst-case

number of blocks that the directory must simultane-

ously track (equal to the number of cache frames that

map to the directory slice). Greater factors indicate

capacity over-provisioning, while lower values indi-

cate under-provisioning.

We allow up to 32 insertion attempts to ensure ter-

mination in the unlikely event of a loop; in such cases,

we count 32 attempts toward the average. A lookup

always precedes an insertion to confirm that a new

entry should be allocated rather than adding a sharer to

an existing entry. The lookup implicitly reveals if an

empty position, eligible to hold the searched entry,

exists in any of the directory ways. If an empty posi-

tion is found during the lookup, insertion succeeds on

the first attempt, contributing one toward the average.

Addition of sharers to already existing directory entries

does not affect the reported average number of

attempts. Dirty and clean evictions from the private

caches are tracked by the directory, with the directory

entry becoming empty and eligible for reuse at the

time the last sharer evicts the block.

Figure 9 indicates that under-provisioning direc-

tory capacity (factor less than 1x) results in an

exponential increase in insertion attempts and forced

invalidations due to failed insertions. However, as

expected from Figure 8, the Shared-L2 configuration

does not require over-provisioning the capacity to

achieve a small average number of insertion attempts

FIGURE 10. Cuckoo directory average insertion attempts.

and near-zero invalidation rates. We find that a small

1.5x capacity over-provisioning is sufficient for the

Private-L2 configuration.

 Worst-case Cuckoo Insertion Attempts

The Cuckoo directory capacity in Section 5.2 is

selected based on the average behavior across a wide

range of workloads. To confirm general applicability,

Figure 10 presents the average insertion attempts for

all workloads using the selected 4x512 and 3x8192

Cuckoo directory organizations for the Shared-L2 and

Private-L2 configurations, respectively. Despite the

small directory size, the average number of insertion

attempts is typically less than two, indicating that a

vacant location is usually found at the time of the ini-

tial lookup. Larger average insertion attempts are

observed in workloads with more private blocks.

Figure 11 presents the insertion attempts for the

benchmarks with the longest-tail distribution. For the

Shared-L2 configuration, OLTP Oracle exhibits the

worst behavior; for the Private-L2 configuration,

ocean exhibits the worst behavior. The distribution of

10%

8%

6%

4%

2%

0%

0 4 8 12 16 20 24 28 32

Insertion Attempts

FIGURE 11. Worst-case insertion attempt distributions.
Values at 1 insertion attempt (85% for Oracle, 73% for
ocean) are not shown to enhance clarity.

Shared L2 Private L2

OLTP DSS Web Sci

 OLTP Oracle (Shared L2)

ocean (Private L2)

 A
ve

ra
g

e
In

se
rt

io
n

 A
tt

em
p

ts
(b

ar
)

4
x

10
24

 (
2x

)

3
x

10
24

 (
1.

5x
)

4
x

51
2

(1
x)

3
x

51
2

(3
/4

x)

4
x

25
6

(1
/2

x)

3
x

25
6

(3
/8

x)

4
x

81
92

(2

x)

3
x

81
92

 (
1.

5x
)

8
x

20
48

(1

x)

3
x

40
96

(3

/4
x)

8
x

10
24

(1

/2
x)

3
x

20
48

(3

/8
x)

P
er

ce
n

t
o

f
In

se
rt

 O
p

er
at

io
n

s
A

ve
ra

g
e

In
se

rt
io

n
 A

tt
em

p
ts

D
B

2

O
ra

cl
e

Q
ry

2

Q
ry

1
6

Q
ry

1
7

A
pa

ch
e

Z
e

u
s

e
m

3
d

oc
e
an

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 852 Copyright @ 2021 Authors

2.00
1.00
0.50
0.25
0.13
0.06
0.03
0.02

a:Sparse 2x b:Sparse 8x
c:Skewed 2x d:Cuckoo 1x

16.00

4.00

1.00

0.25

0.06

a:Sparse 2x b:Sparse 8x
c:Skewed 2x d:Cuckoo 1.5x

0.01

Shared L2

abcd
0.02

Private L2

abcd

OLTP DSS Web Sci OLTP DSS Web Sci

FIGURE 12. Directory invalidation rates with Shared-L2 (left) and Private-L2 (right) configurations.

insertion attempts confirms expectations: each inser-

tion attempt increases the probability of finding a

vacant location, exponentially reducing the probability

of performing a subsequent attempt. Even for the

worst-case benchmarks, the probability of reaching 32

insertion attempts is nearly zero. Additionally, lack of

a peak at 32 indicates that longer insertions and loops

are practically non-existent.

 Invalidation-Rate Comparison

We compare the forced-invalidation rates of the

Cuckoo directory to competing directory organiza-

tions in Figure 12. We present the invalidation rate as a

fraction of directory entry insertions for (a) an 8-way

Sparse directory with two times capacity over-provi-

sioning (Sparse 2x), (b) an 8-way Sparse directory

with eight times over-provisioning (Sparse 8x), (c) a

4-way skewed-associative directory (Skewed 2x)

adapted from the skewed-associative cache organiza-

tion [33], and (d) the 3- and 4-way Cuckoo directory

organizations selected in Section 5.2. The Sparse 2x

directory has the same capacity as the skewed-associa-

tive organization, both having two times greater

capacity than the Cuckoo 1x directory.

Our results indicate that the Sparse 2x directory

incurs a significant number of set conflicts with nearly

all workloads in both Shared-L2 and Private-L2 sys-

tems. Compared to the Sparse 2x directory, the 4-way

Skewed 2x organization generally reduces the fre-

quency of invalidations in highly contended directory

sets for server workloads, but does not reduce invalida-

tions for scientific workloads that have a more uniform

distribution of accesses. The 8-way Sparse 8x direc-

tory is large enough to provide reasonable invalidation

rates on average, however, the forced-invalidation

rates remain significant for many workloads. Finally,

we note that the Cuckoo directory — having less

capacity and lower associativity compared to the com-

peting designs — experiences near-zero invalidations

with all workloads. Robustness of the Cuckoo design

is highlighted with the ocean workload that has nearly

100% distinct blocks in the Private-L2 system, but

experiences invalidations only on 0.08% of directory

updates with only 1.5x Cuckoo directory.

 Hash Function Selection

We evaluate the Cuckoo directory implementa-

tion using the skewing hash functions from Seznec and

Bodin [34]. We repeated the experiments with crypto-

graphic hash functions and observed no measurable

benefit for the Cuckoo 2x directory. For more aggres-

sive Cuckoo directory designs with lower provisioning

factors, we observed marginally lower average inser-

tion attempts. Additionally, in the case of ocean,

stronger hash functions eliminate the forced invalida-

tions observed in the Private-L2 configuration at 1.5x

over-provisioning. However, fewer insertion attempts

and reduced invalidation rates result in minimal energy

improvements and are offset by the complex hardware

implementation of the hash functions, compared to the

trivial implementation of the skewing hash functions

that require only several levels of logic.

Strong hash functions offered the most benefit in

situations where the directory capacity was severely

under-provisioned. In all configurations that exhibit

high forced-invalidation rates, the stronger hash func-

tions offer multiple-order-of-magnitude reduction in

invalidation rates compared to the skewing functions.

However, these needlessly over-constrained directory

designs are impractical because they gain marginal

area advantages at a huge power penalty due to many

unsuccessful insertion attempts.

In
va

li
d

at
io

n
 R

at
e

 (
%

)

D
B

2

O
ra

cl
e

Q
ry

2

Q
ry

1
6

Q
ry

1
7

A
p

ac
he

Z
e
u
s

e
m

3
d

o
c
e
a
n

In
v
a
li

d
a

ti
o

n
 R

a
te

 (
%

)

D
B

2

O
ra

cl
e

Q
ry

2

Q
ry

1
6

Q
ry

1
7

A
p

a
ch

e

Z
e

u
s

e
m

3
d

o
c
e

a
n

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 853 Copyright @ 2021 Authors

Private L2

Duplicate-Tag Tagless Sparse 8x In-Cache
Sparse 8x Hierarchical Sparse 8x Coarse Cuckoo Hierarchical Cuckoo Coarse

10,000%

1,000%

100%

10%

10,000%

1,000%

100%

10%

16 32 64 128 256 512 1024

Core Count (2 caches per core [I+D])

16 32 64 128 256 512 1024

Core Count (1 cache per core)

200%

100%

50%

25%

13%

6%

3%

2%

1%

200%

100%

50%

25%

13%

6%

3%

16 32 64 128 256 512 1024

Core Count (2 caches per core [I+D])

16 32 64 128 256 512 1024

Core Count (1 cache per core)

FIGURE 13. Power and area comparison of directory organizations. Directory energy consumption is plotted for varying core
counts. Directory for the Shared-L2 cache configuration is depicted on top, Private-L2 configuration is depicted on the bottom.

 Power and Area, Trends and Comparison

Figure 13 presents the per-core energy dissipation

and area utilization of the leading directory organiza-

tions. We compute the energy dissipation based on the

number and size of the read and update operations on

the directory storage structures, scaling the energy of

each operation by its frequency as determined from our

workload suite.1 We present directory energy dissipa-

tion relative to the energy of a 16-way set-associative

L2 tag lookup. Directory area is presented relative to

the area of the L2 data array (1MB).

The behavior trends of all directory organizations

are similar across the Shared-L2 and Private-L2 con-

figurations. Even for 16-core systems, the Duplicate-

Tag organization is extremely energy inefficient,

despite consuming minimal chip area. At low core

counts, the small storage requirements of the Tagless

directory lead to energy savings compared to most

other directory organizations. The Tagless organization

1. The following event frequencies were used: Insert new tag into

the directory: 23.5%, add sharer to existing entry: 26.9%,

remove sharer from existing entry: 24.9%, remove tag from the

directory: 23.5%, invalidate all sharers: 1.2%.

remains extremely area efficient to 1024 cores and

beyond. However, like in the Duplicate-Tag organiza-

tion, the number of bits read and written for each

directory access in the Tagless directory scales lin-

early with core count, resulting in quadratic growth in

chip energy dissipation for the aggregate of all Tagless

directory slices. Despite being extremely area-effi-

cient, energy dissipation of the Tagless directory

becomes prohibitive beyond 128 cores.

Traditional Sparse directories storing full bit vec-

tors for each tag suffer from both energy and area

inefficiency. As core counts increase, the vector sizes

increase linearly, dominating the energy and area of the

directory and making the directory organization irrele-

vant. Linear per-core power and area increases render

these designs unreasonable for large core counts.

The inclusive in-cache directory is not applicable

to the Private-L2 configuration, as inclusion of private

L2s in other private L2s is not possible. However, the

inclusive in-cache directory for the Shared-L2 configu-

rations can store full sharer bit vectors and leverage the

L2 cache to avoid tag storage and tag lookup energy.

In-cache directory designs remain practical as long as

the bit-vector size (number of cores) remains moder-

Shared L2

Private L2

Shared L2

E
n

er
g

y
o

f
1M

B
 L

2
T

ag
 L

o
o

ku
p

E
n

er
g

y
o

f
1M

B
 L

2
T

ag
 L

o
o

ku
p

A
re

a
o

f
1M

B
 L

2
D

at
a

A
rr

ay

A
re

a
o

f
1M

B
 L

2
D

at
a

A
rr

ay

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 854 Copyright @ 2021 Authors

ate. However, beyond 128 cores, in-cache directories

lose their advantages and become dominated by bit-

vector storage, limiting applicability to larger systems.

Sparse directories storing a limited number of bits

per entry (Sparse Coarse and Sparse Hierarchical) are

subject only to a logarithmic increase in energy with an

increasing core count. These organizations scale well

with respect to energy and area, resulting in nearly flat

horizontal lines in Figure 13. However, although these

designs address the bit-vector storage scalability, the

Sparse organization must be over-provisioned to avoid

performance loss due to set conflicts. Over-provision-

ing results in a significant area increase, rendering

these designs unattractive and showing the need for

more area-efficient organizations.

The Cuckoo directory organization eliminates

Sparse directory over-provisioning by resolving set

conflicts while still leveraging the benefits of the

Coarse and Hierarchical bit-vector storage mecha-

nisms. The Cuckoo directory area utilization rivals the

area-efficient Tagless and Duplicate-Tag directory

designs, but also has a low nearly-constant per-core

energy dissipation regardless of core count. The

Cuckoo directory organization achieves up to 7x area

reduction compared to the Sparse Coarse and Sparse

Hierarchical organizations, maintaining reasonable

energy dissipation while bringing the area of the direc-

tory storage under 3% of the L2 area for the Shared-L2

configuration with 1024 cores (2048 sharing caches)

and under 30% of the L2 area for the Private-L2 con-

figuration with 1024 cores. Constant scalability within

the directory slice results in expected linear growth in

the aggregate directory energy and area consumption

as the number of cores increases, yielding a practical

and scalable design to at least 1024 cores.

6. Related Work

Like the Cuckoo directory, a number of prior hard-

ware structure proposals borrow ideas from software

hash tables. Caches using multiple hash functions were

proposed in hash-rehash caches [2] by Agarwal et al.

and later in column-associative caches [4] by Agarwal

and Pudar. Broder and Kalin proposed parallel hash

functions to access independent memory banks [8].

Seznec used parallel hashing memories to reduce con-

flicts in skewed-associative caches [33], the basic

organization used in the design of the Cuckoo direc-

tory. Other mechanisms to reduce conflicts through

hashing [40] and software-controlled functions [41]

were evaluated by Topham and González and Vandier-

endonck et al. The skewed-associativity mechanism

was adapted as a replacement for CAMs [25] by

Mahoney et al., who later provided a mathematical

model for the parallel hashing structure [26] similar to

the skewed-associativity model by Michaud [28]. Cho

et al. relied on a hardware implementation of a hash

table to create content-addressable memories from ran-

dom access memories [12].

Like the skewed-associative cache, the Cuckoo

directory relies on the family of hash functions pro-

posed by Seznec and Bodin [34]. However, unlike

skewed-associative caches and parallel hashing memo-

ries, the Cuckoo directory uses an insertion algorithm

based on moving entries within the structure, as pro-

posed for Cuckoo hash tables by Pagh and Rodler [29].

Hagersten and Hill proposed displacement to improve

storage efficiency of skewed structures [18]. Spjuth et

al. evaluated a displacement-based insertion algorithm

in Elbow caches [37,38], crediting the idea behind dis-

placements to Mark Hill. Similarly to Cuckoo

directories, Elbow caches displace conflicting ele-

ments. However, the Elbow cache is limited to one

displacement per insertion and requires multiple look-

ups to select a displacement victim, resulting in a

complex and power-hungry design that experiences

more forced invalidations than the Cuckoo directory.

Fotakis et al. generalized Pagh and Rodler’s

Cuckoo hash to a d-ary Cuckoo hash [15], improving

the space utilization of the structure. The Cuckoo

directories we evaluate use the d-ary organization.

Panigrahy proposed an alternative mechanism to

improve Cuckoo-hash space utilization by storing mul-

tiple elements per bucket [30]; we do not investigate

this approach, but note that it may offer additional

improvement in the behavior of the Cuckoo directory

at high directory occupancy, potentially allowing a

smaller and more power-efficient 3-ary design instead

of a 4-ary organization for some systems.

Significant benefit of relocation in hardware hash

tables [21] was noted by Kirsch and Mitzenmacher.

Another hardware proposal by Kirsch et al. aug-

mented a Cuckoo hash implementation with a CAM

based stash to maintain overflow entries [22]. Arbit-

man et al. mathematically formalized the stash

approach [5]. This technique is effective if all elements

must be stored. However, the Cuckoo directory can

invalidate blocks in the rare cases of overflow and

does not benefit from a stash.

Many proposals exist to reduce directory over-

heads by reducing the directory entry size. Agarwal et

al. evaluated schemes of storing a small number of

pointers with various overflow handling policies [3].

Krafka and Newton evaluated a sectored organization

to reduce tag storage overhead [23]. Gupta et al. sug-

gested switching to a coarse representation when

limited pointers overflow [17]. Chaiken et al. proposed

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 855 Copyright @ 2021 Authors

software fallback [10] and Chen proposed chained

pointers to handle directory overflow [11]. Choi and

Park proposed a hybrid of bit-vector and limited

pointer organizations [13]. The Cuckoo organization

dictates only the organization of the directory itself,

not the contents of each entry or its home node. In this

work, we constructed the Cuckoo directory with the

coarse [17] and hierarchical [44,45] approaches,

although the Cuckoo organization can be used in con-

junction with any of these space-reduction techniques.

Finally, there exist proposals for coherence mech-

anisms that avoid directories and cannot directly

benefit from the Cuckoo organization. Among these

are: Tagless directories [43] from Zebchuk et al., dem-

onstrated to be highly area-efficient but not energy-

scalable; SCI [20] from James et al., using sharer

pointers in the private caches rather than a directory

structure; token coherence [27] from Martin and Hill,

also avoiding a coherence directory; software-con-

trolled address indirection by Fensch and Cintra [14]

and Hardavellas et al. [19] handle coherence in soft-

ware on shared cache substrates; and DiCo [32] from

Ros et al., eliminating directories in favor of storing

coherence information within the cache tags.

7. Conclusions

The exponential growth in the number of on-chip

cores has highlighted the need for a scalable on-chip

cache coherence mechanism, exposing the energy and

area costs of scaling the coherence directories. Dupli-

cate-Tag directories require highly associative

structures that grow rapidly with core count and

approach prohibitive power consumption. Sparse

directories overcome power barrier by reducing asso-

ciativity while over-provisioning the number of

directory sets, but have a larger area cost and affect

performance when directory overflows must invali-

date active cache blocks.

In this work, we proposed the Cuckoo directory, a

directory organization that eliminates set conflicts and

enables energy- and area-scalable coherence for large

core counts. Based on the Cuckoo hash table, a dense

constant-time lookup structure, the Cuckoo directory

avoids set conflicts without significant capacity over-

provisioning. Through simulation and analytical pro-

jections, we showed that the Cuckoo directory

provides energy and area benefits to existing 16-core

designs and scales to hundreds of cores. At 1024 cores,

the Cuckoo directory is up to 80 times more power-

efficient than the area-efficient Tagless directory and

11% more power-efficient and seven times more area-

efficient than the power-efficient Sparse directory.

REFERENCES

[1] M.E. Acacio, J. González, J.M. García, J. Duato, “A
New Scalable Directory Architecture for Large-Scale
Multiprocessors,” HPCA '01: 7th International Sympo-
sium on High-Performance Computer Architecture,
Washington, DC, 2001.

[2] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache Per-
formance of Operating System and Multiprogramming
Workloads,” ACM Transactions on Computer Systems,
vol. 6, 1988.

[3] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz,
“An Evaluation of Directory Schemes for Cache Coher-
ence,” ISCA '88: 15th Annual International Symposium
on Computer Architecture, Los Alamitos, CA, 1988.

[4] A. Agarwal and S.D. Pudar, “Column-Associative
Caches: A Technique for Reducing the Miss Rate of
Direct-Mapped Caches,” Massachusetts Institute of
Technology TR, 1992.

[5] Y. Arbitman, M. Naor, and G. Segev, “De-amortized
Cuckoo Hashing: Provable Worst-Case Performance
and Experimental Results,” ICALP '09: 36th Interna-
tional Colloquium on Automata, Languages and
Programming, Berlin, Germany, 2009.

[6] J. Baer and W. Wang, “On the inclusion properties for
multi-level cache hierarchies,” ISCA '88: 15th Annual
International Symposium on Computer Architecture,
Los Alamitos, CA, 1988.

[7] L.A. Barroso, K. Gharachorloo, R. McNamara, A.
Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B.
Verghese, “Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing,” ISCA '00: 27th Annual
International Symposium on Computer Architecture,
New York, NY, 2000.

[8] A.Z. Broder and A.R. Karlin, “Multilevel Adaptive
Hashing,” SODA '90: First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, Philadelphia, PA, 1990.

[9] L.M. Censier and P. Feautrier, “A New Solution to
Coherence Problems in Mulicache Systems,” IEEE
Transactions on Computers, vol. 27, 1978.

[10] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “Limit-
LESS Directories: A Scalable Cache Coherence
Scheme,” ASPLOS-IV: 4th International Conference on
Architectural Support for Programming Languages and
OS, New York, NY, 1991.

[11] G. Chen, “SLiD — A Cost-Effective and Scalable Lim-
ited-Directory Scheme for Cache Coherence,” PARLE
'93: Parallel Architectures and Languages Europe, Hei-
delberg, Germany, 1993.

[12] S. Cho, J.R. Martin, R. Xu, M.H. Hammoud, and R.
Melhem, “CA-RAM: A High-Performance Memory
Substrate for Search-Intensive Applications,” Interna-
tional Symposium on Performance Analysis of Systems
and Software, Los Alamitos, CA, 2007.

[13] J.H. Choi and K.H. Park, “Segment Directory Enhanc-
ing the Limited Directory Cache Coherence Schemes,”
IPPS '99/SPDP '99: 13th International Symposium on
Parallel Processing and the 10th Symposium on Parallel
and Distributed Processing, Washington, DC, 1999.

[14] C. Fensch and M. Cintra, “An OS-Based Alternative to
Full Hardware Coherence on Tiled CMPs,” HPCA '08:
14th International Symposium on High Performance
Computer Architecture, Salt Lake City, UT, 2008.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 856 Copyright @ 2021 Authors

[15] D. Fotakis, R. Pagh, P. Sanders, and P.G. Spirakis,
“Space Efficient Hash Tables with Worst Case Constant
Access Time,” STACS '03: 20th Annual Symposium on
Theoretical Aspects of Computer Science, London, UK,
2003.

[16] R. Golla, “Niagara2: A Highly Threaded Server-on-a-
Chip,” Fall Microprocessor Forum 2006, San Jose, CA,
2006.

[17] A. Gupta, W. Weber, and T. Mowry, “Reducing Mem-
ory and Traffic Requirements for Scalable Directory-
Based Cache Coherence Schemes,” ICPP '90: 1990
International Conference on Parallel Processing,
Urbana-Champaign, IL, 1990.

[18] E. E. Hagersten, M. D. Hill, “Skewed finite hashing
function” U.S. Patent 6308246, filed September 4, 1998.

[19] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Aila-
maki, “Reactive NUCA: Near-Optimal Block Placement
and Replication in Distributed Caches,” ISCA '09: 36th
Annual International Symposium on Computer Archi-
tecture, New York, NY, 2009.

[20] D.V. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi,
“Scalable Coherent Interface,” Computer, vol. 23, 1990.

[21] A. Kirsch and M. Mitzenmacher, “The Power of One
Move: Hashing Schemes for Hardware,” INFOCOM
'08: 27th International Conference on Computer Com-
munications, Cambridge, MA, 2008.

[22] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More
Robust Hashing: Cuckoo Hashing with a Stash,” ESA
'08: 16th Annual European symposium on Algorithms,
Berlin, Germany, 2008.

[23] B.W. O'Krafka and A.R. Newton, “An Empirical Evalu-
ation of Two Memory-Efficient Directory Methods,”
ISCA '90: 17th Annual International Symposium on
Computer Architecture, New York, NY, 1990.

[24] J. Laudon, D. Lenoski, “The SGI Origin: a ccNUMA
highly scalable server,” ISCA '97: 24th Annual Interna-
tional Symposium on Computer Architecture, New
York, NY, 1997.

[25] P. Mahoney, Y. Savaria, G. Bois, and P. Plante, “Parallel
Hashing Memories: an Alternative to Content Address-
able Memories,” NEWCAS '05: The 3rd International
IEEE-NEWCAS Conference, 2005.

[26] P. Mahoney, Y. Savaria, G. Bois, and P. Plante, “Perfor-
mance Characterization for the Implementation of
Content Addressable Memories Based on Parallel Hash-
ing Memories,” Transactions on High-Performance
Embedded Architectures and Compilers II, 2009.

[27] M.M. Martin and M.D. Hill, “Token Coherence: Decou-
pling Performance and Correctness,” ISCA '03: 30th
Annual International Symposium on Computer Archi-
tecture, New York, NY, 2003.

[28] P. Michaud, “A Statistical Model of Skewed-Associativ-
ity,” ISPASS '03: 2003 International Symposium on
Performance Analysis of Systems and Software, Wash-
ington, DC, 2003.

[29] R. Pagh and F.F. Rodler, “Cuckoo Hashing,” Algo-
rithms, vol. 51, 2004.

[30] R. Panigrahy, “Efficient Hashing with Lookups in two
Memory Accesses,” SODA '05: 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, Philadel-
phia, PA, 2004.

[31] S. Patel, S. Phillips, and A. Strong, “Sun's Next-Genera-
tion Multi-threaded Processor - Rainbow Falls,” Hot
Chips 21, Stanford, CA, 2009.

[32] A. Ros, M.E. Acacio, and J.M. Garcia, “DiCo-CMP:
Efficient Cache Coherency in Tiled CMP Architec-
tures,” IPDPS '08: 22nd International Parallel &
Distributed Processing Symposium, Miami, FL, 2008.

[33] A. Seznec, “A Case for Two-Way Skewed-Associative
Caches,” ISCA '93: 20th Annual International Sympo-
sium on Computer Architecture, New York, NY, 1993.

[34] A. Seznec and F. Bodin, “Skewed-associative Caches,”
PARLE '93: 5th International Conference on Parallel
Architectures and Languages Europe, London, UK,
1993.

[35] R. Singhal, “Inside Intel® Next Generation Nehalem
Microarchitecture,” Hot Chips 20, Stanford, CA, 2008.

[36] R. Simoni, “Cache Coherence Directories for Scalable
Multiprocessors,” Stanford University TR, Stanford,
CA, 1992.

[37] M. Spjuth, M. Karlsson, and E. Hagersten, “The Elbow
Cache: A Power-Efficient Alternative to Highly Asso-
ciative Caches,” Technical Report, 2003.

[38] M. Spjuth, M. Karlsson, and E. Hagersten, “Skewed
Caches from a Low-Power Perspective,” CF '05: 2nd
Conference on Computing Frontiers, New York, NY,
2005.

[39] SUN Microsystems, “OpenSPARC T2 Processor Mega-
cell Specification,” 2007.

[40] N. Topham and A. González, “Randomized Cache
Placement for Eliminating Conflicts,” IEEE Transac-
tions on Computers, vol. 48, 1999.

[41] H. Vandierendonck, “Application-Specific Reconfigu-
rable XOR-Indexing to Eliminate Cache Conflict
Misses,” DATE '06: Conference on Design, Automation
and Test in Europe, Belgium, 2006.

[42] T.F. Wenisch, R.E. Wunderlich, M. Ferdman, A. Aila-
maki, B. Falsafi, and J.C. Hoe, “SimFlex: Statistical
Sampling of Computer System Simulation,” IEEE
Micro, vol. 26, 2006.

[43] J. Zebchuk, V. Srinivasan, M.K. Qureshi, and A.
Moshovos, “A Tagless Coherence Directory,” MICRO
'09: 2009 42st International Symposium on Microarchi-
tecture, New York, NY, 2009.

[44] D.A. Wallach, “PHD: A Hierarchical Cache Coherent
Protocol,” Massachusetts Institute of Technology Mas-
ter’s Thesis, Cambridge, MA, 1992.

[45] S.L. Guo, H.X. Wang, Y.B. Xue, C.M. Li, and D.S.
Wang, “Hierarchical Cache Directory for CMP,” Jour-
nal of Computer Science and Technology, 25(2), 2010.

