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Abstract 

Scalable on-chip coherence techniques are now 
more important than ever because of rising core 
counts. The rise in on-chip cores makes the energy and 
space requirements of scaling the directories more 
apparent. Due to their high associative structure 
requirements and correspondingly high power 
consumption, duplicate-tag based directories are not 
scaleable. By lowering directory associativity, sparse 
directories are able to overcome the power barrier. 
But, in order to prevent high invalidation rates, more 
storage space must be provided. . 

We suggest the Cuckoo directory, a scalable 
distributed directory that uses little power and space. 
Without the energy costs of extensive associative 
lookups and without gross capacity over-provisioning, 
the cuckoo directory scales to high core counts. The 
Cuckoo directory organisation eliminates 
invalidations while being up to four times more power-
efficient than the Duplicate-tag directory, 24% more 
power-efficient, and up to seven times more area-
efficient than the Sparse directory organisation, 
according to simulation on a 16-core CMP with 
commercial server and scientific workloads. 
According to analytical forecasts, the Cuckoo direct- 
ry effectively scales to at least 1024 cores while 
maintaining its energy and area advantages.  

1. Introduction 

Manufacturing technology innovation has led to 

rapidly growing on-chip core counts in today’s proces- 

sors, highlighting the need for a scalable on-chip cache 

coherence mechanism. Adapting prior work from 

multi-chip systems [17], cache coherence between pri- 

vate caches has been achieved on CMPs with a handful 

of cores. However, quickly growing core counts have 

exposed the energy and area costs of scaling the exist- 

ing coherence mechanisms, requiring innovation to 

achieve power-efficient cache coherence with reason- 

able area budgets in future CMPs [31,43]. 

There exist two broad classes of CMP coherence 

directories. Duplicate-Tag-based schemes in use by 

several designs [7,16,43] are area-efficient, but require 

 

 
highly associative structures whose power dissipation 

precludes scaling to large core counts. Conversely, 

Sparse directory schemes [17] are power-efficient, but 

incur considerable area cost in over-provisioning the 

directory capacity to avoid conflicts in low-associativ- 

ity directory structures. 

Sparse directory organizations using compressed 

representations of sharer bit vectors are myriad 

[1,3,10,11,13,17,23,36]. Hierarchical directory organi- 

zations [44,45] can enable area-efficient uncompressed 

vector storage through multiple serialized lookups. 

However, these techniques address only the size of the 

sharer vectors, not the number of vectors the directory 

must store. Sparse directories experience set conflicts, 

forcing evictions of cached blocks that cannot be 

simultaneously tracked by the directory. To reduce 

conflict frequency and avoid performance loss, exist- 

ing Sparse directory implementations over-provision 

directory capacity [17,35]. Although compressed and 

hierarchical designs are theoretically scalable (power 

and area do not grow significantly with core count), 

the practical area cost of Sparse directories is excessive 

due to capacity over-provisioning. 

In this paper, we present the Cuckoo directory, a 

scalable distributed directory with nearly constant 

power and area utilization per core, regardless of core 

count. The Cuckoo organization avoids set conflicts of 

traditional Sparse directories, eliminating performance 

loss due to forced invalidations without significantly 

over-provisioning the directory capacity, achieving 

scalable power- and area-efficient CMP coherence. 

To avoid set conflicts, the Cuckoo directory uses a 

N-ary Cuckoo hash table [15,29], a small associativity 

(3- or 4-way) structure whose address bits are passed 

through different hash functions, one for each way. 

The physical implementation of the Cuckoo directory 

closely resembles a set-associative structure, having 

nearly identical energy and latency per lookup. How- 

ever, unlike the set-associative organization that 

always picks a replacement victim from a small set of 
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conflicting entries, the Cuckoo directory displaces vic- 

tims to alternate non-conflicting ways, practically 

never resorting to eviction. 

We perform full-system simulation of CMPs run- 

ning server and scientific workloads to evaluate 

coherence directory organizations based on commer- 

cial products, industry prototypes, and state-of-the-art 

research proposals. We use simulation and analytical 

projections to demonstrate that: 
• The Cuckoo directory is a practical power- and area- 

 

 

 

 

 

 

coherence mechanism. However, even when the L2 is 

shared, coherence between the private L1 caches must 

scalable directory organization, offering up to 80x 

energy-efficiency over the leading area-efficient 

Tagless [43] design and more than 7x area-efficiency 

over the leading power-efficient Sparse [17] design 

at 1024 cores. 

• Even at 16 cores, the Cuckoo directory is up to 16x 

more energy-efficient than the traditional Duplicate- 

Tag directory and up to 6x more area-efficient than 

the Sparse organization. 

The rest of this paper is organized as follows. 

Section 2 provides background on CMP coherence and 

Section 3 explains the scalability of prior directory 

organizations. Section 4 presents the Cuckoo directory 

design and hardware. Section 5 provides a detailed 

evaluation of the Cuckoo directory. We present related 

work in Section 6 and conclude in Section 7. 

2. CMP Coherence Background 

Research literature and industry products explore 

many different CMP cache hierarchies. The private 

organization shown in Figure 1(a) has direct connec- 

tions between private L1 and private L2 caches. 

Coherence must be explicitly enforced, invalidating all 

remotely cached copies of a block on a write and guar- 

anteeing that cache misses are satisfied from a peer L2 

if that L2 has a dirty copy of the accessed block. The 

shared organization shown in Figure 1(b) has small 

private L1 caches and a large shared L2 cache. The 

address-interleaved shared L2 cache has a unique loca- 

tion for each address, eliminating the need for a 

be explicitly maintained. While shared and private 

organizations form the two extremes, actual designs 

may mix or extend these organizations (e.g., with soft- 

ware controlled private/shared hierarchies [19] or 

three-level hierarchies with private L1 and private L2 

caches backed by a shared L3 [35]). 

Coherence directories track the privately cached 

addresses in address-interleaved physically distributed 

directories. To achieve coherence, all accesses from 

the private caches interrogate the directory, which 

sends coherence requests to the sharers as needed. 

Figure 2 shows an example directory operation of a 

shared-cache CMP. Statically interleaved home loca- 

tions determine which L2 bank and directory slice are 

responsible for each address. When a write request for 

block a arrives at its home location (bank n in 

Figure 2), the L1-directory slice is consulted in parallel 

with the L2 tags. If address a is found in the directory, 

invalidation requests are sent to all sharers. The pri- 

vate-cache organization undergoes a similar procedure, 

but the local private L2 cache is consulted first and a 

write request is sent to the home directory only in the 

case of a miss in the L2 cache. 

3. CMP Directory Scalability 

As the number of cores grows, the aggregate 

directory must increase commensurately. For each pri- 

vate cache, a directory slice is added to track the 

additional private cache’s blocks. Moreover, the core 

count should not affect the organization of each direc- 
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FIGURE 1. CMP organizations. (a) the interconnect connects 
independent private hierarchies (b) the interconnect is used 
to access an address-interleaved shared cache 
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FIGURE 3. CMP directory organizations. 
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tory slice. If the associativity of each directory slice 

grows to accommodate more cores, the aggregate 

directory power dissipation grows quadratically. Simi- 
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larly, if the storage of each directory slice grows to 

accommodate more cores, the aggregate directory area 

grows quadratically. 

The operation of two basic CMP directory organi- 

zations is presented in Figure 3. Four private 2-way 

set-associative caches are shown with the four distrib- 

uted slices of the Duplicate-Tag [7] and Sparse [17] 

directory organizations. The directory slices are 

address-interleaved and distributed on chip, each slice 

tracking blocks in a subset of the private-cache sets. 

 Duplicate-Tag Scalability 

The Duplicate-Tag organization mirrors the orga- 

nization of the private-cache tags, ensuring that there is 

always sufficient space in the directory to track all 

cached blocks. To construct an invalidation vector, a 

lookup in the Duplicate-Tag directory compares all 

stored tags in the directory set against the lookup tag, 

finding the sharers wherever the tags match. 

The Duplicate-Tag associativity must equal the 

product of the cache associativity and the number of 

caches [6], resulting in designs with large (e.g., 332-

wide [39]) associative directories. The Duplicate- Tag 

directory power dissipation for designs with 4- and 8-

way private L1 caches [35] or 16-way private L2 

caches is prohibitive even for today’s CMP designs 

with a few cores. 

Figure 4 presents the per-core area and energy 

scalability of directory designs for a system with 16-

way private L2 caches. The aggregate chip energy and 

area utilization of the directory are the products of 

FIGURE 4. Area (top) and energy (bottom) scalability of 
various coherence directory organizations. 

 
the values shown in Figure 4 and the core count. An 

increasing core count not only adds new directory 

slices to the Duplicate-Tag organization, but also lin- 

early increases the associativity of each directory slice, 

resulting in non-scalable quadratic growth of the 

aggregate energy consumption of all directory slices. 

 Sparse Directory Scalability 

The Sparse organization reduces directory asso- 

ciativity by using the low-order tag bits to extend the 

index of the directory storage, reducing the associativ- 

ity by increasing the number of directory sets. Because 

this operation loses the one-to-one correspondence of 

directory entries to cache frames, each directory entry 

is extended with explicit sharer information. 

Unfortunately, the non-uniform distribution of 

entries across directory sets in the Sparse organization 

incurs set conflicts, forcing invalidation of cached 

blocks tracked by the conflicting directory entries and 

reducing system performance. An example of a con- 

flict in set a is shown in Figure 3. If blocks a3 and a4 

are tracked by the directory and block a2 is accessed, 

one of a3 or a4 must be evicted from the private 

caches because the directory organization cannot 

simultaneously track these three blocks. Reducing the 

conflict frequency requires over-provisioning the num- 

ber of directory sets and associativity [17]. At the 

limit, the in-cache directory organization extends an 
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FIGURE 5. Cuckoo hash operation. A conflicts with B and D, 
B conflicts with A and C. Inserting A displaces B, triggering a 
cascade of insertions until C is placed into a vacant location. 

C 

A 

D A 
inclusive shared cache’s tags with the sharer informa- 

tion, implicitly saving directory tag storage, but 

grossly over-provisioning the sharer storage [35] 

because the number of tags in the lower-level cache 

greatly exceeds the number of tracked blocks in the 

private caches. 

The traditional Sparse directory uses bit vectors to 

track sharers [9]. The bit vectors stored in each direc- 

tory entry must grow linearly with core count, in turn 

leading to a quadratic growth in the aggregate direc- 

tory area as core counts increase. Although energy- 

efficient, both the traditional Sparse and the in-cache 

designs are impractical for large core counts. At 256 

cores, the aggregate vector-based L1 directory could 

consume more than 256MB of on-chip storage, 

exceeding the capacity of the L2 caches [43]. 

 Imprecise and Hierarchical Directories 

Inexact and hierarchical representations of sharer 

vectors enable the reduction of directory storage and 

energy overheads at the cost of implementation com- 

plexity. For example, the Tagless directory [43] 

reduces the number of bits accessed for each directory 

operation by encoding a super-set of sharers in a 

Duplicate-Tag-like organization while Coarse-grained 

and inexact conservative encodings [3,11,13,17,23] 

reduce storage area in a Sparse organization. 

Figure 4 shows that the Tagless directory is 

extremely area-efficient up to 1024 cores. However, 

this scalability comes at the cost of significant com- 

plexity. More importantly, like the traditional 

Duplicate-Tag organization, the bit-widths of either 

each read or each update operation of the Tagless 

directory increase with the number of cores. Therefore, 

the slope of the energy dissipation line for the Tagless 

directory in Figure 4 is nearly identical to the Dupli- 

cate-Tag organization. Although the energy for each 

operation in the Tagless directory is lower than in the 

Duplicate-Tag organization by a constant factor, the 

Tagless directory’s energy dissipation still grows qua- 

dratically with core count, limiting its scalability. 

Additionally, hierarchical organizations reduce 

directory storage by using coarse bit-vectors at a pri- 

mary location and exact sub-bit-vectors at secondary 

locations [44,45]. Hierarchical techniques save stor- 

age by breaking up large bit vectors and allocating 

only the necessary second-level sub-bit-vectors, at the 

cost of additional storage to replicate the tags multiple 

times, once for each allocated second-level entry. 

Figure 4 demonstrates the storage scalability of 

the Sparse Coarse [17] design that precisely stores 

sharers in the available bits (2*log(#caches) bits) and 

falls back to a coarse vector representation in the case 

 

   

 

 

 

 
of overflow [24], and Sparse Hierarchical [44,45], a 2-

level hierarchical directory organization. Although 

theoretically scalable, these schemes address only the 

vector storage inside each entry and not the total num- 

ber of directory entries. Set conflicts in the directories 

require over-provisioning the number of directory sets 

to avoid frequent invalidations, resulting in Sparse 

directories that can rival the L2 cache size. 

4. Cuckoo Directory Design 

We construct the Cuckoo directory to overcome 

the power and area scalability limitations of prior tech- 

niques. To meet these goals, the Cuckoo directory 

associativity and total storage per directory slice 

remain nearly constant, regardless of the core count. 

The Cuckoo directory relies on the observation 

that low-associativity directory tag storage suffers pri- 

marily from transitivity of set conflicts. In traditional 

cache or directory indexing, if block A conflicts with B 

and block B conflicts with C, then A must also conflict 

with C. In a 2-way associative structure, there are two 

locations where A, B, and C can be stored. If B an C 

are present, inserting A must replace either B or C. 

 Cuckoo Hashing 

Cuckoo hashing [29] can break transitive con- 

flicts. The Cuckoo hash uses two independent (direct- 

mapped) tables, indexed through two different hash 

functions. A new entry is always inserted in one of the 

two tables, potentially displacing a valid entry. The 

insertion procedure continues with each displaced 

entry, alternating probing of the tables until the dis- 

placed entry is stored in a vacant position without 

displacing another entry. 

Figure 5 demonstrates the Cuckoo hash operation. 

Block A conflicts with B and D, and block B conflicts 

with A and C. In step 1, A is inserted into one of its 

two possible locations, displacing B. In step 2, because 

B was previously displaced, B is inserted into its alter- 

nate location (where it conflicts with C). In step 3, C is 

inserted into a vacant alternate location (where it does 

not conflict with A), ending the insertion process. 
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Buffers 

hash1 hash2 hash3 hash4 

FIGURE 6. 4-way Cuckoo directory hardware. Each direct- 
mapped way is indexed through a different hash function. 

rs Buffe change Ex 
TABLE 1. System parameters. 

CMP Size 16 cores 

Processing Cores UltraSPARC III ISA 

L1 Caches split I/D, 64KB, 2 ways 

64-byte blocks, write-back 

L2 NUCA Cache 16-core CMP: 1MB per core, 16 ways 

64-byte blocks 

Main Memory 3 GB memory, 8KB pages 

48-bit address space 

 
 
 
 
 
 
 
 
 

 
The Cuckoo hash lookup operation is identical to 

the skewed-associative cache [34]. However, the key 

difference between the Cuckoo hash and the skewed 

organization is the insertion procedure. Whereas the 

skewed-associative cache selects a victim from one of 

the ways, the Cuckoo organization uses displacement 

to iteratively move entries until a non-conflicting loca- 

tion is found. Skewed associativity reduces conflict 

frequency, roughly doubling the perceived associativ- 

ity of the underlying structure, while the Cuckoo hash 

provides nearly the equivalent of a fully-associative 

the private caches that correspond to the evicted entry. 

To maintain a uniform distribution of entries across the 

ways, each insertion starts at the way at which the pre- 

vious insertion stopped. 

Upgrade and eviction requests search the directory 

and update the corresponding entries. For read and 

write misses from private caches, the directory is 

searched for a matching tag. If an entry is found, it is 

updated with a new sharer, and, if necessary, an invali- 

dation vector based on the entry is produced. If the 

accessed tag is not found, a new entry is inserted. 

In the shared-cache configurations, the directory 

lookup is performed in parallel with the L2 lookup. 

Because the L2 cache is a larger and slower structure, 

the latency of the directory lookup is not on the critical 

path and has absolutely no impact on performance. For 

shared-configuration directory updates and for all 

requests in the private-cache configurations, multiple 

insertion attempts may appear on the critical path. 

However, in practice, the frequency of long insertions 

is too low (see Figure 10) to have a measurable impact 

on performance. Furthermore, long insertions can be 

immediately prematurely terminated when a new 

structure with the same lookup energy and latency, 

albeit with a more complex insertion procedure. 

 Hardware Implementation 

The Cuckoo directory is an implementation of the 

d-ary Cuckoo hash [15] that extends the Cuckoo hash 

to more than two tables. Figure 6 depicts a 4-way 

Cuckoo directory. To find an element in the Cuckoo 

directory, all ways are looked up in parallel using 

hashed values of the searched address. Inserting an 

entry into the directory requires a lookup followed by a 

write of an entry in one of the ways. If the write 

replaces a valid directory entry, the insertion procedure 

is repeated for the victim entry, iterating until an inser- 

tion finds a vacant location. 

We limit the maximum number of insertion 

attempts to avoid infinite loops. A counter tracks how 

many times an insertion procedure passes way 0. If the 

counter overflows, the hardware terminates the proce- 

dure and discards the most recently displaced entry, 

maintaining correctness by invalidating the blocks in 

request arrives at the directory, eliminating any poten- 
tial effect on the lookup latency of the new request. 

5. Evaluation 

We analyze coherence directory access patterns 

using full-system simulation executing unmodified 

applications and operating systems in FLEXUS [42]. 

FLEXUS extends the Virtutech Simics functional simu- 

lator with models of processor tiles with cores, NUCA 

cache, on-chip coherence protocol controllers, and on- 

chip interconnect. We simulate a tiled CMP where the 

lowest-level cache is the L2 cache. We summarize our 

tiled architecture parameters in Table 1. 

We simulate systems running Solaris 8 and exe- 

cuting the workloads listed in Table 2. We include two 

scientific workloads and a range of server workloads 

from competing vendors, including online transaction 

processing, decision support system, and web server 

benchmarks. We start simulation from warm system 

checkpoints. For server workloads, we measure 100 

million instructions after warming the micro-architec- 
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tural state for 100 million instructions. For scientific 

workloads, we warm the micro-architectural state for 

four iterations and measure the 5th iteration. 

We present results for two system configurations 

presented in Section 2. The Shared-L2 configuration 

uses a coherence directory that tracks sharers in private 

L1 caches. The Private-L2 configuration tracks sharers 

in larger private L2 caches. The Private-L2 results are 

also representative of a system with a 3-level cache 

hierarchy using two private levels and a shared LLC. 

 Cuckoo Hash Characteristics 

Figure 7 demonstrates the fundamental Cuckoo 

directory behavior by presenting an analysis of the d-

ary Cuckoo hashing technique as a function of occu- 

pancy. To avoid bias from hash function selection, we 

use strong cryptographic functions to index the ways. 

The left graph shows the average number of insertion 

attempts until a successful insertion without a victim. 

The right graph shows the frequency of not finding a 

vacant location for a victim entry in 32 insertion 

attempts. Results are presented as a function of occu- 

pancy, as the curve is affected only by the occupancy 

and is completely independent of the total capacity of 

the structure. 

In case of low occupancy, a vacant location is typ- 

ically found on the initial lookup. Below 50% 

occupancy, insertions into 3-ary and wider Cuckoo 

hash tables either succeed immediately or require only 

a single displacement. Furthermore, for up to 65% 

occupancy, 3-ary and wider organizations do not expe- 

rience insertion failures. 

Based on the results of Figure 7, we conclude that 

a Cuckoo directory with occupancy 50% or lower 

should never invalidate cache blocks due to directory 

conflicts, successfully inserting all directory entries, on 

average, after only two attempts. Directory occupancy 

below 50% is achieved trivially through sizing of the 

FIGURE 7. Cuckoo hash characteristics. Average insertion 
attempts and insertion failure rate for 100,000 random 
values, plotted as a function of occupancy. 

Cuckoo directory tables. The maximum number of dis- 

tinct tags tracked by a directory slice is equal to the 

number of frames in a private cache. Occupancy below 

50% is therefore always guaranteed by a 2x over-pro- 

visioning of the Cuckoo directory capacity. 

 Cuckoo Directory Under-Provisioning 

In practice, presence of shared instruction and 

shared data blocks limits the number of distinct tags in 

the aggregate private caches, leading to a natural 

reduction in the directory occupancy and enabling the 

Cuckoo directory to function without 2x over-provi- 

sioned capacity. We present the average directory 

occupancy of our workloads in Figure 8. As expected, 

we observe reduced directory occupancy, indicating 

that over-provisioning is not needed for the Shared-L2 

configuration. For the Private-L2 configuration, deci- 

sion support queries and the scientific workloads are 

dominated by large private footprints, resulting in pre- 

dominantly unique blocks across all private caches, 

and calling for a slight Cuckoo directory over-provi- 

sioning to achieve the desired occupancy. The ocean 

workload demonstrates the extreme case, having 

nearly 100% unique private blocks in all caches. 
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FIGURE 8. Average directory occupancy. 
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OLTP – Online Transaction Processing (TPC-C v3.0) 

DB2 IBM DB2 v8 ESE, 100 warehouses (10 GB), 

64 clients, 2 GB buffer pool 

Oracle Oracle 10g Server, 100 warehouses (10 GB), 

16 clients, 1.4 GB SGA 

Web Server (SPECweb99) 

Apache Apache HTTP Server v2.0, 

16K connections, fastCGI, worker threading 

Zeus Zeus Web Server v4.3, 16K connections, fastCGI 

DSS – Decision Support Systems (TPC-H) 

Qry 2,16,17 IBM DB2 v8 ESE, 480 MB buffer pool, 1 GB database 

Scientific 

em3d 768K nodes, degree 2, span 5, 15% remote 

ocean 1026x1026 grid, 9600s relaxations, 20K res., err 1e-7 
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FIGURE 9. Cuckoo directory insertion attempts and failure 
rates for Shared-L2 and Private-L2 configurations. Cuckoo 
directory sizes are expressed as (number of ways) x (number 
of sets). Parenthesized values indicate provisioning factor. 

We use the average number of insertion attempts 

and forced invalidation rates to determine the mini- 

mum Cuckoo directory size. Figure 9 evaluates a wide 

range of Cuckoo directory sizes and organizations, 

ranging from under-provisioned to over-provisioned. 

In addition to an organization’s way and set counts, in 

parenthesis, we indicate the provisioning factor. Fac- 

tor “1x” indicates a capacity equal to the worst-case 

number of blocks that the directory must simultane- 

ously track (equal to the number of cache frames that 

map to the directory slice). Greater factors indicate 

capacity over-provisioning, while lower values indi- 

cate under-provisioning. 

We allow up to 32 insertion attempts to ensure ter- 

mination in the unlikely event of a loop; in such cases, 

we count 32 attempts toward the average. A lookup 

always precedes an insertion to confirm that a new 

entry should be allocated rather than adding a sharer to 

an existing entry. The lookup implicitly reveals if an 

empty position, eligible to hold the searched entry, 

exists in any of the directory ways. If an empty posi- 

tion is found during the lookup, insertion succeeds on 

the first attempt, contributing one toward the average. 

Addition of sharers to already existing directory entries 

does not affect the reported average number of 

attempts. Dirty and clean evictions from the private 

caches are tracked by the directory, with the directory 

entry becoming empty and eligible for reuse at the 

time the last sharer evicts the block. 

Figure 9 indicates that under-provisioning direc- 

tory capacity (factor less than 1x) results in an 

exponential increase in insertion attempts and forced 

invalidations due to failed insertions. However, as 

expected from Figure 8, the Shared-L2 configuration 

does not require over-provisioning the capacity to 

achieve a small average number of insertion attempts 

FIGURE 10. Cuckoo directory average insertion attempts. 

and near-zero invalidation rates. We find that a small 

1.5x capacity over-provisioning is sufficient for the 

Private-L2 configuration. 

 Worst-case Cuckoo Insertion Attempts 

The Cuckoo directory capacity in Section 5.2 is 

selected based on the average behavior across a wide 

range of workloads. To confirm general applicability, 

Figure 10 presents the average insertion attempts for 

all workloads using the selected 4x512 and 3x8192 

Cuckoo directory organizations for the Shared-L2 and 

Private-L2 configurations, respectively. Despite the 

small directory size, the average number of insertion 

attempts is typically less than two, indicating that a 

vacant location is usually found at the time of the ini- 

tial lookup. Larger average insertion attempts are 

observed in workloads with more private blocks. 

Figure 11 presents the insertion attempts for the 

benchmarks with the longest-tail distribution. For the 

Shared-L2 configuration, OLTP Oracle exhibits the 

worst behavior; for the Private-L2 configuration, 

ocean exhibits the worst behavior. The distribution of 
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FIGURE 11. Worst-case insertion attempt distributions. 
Values at 1 insertion attempt (85% for Oracle, 73% for 
ocean) are not shown to enhance clarity. 
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FIGURE 12. Directory invalidation rates with Shared-L2 (left) and Private-L2 (right) configurations. 
 

insertion attempts confirms expectations: each inser- 

tion attempt increases the probability of finding a 

vacant location, exponentially reducing the probability 

of performing a subsequent attempt. Even for the 

worst-case benchmarks, the probability of reaching 32 

insertion attempts is nearly zero. Additionally, lack of 

a peak at 32 indicates that longer insertions and loops 

are practically non-existent. 

 Invalidation-Rate Comparison 

We compare the forced-invalidation rates of the 

Cuckoo directory to competing directory organiza- 

tions in Figure 12. We present the invalidation rate as a 

fraction of directory entry insertions for (a) an 8-way 

Sparse directory with two times capacity over-provi- 

sioning (Sparse 2x), (b) an 8-way Sparse directory 

with eight times over-provisioning (Sparse 8x), (c) a 

4-way skewed-associative directory (Skewed 2x) 

adapted from the skewed-associative cache organiza- 

tion [33], and (d) the 3- and 4-way Cuckoo directory 

organizations selected in Section 5.2. The Sparse 2x 

directory has the same capacity as the skewed-associa- 

tive organization, both having two times greater 

capacity than the Cuckoo 1x directory. 

Our results indicate that the Sparse 2x directory 

incurs a significant number of set conflicts with nearly 

all workloads in both Shared-L2 and Private-L2 sys- 

tems. Compared to the Sparse 2x directory, the 4-way 

Skewed 2x organization generally reduces the fre- 

quency of invalidations in highly contended directory 

sets for server workloads, but does not reduce invalida- 

tions for scientific workloads that have a more uniform 

distribution of accesses. The 8-way Sparse 8x direc- 

tory is large enough to provide reasonable invalidation 

rates on average, however, the forced-invalidation 

rates remain significant for many workloads. Finally, 

we note that the Cuckoo directory — having less 

capacity and lower associativity compared to the com- 

peting designs — experiences near-zero invalidations 

with all workloads. Robustness of the Cuckoo design 

is highlighted with the ocean workload that has nearly 

100% distinct blocks in the Private-L2 system, but 

experiences invalidations only on 0.08% of directory 

updates with only 1.5x Cuckoo directory. 

 Hash Function Selection 

We evaluate the Cuckoo directory implementa- 

tion using the skewing hash functions from Seznec and 

Bodin [34]. We repeated the experiments with crypto- 

graphic hash functions and observed no measurable 

benefit for the Cuckoo 2x directory. For more aggres- 

sive Cuckoo directory designs with lower provisioning 

factors, we observed marginally lower average inser- 

tion attempts. Additionally, in the case of ocean, 

stronger hash functions eliminate the forced invalida- 

tions observed in the Private-L2 configuration at 1.5x 

over-provisioning. However, fewer insertion attempts 

and reduced invalidation rates result in minimal energy 

improvements and are offset by the complex hardware 

implementation of the hash functions, compared to the 

trivial implementation of the skewing hash functions 

that require only several levels of logic. 

Strong hash functions offered the most benefit in 

situations where the directory capacity was severely 

under-provisioned. In all configurations that exhibit 

high forced-invalidation rates, the stronger hash func- 

tions offer multiple-order-of-magnitude reduction in 

invalidation rates compared to the skewing functions. 

However, these needlessly over-constrained directory 

designs are impractical because they gain marginal 

area advantages at a huge power penalty due to many 

unsuccessful insertion attempts. 
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FIGURE 13. Power and area comparison of directory organizations. Directory energy consumption is plotted for varying core 
counts. Directory for the Shared-L2 cache configuration is depicted on top, Private-L2 configuration is depicted on the bottom. 

 Power and Area, Trends and Comparison 

Figure 13 presents the per-core energy dissipation 

and area utilization of the leading directory organiza- 

tions. We compute the energy dissipation based on the 

number and size of the read and update operations on 

the directory storage structures, scaling the energy of 

each operation by its frequency as determined from our 

workload suite.1 We present directory energy dissipa- 

tion relative to the energy of a 16-way set-associative 

L2 tag lookup. Directory area is presented relative to 

the area of the L2 data array (1MB). 

The behavior trends of all directory organizations 

are similar across the Shared-L2 and Private-L2 con- 

figurations. Even for 16-core systems, the Duplicate- 

Tag organization is extremely energy inefficient, 

despite consuming minimal chip area. At low core 

counts, the small storage requirements of the Tagless 

directory lead to energy savings compared to most 

other directory organizations. The Tagless organization 
 

 

1. The following event frequencies were used: Insert new tag into 

the directory: 23.5%, add sharer to existing entry: 26.9%, 

remove sharer from existing entry: 24.9%, remove tag from the 

directory: 23.5%, invalidate all sharers: 1.2%. 

remains extremely area efficient to 1024 cores and 

beyond. However, like in the Duplicate-Tag organiza- 

tion, the number of bits read and written for each 

directory access in the Tagless directory scales lin- 

early with core count, resulting in quadratic growth in 

chip energy dissipation for the aggregate of all Tagless 

directory slices. Despite being extremely area-effi- 

cient, energy dissipation of the Tagless directory 

becomes prohibitive beyond 128 cores. 

Traditional Sparse directories storing full bit vec- 

tors for each tag suffer from both energy and area 

inefficiency. As core counts increase, the vector sizes 

increase linearly, dominating the energy and area of the 

directory and making the directory organization irrele- 

vant. Linear per-core power and area increases render 

these designs unreasonable for large core counts. 

The inclusive in-cache directory is not applicable 

to the Private-L2 configuration, as inclusion of private 

L2s in other private L2s is not possible. However, the 

inclusive in-cache directory for the Shared-L2 configu- 

rations can store full sharer bit vectors and leverage the 

L2 cache to avoid tag storage and tag lookup energy. 

In-cache directory designs remain practical as long as 

the bit-vector size (number of cores) remains moder- 
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ate. However, beyond 128 cores, in-cache directories 

lose their advantages and become dominated by bit- 

vector storage, limiting applicability to larger systems. 

Sparse directories storing a limited number of bits 

per entry (Sparse Coarse and Sparse Hierarchical) are 

subject only to a logarithmic increase in energy with an 

increasing core count. These organizations scale well 

with respect to energy and area, resulting in nearly flat 

horizontal lines in Figure 13. However, although these 

designs address the bit-vector storage scalability, the 

Sparse organization must be over-provisioned to avoid 

performance loss due to set conflicts. Over-provision- 

ing results in a significant area increase, rendering 

these designs unattractive and showing the need for 

more area-efficient organizations. 

The Cuckoo directory organization eliminates 

Sparse directory over-provisioning by resolving set 

conflicts while still leveraging the benefits of the 

Coarse and Hierarchical bit-vector storage mecha- 

nisms. The Cuckoo directory area utilization rivals the 

area-efficient Tagless and Duplicate-Tag directory 

designs, but also has a low nearly-constant per-core 

energy dissipation regardless of core count. The 

Cuckoo directory organization achieves up to 7x area 

reduction compared to the Sparse Coarse and Sparse 

Hierarchical organizations, maintaining reasonable 

energy dissipation while bringing the area of the direc- 

tory storage under 3% of the L2 area for the Shared-L2 

configuration with 1024 cores (2048 sharing caches) 

and under 30% of the L2 area for the Private-L2 con- 

figuration with 1024 cores. Constant scalability within 

the directory slice results in expected linear growth in 

the aggregate directory energy and area consumption 

as the number of cores increases, yielding a practical 

and scalable design to at least 1024 cores. 

6. Related Work 

Like the Cuckoo directory, a number of prior hard- 

ware structure proposals borrow ideas from software 

hash tables. Caches using multiple hash functions were 

proposed in hash-rehash caches [2] by Agarwal et al. 

and later in column-associative caches [4] by Agarwal 

and Pudar. Broder and Kalin proposed parallel hash 

functions to access independent memory banks [8]. 

Seznec used parallel hashing memories to reduce con- 

flicts in skewed-associative caches [33], the basic 

organization used in the design of the Cuckoo direc- 

tory. Other mechanisms to reduce conflicts through 

hashing [40] and software-controlled functions [41] 

were evaluated by Topham and González and Vandier- 

endonck et al. The skewed-associativity mechanism 

was adapted as a replacement for CAMs [25] by 

Mahoney et al., who later provided a mathematical 

model for the parallel hashing structure [26] similar to 

the skewed-associativity model by Michaud [28]. Cho 

et al. relied on a hardware implementation of a hash 

table to create content-addressable memories from ran- 

dom access memories [12]. 

Like the skewed-associative cache, the Cuckoo 

directory relies on the family of hash functions pro- 

posed by Seznec and Bodin [34]. However, unlike 

skewed-associative caches and parallel hashing memo- 

ries, the Cuckoo directory uses an insertion algorithm 

based on moving entries within the structure, as pro- 

posed for Cuckoo hash tables by Pagh and Rodler [29]. 

Hagersten and Hill proposed displacement to improve 

storage efficiency of skewed structures [18]. Spjuth et 

al. evaluated a displacement-based insertion algorithm 

in Elbow caches [37,38], crediting the idea behind dis- 

placements to Mark Hill. Similarly to Cuckoo 

directories, Elbow caches displace conflicting ele- 

ments. However, the Elbow cache is limited to one 

displacement per insertion and requires multiple look- 

ups to select a displacement victim, resulting in a 

complex and power-hungry design that experiences 

more forced invalidations than the Cuckoo directory. 

Fotakis et al. generalized Pagh and Rodler’s 

Cuckoo hash to a d-ary Cuckoo hash [15], improving 

the space utilization of the structure. The Cuckoo 

directories we evaluate use the d-ary organization. 

Panigrahy proposed an alternative mechanism to 

improve Cuckoo-hash space utilization by storing mul- 

tiple elements per bucket [30]; we do not investigate 

this approach, but note that it may offer additional 

improvement in the behavior of the Cuckoo directory 

at high directory occupancy, potentially allowing a 

smaller and more power-efficient 3-ary design instead 

of a 4-ary organization for some systems. 

Significant benefit of relocation in hardware hash 

tables [21] was noted by Kirsch and Mitzenmacher. 

Another hardware proposal by Kirsch et al. aug- 

mented a Cuckoo hash implementation with a CAM 

based stash to maintain overflow entries [22]. Arbit- 

man et al. mathematically formalized the stash 

approach [5]. This technique is effective if all elements 

must be stored. However, the Cuckoo directory can 

invalidate blocks in the rare cases of overflow and 

does not benefit from a stash. 

Many proposals exist to reduce directory over- 

heads by reducing the directory entry size. Agarwal et 

al. evaluated schemes of storing a small number of 

pointers with various overflow handling policies [3]. 

Krafka and Newton evaluated a sectored organization 

to reduce tag storage overhead [23]. Gupta et al. sug- 

gested switching to a coarse representation when 

limited pointers overflow [17]. Chaiken et al. proposed 
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software fallback [10] and Chen proposed chained 

pointers to handle directory overflow [11]. Choi and 

Park proposed a hybrid of bit-vector and limited 

pointer organizations [13]. The Cuckoo organization 

dictates only the organization of the directory itself, 

not the contents of each entry or its home node. In this 

work, we constructed the Cuckoo directory with the 

coarse [17] and hierarchical [44,45] approaches, 

although the Cuckoo organization can be used in con- 

junction with any of these space-reduction techniques. 

Finally, there exist proposals for coherence mech- 

anisms that avoid directories and cannot directly 

benefit from the Cuckoo organization. Among these 

are: Tagless directories [43] from Zebchuk et al., dem- 

onstrated to be highly area-efficient but not energy- 

scalable; SCI [20] from James et al., using sharer 

pointers in the private caches rather than a directory 

structure; token coherence [27] from Martin and Hill, 

also avoiding a coherence directory; software-con- 

trolled address indirection by Fensch and Cintra [14] 

and Hardavellas et al. [19] handle coherence in soft- 

ware on shared cache substrates; and DiCo [32] from 

Ros et al., eliminating directories in favor of storing 

coherence information within the cache tags. 

7. Conclusions 

The exponential growth in the number of on-chip 

cores has highlighted the need for a scalable on-chip 

cache coherence mechanism, exposing the energy and 

area costs of scaling the coherence directories. Dupli- 

cate-Tag directories require highly associative 

structures that grow rapidly with core count and 

approach prohibitive power consumption. Sparse 

directories overcome power barrier by reducing asso- 

ciativity while over-provisioning the number of 

directory sets, but have a larger area cost and affect 

performance when directory overflows must invali- 

date active cache blocks. 

In this work, we proposed the Cuckoo directory, a 

directory organization that eliminates set conflicts and 

enables energy- and area-scalable coherence for large 

core counts. Based on the Cuckoo hash table, a dense 

constant-time lookup structure, the Cuckoo directory 

avoids set conflicts without significant capacity over- 

provisioning. Through simulation and analytical pro- 

jections, we showed that the Cuckoo directory 

provides energy and area benefits to existing 16-core 

designs and scales to hundreds of cores. At 1024 cores, 

the Cuckoo directory is up to 80 times more power- 

efficient than the area-efficient Tagless directory and 

11% more power-efficient and seven times more area- 

efficient than the power-efficient Sparse directory. 
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