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Abstract— Instead of relying on a scheme's theoretical flaws, 

side channel attacks on cryptographic systems take advantage 
of information obtained via physical implementations. Much 
progress was made, in particular, during the past few years for 
the class of access-driven cache-attacks. The locations of 
memory accesses made by a victim process are the source of 
information leaking for such attacks. In this study, we evaluate 
the AES situation and provide an attack that can practically 
instantly decrypt AES-128 with just a handful of observed 
encryptions while still retrieving the entire secret key. Unlike 
the majority of prior assaults, ours doesn't require any 
knowledge of the plaintext or the ciphertext (such as its 
distribution, etc.). Additionally, we demonstrate for the first 
time how to recover the plaintext without having access to the 
ciphertext. Furthermore, a non-privileged user account can be 
used to run our spy process. It is the first functional attack for 
implementations employing compressed tables, where it is no 
longer possible to determine the start of AES rounds. for all 
successful prior assaults. Our attack's outcomes are all 
supported by a fully functional implementation, not just by 
theoretical arguments or computer simulations. A contribution 
that is possibly of independent relevance is a denial-of-service 
assault on the present Linux scheduler (CFS), which enables 
innovative, high-precision monitoring of memory accesses. 
Lastly, we provide some generalisations of our assault and 
make some suggestions for potential defences against it. 
Keywords-AES; side channel; access-based cache-attacks; 

 
I. INTRODUCTION 

Cryptographic schemes preventing confidential data from 

being accessed by unauthorized users have become in- 

creasingly important during the last decades. Before being 

deployed in practice, such schemes typically have to pass 

a rigorous reviewing process to avoid design weaknesses 

and bugs. However, theoretical soundness of a scheme 

is not necessarily sufficient for the security of concrete 

implementations of the scheme. 

Side-channel attacks are an important class of implemen- 

tation level attacks on cryptographic systems. They exploit, 

for instance, the leakage of information from electromag- 

netic radiation or power consumption of a device, and 

running times of certain operations. Especially, side-channel 
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attacks based on cache access mechanisms of microproces- 

sors represented a vivid area of research in the last few years, 

e.g., [1]–[15]. These cache based side-channel attacks (or 

cache attacks for short) split into three types: time-driven, 

trace-driven, and access-driven attacks. 

In time-driven attacks an adversary is able to observe the 

overall time needed to perform certain computations, such as 

whole encryptions [8]–[11]. From these timings he can make 

inferences about the overall number of cache hits and misses 

during an encryption. On the other hand, in trace-driven 

attacks, an adversary is able to obtain a profile of the cache 

activity during an encryption, and to deduce which memory 

accesses issued by the cipher resulted in a cache hit [12]– 

[15]. Finally, access-driven attacks additionally enable the 

adversary to determine the cache sets accessed by the 

cipher [4]–[6]. Therefore, he can infere which elements of, 

e.g., a lookup table have been accessed by the cipher. 

Using the fact that accessing data which has already been 

copied into the cache is up to two orders of magnitude 

faster than accessing data in the main memory, access-driven 

attacks roughly work as follows: assume two concurrently 

running processes (a spy process S and a cryptographic 

victim process V ) using the same cache. After letting V 
run for some small amount of time and potentially letting 

it change the state of the cache, S observes the timings 

of its own memory accesses, which depend on the state of 

the cache. These measurements allow S to infer information 

about the memory locations previously accessed by V . 

A. Our Contributions 

In a nutshell, we present a novel, practically efficient 

access-driven cache attack on the Advanced Encryption 

Standard (AES) [16], [17], one of the most popular 

symmetric-key block-ciphers. On a high-level the main prop- 

erties of our attack are two-fold: first, our attack works under 

very weak assumptions, and is thus the strongest working 

access-driven attack currently known. Second, we provide a 

concrete and practically usable implementation of the attack, 

based on new techniques. We also resolve a series of so far 

open issues and technicalities. 

Let us describe these properties and the underlying tech- 

nical contributions in more detail. In fact, for our attack 

to work we only need to assume that the attacker has a test 



Dogo Rangsang Research Journal                                                 UGC Care Group I Journal 

ISSN : 2347-7180                                                          Vol-08 Issue-14 No. 01 February : 2021 

Page | 858                                                                                         Copyright @ 2021 Authors 

machine at his disposal prior to the attack, which is identical 
to the victim machine. The test machine is used to carry out 

an offline learning phase which consists of about 168′000 
encryptions. Further, two artificial neural network have to 
be trained on an arbitrary platform. 

To carry out the attack all we need to be able to is to 

execute a non-privileged spy process (e.g., our spy process 

does not need to have access to the network interface) on the 

victim machine. We don’t require any explicit interactions, 

such as interprocess communication or I/O. Osvik et al. [6], 

[7] refer to attacks in this setting as asynchronous attacks. 

Our attack technique has the following features: 

• In contrast to previous work [5]–[7], our spy process 

neither needs to learn the plain- or ciphertexts involved, 

nor their probability distributions in order recover the 

secret key. 

• For the first time, we describe how besides the key 

also the plaintext can be recovered without knowing 

the ciphertexts at all. 

• Our attack also works against AES implementations 

using so called compressed tables, which are typically 

used in practice, e.g., in OpenSSL [18]. When using 

compressed tables, the first, respectively last round of 

an encryption typically cannot be identified any more, 

which renders previous attacks impossible. 

• We have a fully working implementation of our attack 

techniques against the 128-bit AES implementation of 

OpenSSL 0.9.8n on Linux. It is highly efficient and 

is able to recover keys in “realtime”. More precisely, 

it consists of two phases: in an oberservation phase, 

which lasts about 2.8 seconds on our test machine, 

about 100 encryptions have to be monitored. Then, an 

offline analysis phase, lasting about 3 minutes recovers 

the key. The victim machine only experiences a delay 

during the observation phase. This slowdown is suffi- 

ciently slight to not raise suspicions, since it might as 

well be caused by high network traffic, disk activity, 

etc.. To the best of our knowledge, this is the first fully 

functional implementation in the asynchronous setting. 

At the heart of the attack is a spy process which is able 

to observe (on average) every single memory access 

of the victim process. This novelly high granularity in 

the observation of cache hits and misses is reached by 

a new technique exploiting the behavior of the Com- 

pletely Fair Scheduler (CFS) used by modern Linux 

kernels. We believe that this scheduler attack could be 

of independent interest. 

• Finally, we also describe a novel approach to recon- 
struct the AES key from the leaked key bits leaked. 

To emphasize the practicability of our attack, let us 

sketch how it could be used to mount a targeted malware 

attack (which are currently regularly seen in practice). In 

a targeted attack we may assume that the attacker knows 

the configuration of the victim machine and can thus obtain 

an identical machine, which is one of our preconditions. 

Next, standard malware infection techniques can be used 

to compromise a non-privileged account and to deploy our 

custom payload on the victim machine. Since we only need 

to observe around 100 encryptions, which correspond to 1.56 
kilobytes of ciphertext, we are able to recover the secret- 

key almost immediately whenever AES is being used on the 

victim machine after a successful infection. 

B. Related Work 

It was first mentioned in [19], [20] that the cache behavior 

potentially poses a security threat. The first formal studies 

of such attacks were given by Page [21], [22]. 

First practical results for time-driven cache attacks on 

the Data Encryption Standard (DES) were given in [2], 

and an adoption for AES was mentioned without giving 

details. Differently efficient time-driven attacks on AES can 

be found in [6]–[11], some of which require that the first 

respectively last round of AES can be identified. In [23], an 

analytical model for forecasting the security of symmetric 

ciphers against such attacks is proposed. 

Trace-driven cache attacks were first described in [21]. 

Other such attacks on AES can be found, e.g., in [12]– 

[15]. Especially, [12] proposes a model for analyzing the 

efficiency of trace-driven attacks against symmetric ciphers. 

Percival [4] pioneered the work on access-driven attacks 

and described an attack on RSA. Access-driven attacks on 

AES were pioneered by Osvik et al. [6], [7]. They describe 

various attack techniques and implementations in what they 

call the synchronous model. The synchronous model makes 

rather strong assumptions on the capabilities on an attacker, 

i.e., it assumes that an attacker has the ability to trigger 

an encryption for known plaintexts and know when an 

encryption has begun and ended. Their best attack in the 

synchronous model requires about 300 encryptions. 

Osvik et al. also explore the feasibility of asynchronous 

attacks. They refer to asynchronous attacks as an “extremely 

strong type of attack”, and describe on a rather high-level 

how such attacks could be carried out, assuming that the 

attacker knows the plaintext distribution and that the attack is 

carried out on a multi-threaded CPU. Also, they implement 

and perform some measurements on multi-threaded CPUs 

which allow to recover 47 key-bits. However, a description 

(let alone an implementation) of a full attack is not given, 

and many open questions are left unresolved. Further, the 

authors conjecture that once fine grained observations of 

cache-accesses are possible, the plaintext distribution no 

longer needs to be known. Loosely speaking, one can 

say that Osvik et al. postulate fully worked and practical 

asynchronous attacks as an open problem. 

This is where the work of Neve et al. [5] picks up. They 

make advances towards realizing asynchronous attacks. To 

this end they describe and implement a spy process that 
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is able to observe a “few cache accesses per encryption” 

and which works on single threaded CPUs. They then 

describe a theoretical known ciphertext attack to recover 

keys by analyzing the last round of AES. The practicality 

of their attack remains unclear, since they do not provide an 

implementation and leave various conceptual issues (e.g., 

quality of noise reduction, etc.) open. 

We improve over prior work by providing a first practical 

access-driven cache attack on AES in the asynchronous 

model. The attack works under weaker assumptions than 

previous ones, as no information about plain- and ciphertext 

is required1, and it is more efficient in the sense that we 

only need to observe about 100 encryptions. We also reach a 

novelly high granularity when monitoring memory-accesses. 

Further, our attack also works against compressed tables, 

which were not considered before. 

Finally, several hardware and software based mitigations 

strategies for AES have been proposed, e.g., [24]–[26]. 

C. Organization of this Document 

In II we briefly recapitulate the structure of a CPU cache, 

and the logics underlying it. We also describe the Advanced 

Encryption Standard (AES) to the extent necessary for our 

attack. In III we then explain how to recover the AES 

key under the assumption that one was able to perfectly 

observe the single cache-accesses performed by the victim 

process. We drop this idealization in IV and show how by 

combining a novel attack on the task scheduler and neural 

networks sufficiently good measurements can be obtained in 

practice. We give some real measurements and extensions 

of our attack in V. In particular, we there sketch how to 

obtain the plaintext without knowing the ciphertext. Finally, 

we propose some countermeasures in §VI. 

II. PRELIMINARIES 

We first summarize the functioning of the CPU cache 

as far as necessary for understanding our attack. We then 

describe AES, and give some details on how it is typically 

implemented. We close this section by describing the test 

environment on which we obtained our measurements. 

A. The CPU Cache and its Side Channels 

We next describe the behavior of the CPU cache, and 

how it can be exploited as a side channel. The CPU cache 

is a very fast memory which is placed between the main 

memory and the CPU [27]. Its size typically ranges from 

some hundred kilobytes up to a few megabytes. 

Typically, data the CPU attempts to access is first loaded 

into the cache, provided that it is not already there. This 

latter case is called a cache hit, and the requested data 

1To be precise, the statement is true whenever AES is used, e.g., in CBC 
or CTR mode, which is the case for (all) relevant protocols and applications. 
In the pathological and practically irrelevant case, where the ECB mode 
(which is known to be insecure by design) is used we have to require that 
there is some randomness in the plaintext. 

can be supplied to the CPU core with almost no latency. 

However, if a cache miss occurs, the data first has to be 

fetched via the front side bus and copied into the cache, with 

the resulting latency being roughly two orders of magnitude 

higher than in the former case. Consequently, although being 

logically transparent, the mechanics of the CPU cache leak 

information about memory accesses to an adversary who is 

capable of monitoring cache hits and misses. 

To understand this problem in more detail it is necessary 

to know the functioning of an n-way associative cache, 

where each address in the main memory can be mapped into 

exactly n different positions in the cache. The cache consists 

of 2a cache-sets of n cache-lines each. A cache-line is the 

smallest amount of data the cache can work with, and it 

holds 2b bytes of data, which are accompanied by tag and 

state bits. Cache line sizes of 64 or 128 bytes (corresponding 

to b = 6 and b = 7, respectively) are prevalent on modern 

x86- and x64-architectures. 

To locate the cache-line holding data from address A = 
(Amax, . . . , A0), the b least significant bits of A can be 

ignored, as a cache-line always holds 2b bytes. The next 

a bits, i.e.,  (Aa+b−1, . . . , Ab) identify  the cache-set. The 

remaining bits, i.e., (Amax, . . . , Aa+b) serve as a tag. Now, 

when requesting data from some address A, the cache logic 

compares the tag corresponding to A with all tags of the 
(unique) possible cache-set, to either successfully find the 

sought cache-line or to signal a cache miss. The state bits 

indicate if the data is, e.g., valid, shared or modified (the 

exact semantics are implementation defined). We typically 

have max = 31 on x86-architectures and max = 63 on x64-

architectures (however, the usage of physical address 

extension techniques may increase the value of max [28]). 

Addresses mapping into the same cache-set are said to 

alias in the cache. When more then n memory accesses to 

different aliasing addresses have occurred, the cache logic 

needs to evict cache-lines (i.e. modified data needs to be 

written back to RAM and the cacheline is reused). This 

is done according to a predetermined replacement strategy, 

most often an undocumented algorithm (e.g. PseudoLRU in 

x86 CPUs), approximating the eviction of the least recently 

used (LRU) entry. 

With these mechanics in mind, one can see that there 

are at least two situations where information can leak to 

an adversary in multi-tasking operating systems (OS). Let’s 

therefore assume that a victim process V , and a spy process 

S are executed concurrently, and that the cache has been 

initialized by S. After running V for some (small) amount 

of time, the OS switches back to S. 

• If S and V physically share main memory (i.e., their 

virtual memories map into the same memory pages in 

RAM), S starts by flushing the whole cache. After 

regaining control over the CPU, S reads from mem- 

ory locations and monitors cache hits and misses by 

observing the latency. 
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• If S  and V  do not physically share memory, then 

they typically have access to cache aliasing memory. 

In this case, S initializes the cache with some data D, 

and using its knowledge of the replacement strategy, 

it deterministically prepares the individual cache-line 

states. When being scheduled again, S again accesses 

D, and notes which data had been evicted from the 

cache. This again allows S to infer information about 

the memory accesses of V . 

Our target is the OpenSSL library on Linux, which in 

practice resides at only one place in physical memory and 

is mapped into the virtual memory of every process that uses 

it. In this paper we are therefore concerned with the shared- 

memory scenario, where V uses lookup tables with 2c en- 

tries of 2d bytes each, and uses a secret variable to index into 

it. We will further make the natural assumption of cache-line 

 

according to a fixed and invertible substitution rule, and 

MixColumns multiplies a matrix by a fixed matrix M . 
In the first step of each round of AES, the ShiftRows 

operation performs the following permutation on the rows 

of a matrix X: 

x0 x4 x8 xC 

ShiftRows(X) = X = 
xA xE x2 x6

 

xF x3 x7 xB 

We will denote the columns of X̃  by (x̃0   x̃1   x̃2   x̃3). 

In the next step, all bytes of X̃  are substituted as defined 

by an S-box given in [17]. We denote this substitution by 

s(·). That is, we have SubBytes(X̃) = s(X̃)  with 

 
s(x0) s(x4) s(x8) s(xC)  

in memory corresponds to a cache-line boundary. For most 

compilers, this is a standard option for larger structures. 

Exploiting the previously mentioned information leakage 

will allow S to infer the memory locations V accesses into, 

up to cache-line granularity. That is, S is able to reconstruct 

l = c max(0, b   d) bits of the secret index for a cache-line 

size of 2b bytes. Note that l > 0 whenever the lookup table 

does not entirely fit into a single cache-line. Starting from 

these l bits, we will reconstruct the whole encryption key in 

our attack. 

B. AES – The Advanced Encryption Standard 

The Advanced Encryption Standard (AES) [16] is a sym- 

metric block cipher, and has been adopted as an encryption 

standard by the U.S. government [17]. For self-containment, 

and to fix notation, we next recapitulate the steps of the AES 

s(X) = 
s(xA) s(xE) s(x2) s(x6) 

,
 

s(xF ) s(x3) s(x7) s(xB) 

or s(X̃) = (s(x̃0)  s(x̃1)  s(x̃2)  s(x̃3))  for short. 

Finally, the state matrices are multiplied by a constant 

matrix M in the MixColumns operation: 

2   3    1    1 

MixColumns(s(X)) = M •s(X) = 
1    1    2    3    

•s(X) 

3   1    1    2 

As for X, we abbreviate the columns of M by bold letters. 

Here and in the remainder of this document, byte values 

have to be read as hexadecimal numbers. 

Having said this, and denoting the round key of the ith 
round by Ki, we can write AES as the following recurrence, 

where X0 is the plaintext, and Xr+1 is the ciphertext: 
algorithm [29, 4.2]. 

AES always processes blocks (x0 
 

 

. . . xF ) of 16 bytes at 
 

Xi
 ⊕ Ki i = 0, 

a time by treating them as 4 4 matrices. We will denote 
these matrices by capital letters, and its column vectors by 

Xi+1 = 
 M • s(Xi) ⊕ Ki 0 < i < r, s(X̃i) ⊕ Ki i = r  . (1) 

bold, underlined lowercase letters: 

x0 x4 x8 xC  

 
   

For the 128-bit implementation of AES we have r = 10. 
We will not detail the key schedule here, but only want 

x1 x5 x9 xD 
X = = (x 

x  x  x ) to note that K i+1 can be obtained from Ki by applying a 

x2 x6 xA xE x3 x7 xB xF 0 1 2 3 nonlinear transformation using the same S-box as the cipher itself, cyclically shifting the byte vectors, and XORing 
with (2i, 0, 0, 0) (where 2 has to be read as an element in The single bytes xi are treated as elements of GF (28). We 

denote addition in this field by   and multiplication by   . 

Note that the addition equals bitwise XOR. The irreducible 

polynomial for multiplication is given by x8+x4+x3+x+1, 

see [17] for details. We use these operations in the usual 

overloaded sense to operate on matrices and vectors. 

Except for XORing the current state with a round key, 

the single rounds of AES makes use of three operations: 

ShiftRows cyclically shifts the rows of a matrix X, SubBytes 

performs a byte-wise substitution of each entry in a matrix 

GF (28)). The key schedule is illustrated in Figure 2. 

C. How to Implement AES 

In the following we briefly describe the basic ideas how 

to efficiently implement AES. These tricks are corner stones 

for our attack presented in the subsequent sections. 

AES is heavily based on computations in GF (28), 
whereas the arithmetic logic unit (ALU) of most CPUs 

only provides arithmetic on integers. The fast reference 

implementation of [30] reformulates AES to only need basic 

× 

alignment, i.e., that the starting point of these lookup tables 

˜ 
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operations on 32-bit machine words. The implementation 

of OpenSSL [18] further exploits redundancies and halves 

the space needed for lookup tables, saving two kilobyte of 

memory. In the following we present these techniques on 

hand of one inner round of AES, using X and Y for the 

state matrices before and after the round, and K to denote 

the round key. That is, we have the following relation: 

Y  = M • s(X̃) ⊕ K. (2) 

Consequently, we have 

y
0 

=    m0 • s(x0) ⊕ m1 • s(x5) ⊕ 

m2 • s(xA) ⊕ m3 • s(xF ) ⊕ k0, (3) 

and similarly for y , y , y , where k    denotes the first 

in the latter situation, as the observed memory accesses are 

indistinguishable from the previous rounds. Thus, the attacks 

of, e.g., [5], [6] cannot be executed any more. In particular 

this is the case for the compressed tables implementation of 

OpenSSL 0.9.8. 

D. Test Environment 

All our implementations and measurements have been 

obtained on a Intel Pentium M 1.5GHz (codename “Banias”) 

processor, in combination with an Intel ICH4-M (codename 

“Odem”) chipset using 512MB of DDR-333 SDRAM. On 

this system, we were running Arch Linux with kernel version 

2.6.33.4. As a victim process we used the OpenSSL 0.9.8n 

implementation of AES, using standard configurations. 
1 2 3 0 

column of K when interpreting K as a matrix of 4 4 bytes, 

indexed analogously to X and Y . To avoid the expensive 

multiplications in GF (28) tables T0, . . . , T3 containing all 

potential results are precomputed. That is, we have 

Ti[x] = mi  • s(x) 0 ≤ i ≤ 3. 

This allows one to rewrite (3) to the following form which 

only uses table lookups, and binary XORs: 

y
0 

= T0[x0] ⊕ T1[x5] ⊕ T2[xA] ⊕ T3[xF ] ⊕ k0. 

Each Ti has 28 entries of size 4 bytes each, and thus the 

tables require 4kB of memory. However, they are highly 

redundant. For instance, we have that 

T1[x]   =    (3 2 1 1)T • s(x) 

=  (2 1 1 3)T • s(x) ≫ 3  =  T0[x] ≫ 3, 

where ≫ denotes a bytewise rotation towards the least 
significant byte. Thus, it is possible to compute all Ti by 

rotating T0. Yet, having to perform these rotations would 
cause a performance penalty. The idea thus is to use one 
table T the entries of which are doubled entries of T0. That 

III. BREAKING AES GIVEN IDEAL MEASUREMENTS 

In this section, we show how the full secret AES key can 

be recovered under the assumption of ideal cache measure- 

ments. That is, we assume that a spy process can observe all 

cache accesses performed by a victim process in the correct 

order. Making this (over-restrictive) assumption considerably 

eases the presentation of our key recovery techniques. We 

will show how it can be dropped in §IV. 

A. Using Accesses from Two Consecutive Rounds 

As discussed in II-A, having recorded the memory 
accesses into the lookup tables allows one to infer l   = 
c min(0, b   d) bits of the secret index, where the lookup 

table has 2c entries of 2d bytes each, and where a cache-line 

can hold 2b bytes. We therefore introduce the notation x∗ 
to denote the l most significant bits of x, and also extend 

this notation to vectors. In our case, we have c = 8 and 

d = 3. If, for instance, we assume b = 6 we have l = 5 and 

consequently 

110010002
∗ 

110012  

is, if T0 has entries of the form (abcd), those of T are of 
000100112 

100100112  
 

 

000102 
= 

100102  . 
 

 

T1[x] = 32 bit word at offset 3 in T [x]. 

While saving 2kB of memory and thus reducing the L1 

footprint of the implementation substantially, this approach 

also allows to avoid the rotations by accessing T at the 

correct offsets. 

While the above techniques work for most of AES, there 

are basically two ways to implement the last round which 

differs from the other rounds, cf. (1). First, an additional 

lookup  table  can  be  used  for  s(X̃)  instead  of  M     s(X̃). 

Alternatively, one can reuse the existing lookup table(s) by 

accessing them at positions that have been multiplied by a 

1-entry of M . While the first technique can be exploited to 

identify where an encryption ends (and thus also to identify 

the first or last round of an encryption) by checking for 

memory accesses into this new table, this is not possible 

For ease of presentation, and because of its high practical 

relevance on current CPUs, we will fix b = 6 for the 

remainder of this paper. However, the attack conceptually 

also works for other values of b, with a higher efficiency for 

b < 6, and a lower efficiency if b > 6, as less information 

about the secret index leaks through the cache accesses in 

this case. 

With this notation, and (2), it is now easy to see that the 

following equations are satisfied: 

k∗
i   = y∗ ⊕ (M • s(x̃i))∗ 0 ≤ i ≤ 3  . (4) 

Each of these equations specifies a set   i 0, 1 4l 
of partial key-column candidates. Namely, we define i to 

consist of all elements ki 0, 1 4l for which the measured 

x̃i
∗  

can be completed to a full four byte vector x̃i  satisfying 

001012 001010102 the form (abcdabcd). We then have, e.g., 
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√ 

i i ki l ki 

∈ { } ∈ K 

l pl  = E[|Ki|]/|{0, 1}4l| 

1 1 

2 1 

3 1 

4 0.3955 . . . 
5 3.6063 . . . · 10−3 

Assume now that an attacker is able to observe 160M + 
31 = N + 31 memory accesses. This means that quanti- 

tatively the accesses of M full encryptions are observed, 

but we do not require that the first observed access also is 

the first access of an encryption. The 31 remaining accesses 

6 

7 

8 

Table 1. 

1.5021 . . . · 10−6 
5.9604 . . . · 10−8 

2.3283 . . . · 10−10 

Depending on the number l of leaked bits, only a fraction pl  of 

belong to the (M + 1)st encryption. On a high level, to 

circumvent the problem of not being able to identify round 

ends/beginnings, we now perform the following steps: 

• We treat each of the first N observed memory accesses 
the keys in {0, 1}4l  can be parts of the secret key’s ith  column, if x∗

i   and 
y∗
i   

are known. 
as if it was the beginning of an AES round. 

• For each of these potential beginnings, we compute 
the sets of potential key-column candidates. For each 

(4). These sets can be computed by enumerating all 

possible values of x̃i. 

232−4l element of 0, 1 4l we thereby count how often it lies 

in these sets. 

The cardinality of i turns out not to be constant for all 

x̃i
∗
.  However,  we  will  need  to  argue  about  the  probability 

that some x̃i
∗ 

is a partial key-column candidate. We therefore 
compute the expected cardinality of the i by assuming that 

the  x̃i
∗  

are  equally  distributed  in    0, 1  4l.  Even  though  the 
encryption process is deterministic, this assumption seems 
to be natural, as otherwise the different states within an 

encryption would very likely be strongly biased, resulting 

in a severe security threat to AES. 

Table 1 displays the expected sizes of i for all possible 

values of l. The last column of the table gives the probability 
pl   that  a  random  k∗

i     ∈  {0, 1}4l    is  a  partial  key-column 

• From these frequencies we derive the probability that 
a given element of 0, 1 4l is a correct part of the 

unknown key. 

More precisely, for any of the potential N  beginnings 

of an AES round, we compute the sets i of partial key- 

column candidates for i = 0, . . . , 3, and count how often 

each  possible  k∗
i 0, 1  4l  also  satisfies  k∗

i i.  We 

denote this frequency by fi(ki
∗). By the former remark, and 

because of the 31 last monitored memory accesses, we have 

enough observations to complete (4) for any of these N 
offsets. 

A  simple  observation  yields  that  k∗
i    is  an  element  of 

candidate for a random x̃i
∗
. One can see that for 1 ≤ l ≤ 3 Ki  at  least  zk∗

i 
M  times,  if  ki

∗  
is  the  truncated  part  of  the 

every  x̃∗ can  be  completed  to  a  x̃   satisfying  (4).  Thus,  in correct ith column of a round key in zk∗  different rounds. 
i i ∗ i 

 
 this case, this approach does not yield any information about 

the secret key K. The contrary extreme happens if we have 

l = 8, i.e., if we can monitor the exact entries of the lookup 

table accessed by the victim process. In this case, we can 

recover the key only from the states X, Y of two consecutive 

rounds. The interesting case is where 3 < l < 8 where we 

can learn a limited amount of information about the secret 

key. We will be concerned with this case in the following. 

B. Using Accesses from Continuous Streams 

The observations of the previous section typically cannot 

be directly exploited by an attacker, as for implementations 

of AES using compressed tables it is hard to precisely 

 

Put  differently,  we  have  fi(ki )  ≥ zk
i
∗ M .  For  each  of  the 

remaining N − zk∗
i 
M  wrong starting points we may assume 

that ki occurs in Ki with probability pl. This is, because 
solving  (4)  for  wrong  values  of  x∗

i , y∗
i     

should  not  leak 

any  information  about  the  correct  key,  even  if  x∗
i , y∗

i    
are 

not fully random, but overlapping parts of correct values 
from subsequent rounds. As in the previous section, this 

assumption experimentally proved to be sufficiently satisfied 

for our purposes. 

Denoting the binomial distribution for n samples and 
probability p by Binomial(n, p), we can now describe the 

properties of fi(k∗
i )  as follows: 

f (k∗)   ∼   Binomial(N − z  ∗ M, p ) + z  ∗ M 
starts. Rather, an attacker is able to monitor a continuous 

stream of memory accesses performed by the victim process. 

Consequently, we will show how the key can be recon- 

structed from observations of M encryptions. 

We remark that the order of memory accesses within each 

round is implementation dependent, but the single rounds are 

always performed serially, and each round always requires 

16 table lookups. Thus, as (4) puts into relation states of 

consecutive rounds, it is always possible to complete all four 

equations (i.e., for i = 0, . . . , 3) within the first 31 memory 

accesses after the first access in a round. 

E[fi(k∗
i )]    =    Npl + zk

i
∗ M (1 − pl) 

V[fi(k∗
i )]    =    (N − zk

i
∗ M )pl(1 − pl)  . 

From these equations one can see that every k∗
i   occurring 

in a round key causes a peak in the frequency table. We 
can now measure the difference of these peaks and the large 

floor  of  candidates  ki
∗  

which  do  not  occur  in  a  round  key. 

This difference grows linearly in the number M of observed 
encryptions. On the other hand, the standard deviation 

σ[fi(k∗
i )] =      V[fi(ki

∗)] only grows like the square root of 

M (note here, that N is a fixed constant times M ). Thus, for 

determine where one round stops and where the next one 

4l 
|{0, 1} | 

24 

28 

E[|Ki|] 

24 

28 

212 212 

216 214.661... 

220 211.884... 

224 27.9774... 

228 24 

232 1 
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an increasing number of encryptions, the peaks will become 

better to separate from the floor. 

Using the fi(ki
∗)  and the Bayes Theorem [31], [32] it is 

now  possible  to  compute  a  posteriori  probabilities  qi(k∗
i ) 

that  a  given  ki
∗  

really  occurred  in  the  key  schedule  of  the 
victim process. 

C. Key Search 

As stated in the previous section, key candidates k∗
i   will 

experience a peak in the frequency table if they are part of 

the  correct  key  schedule,  while  all  other  k∗
i   will  not  do  so 

ki+4∗    
for all possible choices of ki+4∗ 

as before. 

However, because of the nonlinear structure of the 

key schedule of AES, we are now able to put into 

relation ti+3∗ 
with parts of ki+3, and check whether the 

nonlinearity can be solved for any i, i.e., for any fixed 

position of     in Figure 2 (there, we indicated the case 

i = 2). If this is not the case, we discard ki+4∗  
, 

otherwise we add it to the heap. 

We proceed analogously for ki+5∗
. 

Let now the topmost element of the heap already 
contain candidates for ki 

∗  
up to ki+5∗

. 3 3 
with high probability. Next, we are therefore concerned with 

assigning scores to sets of partial key-column candidates, 

and to search for sets with high scores, which then are very 

likely to stem from the original key. 

We chose the mean log-probability to assign a score to 

a set of candidates. That is, for a set    of candidates, the 

score is computed as follows: 

h(S) = 
 1  Σ 

log q (k∗) . 

From Figure 2 we can see that given four kj in a 

line allows to fill the complete key schedule. Given 

, we already fixed 4 4 l =  80 bits of such a 

“line”. Further, the solving the nonlinearities in the 

key schedule yields 24 more bits thereof. That is, only 

24 bits of the potential key remain unknown. We now 

perform a brute-force search over these 224 possibilities 

at each possible position of S in the key schedule. Note 
|S| 

k∗
i 
∈S

 

We assume that every element in such a set is tagged with 

the position of the key schedule it is a candidate for. 
We now iteratively search for the correct, unknown key. 

here that typically there is at most 1 solution of the 
non-linearities for a given position. In the rare case 

that there are more than 1 solutions, we perform the 

following steps for either of them. 
For  all  possible  completions  of  ki 

∗
, . . . , ki+3∗

,  we 3 3 
Loosely speaking, our technique outputs the K for which compute the whole key schedule, i.e., we compute kj 
the mean log-probability over all partial key-columns in the for i = 0, . . . , 3, j = 1, . . . , 9 

i 
and compute the score 

whole key schedule is maximal. The algorithm stated below 

starts by fixing one entry of the key schedule which has a 

good score. Then, whenever adding a further part of the key, 

the key schedule of AES also forces one to fix some other 

parts, cf. Figure 2 (there, the ti denote temporary variables 

without further semantics). Our algorithm now iteratively 

repeats these steps until a K implying a key schedule with 

a high score is found. 

• We start by searching for partial key-column candidates 

for ki 
∗

, i.e., for the last column of the ith round key. 
Therefore, we initialize a heap containing singletons for 

all possible values of k∗
3, sorted by their score h({k∗

3}). 

• The topmost element of the heap,   ki 
∗   

is removed, 
and combined with all partial key-column candidates 

k∗
3,  interpreted  as  candidates  for  ki+1∗

,  i.e.,  as  par- 
tial key-column candidates for the last column of the 
(i + 1)st round’s key. As can be seen from Figure 2, 
combining  {ki 

∗
}  with  a  candidate  for  ki+1∗   

also 

for   kj
∗ 

: i = 0, . . . , 3, j = 0, . . . , 9  . We store the key 

corresponding to the set with the highest score, together 

with its score. 

• Now, we continue processing the heap until the topmost 

element of the heap has a smaller score than the stored 

full key. In this case, we output the stored key as the 

secret key and quit. This is, because typically the score 

of sets will decrease when extending the set, because 

even when adding a candidate with very high score, 

most often other parts with worse score also have to be 

added because of the structure of the key schedule. 

We remark that the symmetry of the key schedule can be 

used to increase the efficiency when actually implementing 

our attack in software. For instance, a triangle with some 

fixed “base line” has the same score h( ) as the triangle 

flipped vertically. For this reason, the score only has to be 

computed for one of these triangles in the first two steps of 
3 

i+1 
2 

3 
because of the relation of round 

our attack. 

keys. We denote this operation of adding a partial key- 

column  candidate  ki+1∗  
and  all  associated  values  to 

ki 
∗    

by    . All the resulting sets   ki 
∗         

ki+1∗    
are 

added to the heap, according to their scores. 

This step is applied analogously whenever the topmost 

element of the heap does not at the same time contain 
candidates for ki 

∗  
and ki+3∗

. 

IV. ATTACKING AES IN THE REAL WORLD 

In the previous section we showed how the full secret 

key can efficiently be recovered under the assumption that 

the cache can be monitored perfectly. That is, we assumed 

that an attacker is able to observe any single cache-access 

performed by the victim process. We now show this over- 

restrictive assumption can be dropped. We therefore first 3 3 

If the topmost element of the heap already contains 

a  candidate  for  ki+3∗
,  we  compute  the  combinations 

describe the way the task scheduler of modern Linux kernel 

works, and explain how its behavior can be exploited for our 

i i 
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Figure 2. Key schedule of the 128 bit variant of AES. By kn we denote the mth column of the nth round key. The tn are temporary variables without m any further semantics. The bottommost elements, i.e., k0 

i , are passed as inputs to the nonlinearity at the top. During the key search, incrementally parts of 
the key schedule are fixed in order to find a full key schedule with maximal score. 

 

purposes. We then briefly recapitulate the concept of neural 

networks, and show how they can serve an attacker to treat 

inaccurate measurements. 

A. CFS – The Completely Fair Scheduler 

virtual 

runtime 

 
maximum 

“unfairness”    

reached 

 

 

 

 

 

 
process 1 

 
  process 2 

Scheduling is a central concept in multitasking OS where    

CPU time has to be multiplexed between processes, creating 

the illusion of parallel execution. In this context, there are 

 
    process 3 

time 

three different states a process can possibly be in (we do not 

need to distinguish between processes and threads for now): 

• A running process is currently assigned to a CPU and 
uses that CPU to execute instructions. 

• A ready process is able to run, but temporarily stopped. 
• A blocked process is unable to run until some external 

event happens. 

The scheduler decides when to preempt a processes (i.e. 

transisition from running to ready) and which process is next 

to be activated when a CPU becomes idle (i.e. transition 

from ready to running). This is a difficult problem, because 

of the multiple, conflicting goals of the scheduler: 

• guaranteeing fairness according to a given policy, 

• maximizing throughput of work that is performed by 

processes (i.e. not waste time on overhead like context 

switching and scheduling decisions) and 

• minimizing latency of reactions to external events. 

Starting from Linux kernel 2.6.23, all Linux systems are 

equipped with the Completely Fair Scheduler (or CFS) [33], 

whose general principle of operation we describe in the 

following. Its central design idea is to asymptotically behave 

like an ideal system where n processes are running truely 

parallel on n CPUs, clocked at 1/nth of normal speed each. 

To achieve this on a real system, the CFS introduces a virtual 

runtime τi for every process i. In the ideal system, all virtual 

runtimes would increase simultaneously and stay equal when 

the processes were started at the same time and never block. 

In a real system, this is clearly impossible: only the running 

Figure 3. Functioning of the Completely Fair Scheduler. Here, three 
process are running concurrently. After process 1 was the assigned the CPU 
for some time, process 2 is the next to be activated to keep the unfairness 

among the different processes smaller than some threshold. 

 

 
process’ virtual runtime can increase at a time. Therefore 

CFS keeps a timeline (an ordered queue) of virtual runtimes 

for processes that are not blocked. Let the difference between 

the rightmost and leftmost entries be ∆τ = τright τleft. This 

difference in virtual runtime of the most and least favourable 

scheduled processes can be interpreted as unfairness, which 

stays always zero in an ideal system. CFS lives up to its 

name by bounding this value: ∆τ ∆τmax. It always selects 

the leftmost process to be activated next and preempts the 

running rightmost process when further execution would 

exceed this maximum unfairness ∆τmax. 

This logic is illustrated in Figure 3. There, three processes 

are running on a multitasking system. At the beginning, 

process 1 is the next to be activated because it has the least 

virtual runtime. By running process 1 for some time the 

unfairness is allowed to increase up to ∆τmax. Then CFS 

switches to process 2, which became the leftmost entry on 

the timeline in the meantime. This procedure is repeated 

infinitely so that every process asymptotically receives its 

fair share of 1/nth CPU computing power per time. 

A very important question is how the virtual runtime 

τunblock of unblocking processes is initialized. It is desirable 

that such a process is activated as soon as possible and given 

≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ 
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measure 

accesses 

tsleep 

 
program timer 

busy wait 

twakeup 
 

 

 

 
 

measure 

  accesses  

• It then computes tsleep and twakeup, which designate the 

points in time when thread i should block and thread 

i + 1 should unblock, respectively. It programs a timer 

to unblock thread i + 1 at twakeup. 

• Finally, thread i enters a busy wait loop until tsleep is 
reached, where it blocks to voluntarily yield the CPU. 

 
OS kernel    

 
Figure 4. Sequence diagram of the denial of service attack on CFS. 
Multiple threads run alternatingly and only leave very small periods of 
time to the victim process. 

 

 

enough time to react to the event it was waiting for with low 

latency. The concept of treating a process very favourably 

by the scheduler in this situation is called sleeper fairness. 

In CFS terms this means assigning it the lowest possible 

virtual runtime while not violating CFS’ invariants: To not 

exceed the maximum unfairness τunblock    τright     ∆τmax 

must hold. Also, virtual runtime must not decrease across 

blocking and unblocking to prevent a trivial subversion of 

CFS’ strategy. Therefore the virtual runtime τblock a process 

had when it blocked needs to be remembered and serves as 

another lower bound. Finally, we get 

τunblock = max(τblock, τright − ∆τmax). 

Note that by blocking for a sufficiently long time, a process 

can ensure that it will be the leftmost entry on the timeline 

with τleft = τright ∆τmax and preempt the running process 

immediately. 

B. A Denial of Service Attack for CFS 

We will now show how the fairness conditions, and in 

particular the sleeper fairness, of CFS can be exploited by 

an attacker. On a high level, the idea is the following: 

the spy process S requests most the available CPU time, 

and only leaves very small intervals to the victim process 

V . By choosing the parameters of S appropriately, the 

victim process will, on average, only be able to advance by 

one memory access before it is preempted again. Then, S 
accesses each entry of the lookup table, and checks whether 

a cache hit, or a cache miss occurs. After that V is again 

allowed to run for “a few” CPU cycles, and V measures 

again, etc. 

In this section, we will describe the underlying denial of 

service (DoS) attack on CFS. The procedure for measuring 

cache access can be found in IV-C. 

When getting started, our spy process launches some hun- 

dred identical threads, which initialize their virtual runtime 

to be as low as possible by blocking sufficiently long. Then 

they perform the following steps in a round-robin fashion, 

which are also illustrated in Figure 4: 

• Upon getting activated, thread i first measures which 

memory access were performed by V since the previous 
measurement. 

During the time when no spy thread runs, the kernel first 

activates the victim process (or some other process running 

concurrently on the system). This process is allowed to 

execute until the timer expires which unblocks thread i + 1. 

Because of the large number of threads and the order they 

run, their virtual runtimes will only increase very slowly. 

While a thread’s virtual runtime is kept sufficiently low 

in this way, it will be the leftmost in the timeline when 

it unblocks and immediately preempt the currently running 

process. This mechanism ensures that S immediately regains 

control of the CPU after V ran. 

Typically, twakeup    tsleep is set to about 1500 machine 
cycles. Subtracting time spent executing kernel code and for 

context switching, this leaves less than 200 cycles for the 

CPU to start fetching instructions from V , decode and issue 

them to the execution units and finally retire them to the 

architecturally visible state, which is saved when the timer 

interrupts. When V performs memory accesses which result 

in cache misses, these few hundreds cycles are just enough 

to let one memory access retire at a time, on average. 

Because of different timers used within the system, accu- 

rately setting tsleep and twakeup is a challenging issue. In a first 

step, we have to find out the precise relation between the 

time-stamp-counter (in machine cycles), and the wall time 

of the operating system (in ns as defined by the POSIX timer 

API). This can be achieved by repeatedly measuring the CPU 

time using the rdtsc instruction, and the OS time, and 

interpolating among these values. This approximation only 

has to be performed once for every hardware setting. For our 

test environment, we got 0.6672366819ns per CPU cycle. At 

the start of the attack, the offset of the time-stamp-counter 

to the OS time is measured, so we are able to convert time 

measured by rdtsc to OS time with very high accuracy. 

Note that since newer Linux versions change the cpu clock 

to save power when the idle thread runs, a dummy process 

with very low priority is lauched to prevent the idle thread 

from changing the linear relationship between OS time and 

time-stamp-counter. 

Even with exact computation of twakeup and tsleep, there 

are still other sources of inaccuracy: First, the time spent 

in the OS kernel stays constant for many measurements, but 

sometimes abruptly changes by hundreds of machine cycles. 

This is dynamically compensated by a feedback loop that 

adjusts twakeup tsleep according to the rate of observed mem- 

ory accesses. And second, the fact that the clock and timer 

devices don’t actually operate with nanosecond accuracy, as 

their API may suggest. In our hardware setting, the actual 

time when the timer expires lies in an interval of about ±100 



Dogo Rangsang Research Journal                                                 UGC Care Group I Journal 

ISSN : 2347-7180                                                          Vol-08 Issue-14 No. 01 February : 2021 

Page | 866                                                                                         Copyright @ 2021 Authors 

− 

#define CACHELINESIZE 64 

#define THRESHOLD 200 

unsigned measureflush(void *table, 

size_t tablesize, uint8_t *bitmap) { 

size_t i; 

uint32_t t1, t2; 

unsigned bit, n_hits = 0; 

for (i=0; i<tablesize/CACHELINESIZE; i++) { 

     asm (" xor %%eax, %%eax \n" 

" cpuid \n" 

" rdtsc \n" 

" mov %%eax, %%edi \n" 

" mov (%%esi), %%ebx \n" 

" xor %%eax, %%eax \n" 

" cpuid \n" 

" rdtsc \n" 

" clflush (%%esi) \n" : 

"=a"(t2), 

"=D"(t1) : 

"S"((const char *)table + 
CACHELINESIZE * i) : 

"ebx", "ecx", "edx", "cc"); 

bit = (t2 - t1 < THRESHOLD) ? 1 : 0; 

n_hits += bit; 

bitmap[i/8] &= ˜(1 << (i%8)); 

bitmap[i/8] |= bit << (i%8); 

} 

return n_hits; 

} 

Listing 5. Complete C source-code for checking which parts of a lookup 

table table have been accessed by some process shortly before. 

 

 
machine cycles around twakeup. In theory, this could also be 

compensated with a more complex computational model of 

the hardware. In practice, just assuming a linear relationship 

between TSC and OS time is sufficient for our purposes. 

To hide the spy process from the user twakeup tsleep is 

dynamically increased if no memory accesses are detected 

for an empirically set number of measurements. This allows 

the system to react to the actions of an interactive user with 

sufficient speed while the spy waits for a victim to start and 

after the victim terminates. 

Remark: Note that in spirit our DoS attack is similar 

to that in [34]. However, while their attack is still suited for 

the current BSD family, it does not work any more for the 

last versions of the Linux kernel. This is, because the logics 

of billing the CPU time of a process has advanced to a much 

higher granularity (from ms to ns), and no process can be 

activated without being billed by CFS any more, which was 

a central corner stone of the attack in [34]. 

 
C. Testing for Cache Accesses 

While in the previous section we described how the 

fairness condition of the CFS can be exploited to let the 

victim process advance by only one table lookup on average, 

we will now show how the spy process can learn information 

about this lookup. That is, we show how the spy process can 

find the memory location the victim process indexed into, 

up to cache line granularity. 

An implementation of this procedure in C is given in 

Listing 5, which we now want to discuss in detail. On a 

high level, it measures the time needed for each memory 

access into the lookup table, and infers whether this data 

had already been in the cache before or not. 

We start by describing the inner block of the for-loop. 

The  asm keyword starts a block of inline assembly, 

consisting of four parts: the assembly instructions, the out- 

puts of the block, its inputs, and a list of clobbered registers. 

These parts are seperated by colons. For ease of presentation, 

we describe these blocks in a different order in the following. 

Inputs: Only one input is given to the assembly block, 

namely a position in the lookup table. The given command 

specifies to store this position into the register %esi. The 

lookup table is traversed during the outer for loop, starting 

at the very beginning in the first iteration. 
Assembly    Instructions:    The    first    instruction, 

xor %eax, %eax is a standard idiom to set the 

register %eax to zero, by XORing it with its own content. 

Then, the cpuid instruction stores some information about 

the used CPU into the registers %eax,%ebx,%ecx,%edx. 

We do not need this information in the following. The 

only purpose of these two instructions is the sideeffect 

of the latter: namely, cpuid is a serializing instruction, 

i.e., it logically seperates the instructions before and after 

cpuid, as the CPU must not execute speculatively over 

such an instruction. Then, a 64 bit time stamp is stored into 

%edx:%eax by using the rdtsc instruction. The most 

significant part of this time stamp is discarded, and the 

least significant part (which is stored in %eax) is moved 

to %edi to preserve it during the following operations. 

Having this, the procedure accesses data at address %esi 

in the main memory. and stores it to %ebx. Similar to 

the beginning, the CPU is forced to finish this instruction, 

before again a timestamp is stored to %eax, and the 

accessed data is flushed from the cache again by flushing 

its cacheline using clflush(%%esi). 
Outputs: In each iteration, two outputs are handed back 

to the routine. The content of the register %%eax is stored 

to t2, and that of %%edi is stored to t1. 
Clobbered Registers: The last block describes a list 

of clobbered registers. That is, it tells the compiler which 

registers the assembly code is going to use and modify. It 

is not necessary to list output registers here, as the compiler 

implicitely knows that they are used. The remaining cc 

register refers to the condition code register of the CPU. 

Now, depending on the difference of t1 and t2, the 

procedure decides whether the accesses resulted in a cache 

hit (bit=1) or not (bit=0). These cache hits and misses 

describe whether or not the victim processes accessed the 

corresponding cache line in its last activation with high 

probability. The THRESHOLD of 200 CPU cycles has been 

found by empirical testing. Note here, that the serializing 

property of the cpuid instructions forces the CPU to always 

execute the same instructions to be timed between two 

rdtsc instructions, disregarding superpipelining and out- of-

order instruction scheduling. 
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These steps are performed for the whole lookup table, 

starting at the beginning of the table in the memory (i=0), 

and counting up in steps of size of the cache line, as 

this is the highest precision that can be monitored. The 

number n_hits of cache hits, and a bitmap bitmap 

containing information about where cache hits respectively 

misses occured, are then handed back to the caller of the 

function. 

D. Using Neural Networks to Handle Noise 

Naturally, the measurements obtained using the tech- 

niques from   IV-B and   IV-C are not perfect, but overlaid 

by noise. This is because not only the victim and the spy 

process, but also other processes running concurrently on 

the same system, perform memory accesses, which can 

cause wrong identifications of cache hits and misses. Also, 

sometimes the spy process will be able to advance by more 

than only one memory access at a time. Further, massive 

noise can be caused by prediction logics of the CPU, cf. IV-

D4. 

Thus, filtering out noise is a core step in our attack, 

which we achieve by using artificial neural networks (neural 

networks, ANNs), the functioning and training of which we 

explain next. 

1) Introduction to Artificial Neural Networks: 

On a very high level, an artifical neural network [35]–[38] is 

a computational model processing data. Typical applications 

are the approximation of probability distributions, pattern 

recognition, and classification of data. 

A neural network can be conceived as a directed graph 

with a value being attached to each of its nodes. Some of the 

nodes are labeled as input respectively output nodes. Except 

for the input nodes, the values of all nodes are computed 

from the values attached to its predecessors. 

For a node v, let u1, . . . , um be its predecessors, and let 
Xv, Xui denote the variables attached to these nodes. Then 

Xv is computed as 

m 

Xv = σ(w0 + wiXui ) . 
i=1 

for some wi R and a (typically nonlinear) activation 

function σ. 

Before being deployed in practice, artificial neural net- 

works typically have to undergo a training phase, where the 

weights wi are adjusted using back-propagation techniques. 

This can be done by first assigning randomly distributed 

values to the wi, and by then testing the neural network on 

some inputs samples, for which a target output is known. 

In the simplest case, the error of the output is then nu- 

merically differentiated with respect to the weights, and 

the weights are brought into the opposite direction of the 

obtained gradient by subtracting a ratio of it. These steps are 

iteratively executed until the quality of the neural network 

is good enough, i.e., until the error is sufficiently small. 

 

 

(a) Input of the neural network. 

 

(b) Output of the neural network. 

 

Figure 6. Input and output of our artificial neural networks. The input 
is given by a bitmap, where white squares indicate observed cache hits. 
The ANN filters out noise, and outputs probabilities that memory accesses 
were actually performed by the victim process. The darker the square, the 
higher is the probability that at the given point in time the specified memory 
location was accessed. 

 

 

More advanced techniques than just subtracting a ratio of the 

gradient contain, e.g., the so-called L-BFGS method [39]. 

We refer to [37], [38] for detailed discussions of artificial 

neural networks. 

2) Inputs and Outputs of Our ANN: 

The first of your two neural networks outputs the probability 

that at some given point t0 in time, a memory access 

was performed by the victim process at memory location 

adr0. It therefore takes as input a segment of the bitmap 

obtained using the techniques presented in IV-C. This 

bitmap contains a 1 whenever a cache hit was observed 

for a certain memory location and point in time, and a 0 
otherwise. 

For (t0, adr0), this segment of the bitmap consists of 

all observations (t−11, adr−11) up to (t11, adr11). That is, 

all cache hits/misses monitored up to 11 activations of the 
victim process before and after the questionable point in time 
are given as inputs to the ANN for the memory locations 

close to the questionable one. If parts of the resulting square 

of monitored cache hits/misses do not exist, e.g., because the 

associated addresses are outside of the lookup table, they are 

filled with all zeros. 

Figure 6 shows the inputs and outputs of a well-trained 

artificial neural networks. The inputs are given by a bitmap 

which indicates at which points in time which memory 

accesses resulted in cache hits or misses. This bitmap is 

obtained by using the algorithm described in IV-C. Because 

of the size of the lookup table (2kB) and the size of each 

cache line (26 = 64B), 32 addresses have to be considered. 
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Now, the neural network processes all cache hits in any of 

these 32 addresses for any given point in time. The output 

is shown in Figure 6(b): there, a dark square at (t0, adr0) 
indicates that the victim process accessed adr0 at t0 with 

very high probability, whereas light squares indicate that 

the corresponding memory location has not been accessed 

with high probability. As one can see, on average the 

victim process only advances by 1 memory access on each 

activation (there is one black square per output column), 

which emphasizes the high precision of the denial of service 

attack presented in IV-B. 

The example shows 61 activations, corresponding to 

nearly 4 rounds, of AES. Among the results, there are 

2 wrong positives, and 3 undetected memory accesses. 
However, this precision experimentically turned out to be 

sufficient for the ideal attack described in §III. 

then manipulated using the function 

1 
σ12(x) = 

1 + e−x 
, 

which is interpreted as an approximation of the target 

probability distribution. 

Let now be given a set V of test inputs which consists 

of 32 n observed memory accesses, where 32 is the 

number of addresses, and n is the number of activations 

of the victim process. Let further V1 be the subset of time- 

address-pairs (t, adr), at which a cache hit occurred (i.e., the 

victim process accessed address adr at activation t), and let 

V0 = V    V1. Let further yv     (0, 1) be the output of the 

neural network for position v = (t, adr). We then define the 

error function which we are aiming to minimize as 

e (V ) = log y  + log(1 − y )

! 

. 

t0. This is important for accurately estimating the timeline of 

memory accesses. In particular, two sources of inexactness 

For the second neural network, the error function is just 

the mean square error, i.e., we have 

are detected. First, as always 8 table entries are loaded into 

 

1  Σ 2 
e (W ) = (t   − y ) , 

 

 
indices map into the same cache line. This phenomenon 

is not detectable by the techniques from IV-C, as it only 

causes one single cache hit. Second, sometimes some other 

process than the victim process may be activated between 

two activations of the spy process and thus no table lookup 

is performed at all. Also, in rare cases, more than one 

memory access performed by the victim process can be 

retired because of inaccuracies in the parameters of the 

scheduler DoS attack. 

The input of this second ANN is the sum of outputs 

for one column of the first ANN. That is, for a column 

corresponding to some time t0, the input is given by 

31 

xt0 
= y(t0 ,adri), 

i=0 

and the output is given by the expected number of lookup 

table accesses at time t0. By y(t0 ,adri) we denote the output 

of the first ANN at time t0 and memory location adri. 

3) Parameters of the Neural Network: 

We now briefly describe the parameters of the ANN we use 

to obtain whether or not a cache hit occurred at (t0, adr0). 
Besides the input and the output layer, our neural network 

has one more hidden layer. In a first step, the (11+1+11)2 = 
529 bits input bits of the first ANN are first combined 

linearly, and then transformed into 23 hidden nodes using 

the nonlinear function 

1 1 1 x 
σ11(x) = 

1 + e−x − 
2 

= 
2 

tanh( 
2 

) . 

These intermediate results are again combined linearly, and 

where W consists of n columns of 32 observations each, 

tw is the target number of memory accesses in this column, 

and yw is the output of the neural network. In a first step, 

23 hidden nodes are created using the non-linear function 

σ21(x) = tanh(log x) . 

In a second step, the inner nodes are combined into one 

node by only computing a weighted sum (i.e., σ22(x) = x). 

Finally, somewhat non-standard, the output of our neural net- 

work is the variable attached to this node times the original 

input to the ANN. This real number is then interpreted as 

the number of table lookups the victim process performed at 

time t0. The consequential timing reconstruction turns out 

to be sufficiently precise to serve as input for the theoretical 

attack described in III-B. 

4) Sources of Noise: 

As can be seen in Figure 6, the noise obtained from real 

measurements is not entirely unstructured. We now briefly 

explain the sources of this structure. 

The vertical lines in Figure 6(a) stem from linear cache 

prediction logics of the CPU, which informally also fetches 

data from the memory locations next to the required ones 

into the cache. Thus, when the encryption process access 

some address adr0 in the cache, sometimes adr1 and adr2 
will be loaded into the cache as well. 

The horizontal lines can be explained by speculative 

execution. On a high level, if parts of the CPU are idle, 

it looks ahead in the instruction list, and already computes 

results in advance. Thus, the results are already available 

when the according instruction is actually reached, or they 

are dismissed if they are not needed because, e.g., a context 

w∈W 

the cache at a time, the victim process may advance by 

more than 1 table lookup in the case that subsequent lookup 

We then use a second ANN to estimate how many 

memory access the victim process performed at activation 
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switch happens before. This also explains why most of the 

horizontal lines in Figure 6(a) end in a real memory access 

in Figure 6(b). 

The remaining noise is due to other processes running 

concurrently on the same system. 

V. RESULTS   AND   DISCUSSION 

large N , the 9 correct candidates for each kj
∗ 

will exactly be 

given by the partial key-column candidates with the highest 

frequencies. 

Now, the key search algorithm from III-C can be short- 

ened  significantly,  as  for  each  kj
∗  

only  9  choice  are  left 

compared  to  24·l  = 220  before.  Having  assigned  values  of, 
e.g., k2∗ 

and k3∗
, there will typically be at most one possible 3 3 

In the following we give some timings obtained from real 

measurements, and discuss extensions of our attack. 

A. Results 

The following numbers were obtained on our test platform 

specified in II-D. Our spy process was specified to start 

250 threads and to monitor 100 encryptions of the victim 

process. 

• Running time: Performing 100 AES encryptions (i.e., 

encrypting 1.56kB) takes about 10ms on our platform. 

Now when monitoring its memory accesses, this blows 

up to 2.8 seconds. We believe that this delay is suffi- 

ciently small for a user not to become sceptical, as such 

a delay could also be explained by high disk activity 

or network traffic. 

• Denoising: The obtained measurements are first refined 
by applying our neural networks. This step approx- 

imately takes 21 seconds when running as a normal 

process on the target machine. 

• Preparing key search: Next, the a posteriori probabili- 

ties of all partial key-column candidates are computed 

by analyzing their frequencies, cf. III-B. This step 

approximately takes 63 seconds. 

• Key search: Finally, the correct key is searched as 
explained in III-C. The runtime of this step varies 

between 30 seconds and 5 minutes, with an average 

of about 90 seconds. 

Thus, finding the key on average takes about 3 minutes. 

However, if at all, the user will only notice the first few sec- 

onds, as all other processes are executed as normal processes 

without attacking the scheduler any more. Alternatively, the 

data collected in the first step could be downloaded to, and 

evaluated on, another machine. This data consists of one 

bitmap of size 2l = 25 = 32 bits for each memory access, 

cf. IV-C. For each encryption 160 memory accesses are 

monitored. Thus, 160 100  32 bits = 62.5kB would have 

to be downloaded. 

B. Accelerating the Key Search 

If a higher number of encryptions can be observed by the 
spy process, the key search of our attack can be accelerated 

considerably. Using the notation from III-B, this is because 

the peaks of the fi(k∗
i ) corresponding to the true partial key- 

solution for k3∗ 
among the 9 possible values. This allows 

one to implement the key search in a brute force manner. 

On our test environment, 300 encryptions (i.e., 4.69kB of 

encrypted plaintext) are sufficient for this approach. 
 

C. Extensions to AES-192 and AES-256 

While our implementation is optimized for AES-128, the 

presented key search algorithm conceptually can easily be 

adopted for the case of AES-192 and AES-256. However, 

the heap used in   III becomes significantly more complex 

for key sizes larger than 128 bits. This problem does 

not occur for the key search technique presented in the 

previous paragraph, as its complexity is rather influenced 

by the number of rounds than by the size of the ciphertext. 

We leave it as future work to obtain practically efficient 

implementations of either of these two techniques. 

 

D. Decryption without Ciphertext 

In previous work it was always implicitly assumed that 

sniffing the network over which the ciphertext is sent is a 

comparatively trivial task, and thus that obtaining the key is 

sufficient for also recovering the plaintext. We go one step 

further and show how our attack can be used to also recover 

the plaintext without knowing the ciphertext. Because of 

space limitations we will only describe the plaintext recovery 

technique given ideal observations of the cache. 

As in III-B we assume that we have a continuous stream 

of cache hits/misses, without knowing where one encryption 

starts and the next one ends. Further, we assume that the 

full key K has already been recovered. We then perform 

the following steps to recover the plaintext without knowing 

the ciphertext: 

• As in III-B, we consider each of the N possible offsets 

in the stream of observations, and treat it as if it was the 

beginning of an AES round. As earlier, we use xi, yi
 

to denote the ith column of the state matrix X before 
respectively after the round. 

• For each possible number of the inner round, i.e., 

j = 1, . . . , 9, and each column number, i.e.,  i  = 
0, . . . , 3, we now solve the following equation, under 

the  constraint  that  x∗
i , y∗

i    
are  equal  to  the  observed 

values: 
column candidates become easier to separate from the floor 

of wrong ones. As stated there, this is because the expec- 
kj = y 

i 
⊕ M • s(x̃i)  . 

tation  value  of  fi(k∗
i )  grows  much  faster  than  its  standard 

deviation. Thus, after sufficiently many observations, i.e., for 

Enumerating all possibilities shows that this equation 

typically has 0 or 1 solutions, where is 0 is dominating. 



Dogo Rangsang Research Journal                                                 UGC Care Group I Journal 

ISSN : 2347-7180                                                          Vol-08 Issue-14 No. 01 February : 2021 

Page | 870                                                                                         Copyright @ 2021 Authors 

− 

   ( !

•   ⊕ 

 ∧ 

For each j, we consider all possibly resulting state 

matrices, i.e., all possible Xj = (x0, x1, x2, x3). 
• For  each  Xj ,  we  now  compute  the  offset  at  which 

the corresponding encryption started by just subtracting 

16(j   1) from the current offset. Further, we compute 

the corresponding plaintext which can easily be done 

as the key is already known. 

• For each of the resulting plaintexts, we now count its 
frequency. At some offset (namely, the correct starting 
point of an encryption), the correct plaintext will occur 

at least 9 times, whereas all other resulting plaintexts 

will be randomly distributed by a similar argument as 

in §III-A. 

An ad-hoc real-world implementation of this approach 

takes about 2 minutes to recover the plaintext of a single 

encryption, i.e., to reconstruct 16B of the input. However, 

this must be seen as a proof of concept, which leaves 

much space for optimization, and which shows that it is 

not necessary to know the ciphertext to recover both, the 

key and the plaintext. 

VI. COUNTERMEASURES 

In the following we discuss some possible mitigation 

strategies to avoid information leakage, or at least to limit 

it to an extent which renders our attack impossible. An 

extensive list of countermeasures against access-driven cache 

attacks can be found in [6]. 

A. Academical Generic Mitigation Strategies 

The probably most obvious generic countermeasure 

against cache-based attacks is to avoid the usage of CPU 

caches at all, or to flush the whole cache on any context 

switch, i.e., whenever the scheduler preempts one process 

and activates a different one. However, these strategies are 

only of academical interest, as fetching memory from the 

RAM is between 10 and 100 times slower than accessing 

data which has already been copied into the cache. Another 

solution is to avoid key-dependent table lookups, which may 

be appropriate for certain security sensitive applications, but 

typically results in a high computational overhead. 

B. Generic (Semi-Efficient) Countermeasures 

Several generic countermeasures against access-based 

cache attacks, which still seem to be sufficiently efficient 

(at least for client machines), are conceivable: 

• One natural way to hamper our attack is to make all 

high-resolution timers (such as rdtsc) inaccessible 

to processes. Although this does not fully prevent 

our attack, to the best of our knowledge testing for 

cache hits would become too inefficient to remain 

unsuspicious to the user in this case. However, many 

software packages (e.g., runtime linkers, multimedia 

applications) extensively use rdtsc, and thus only 

very few scenarios, where this approach is appropriate, 

are conceivable. 

• The OS could be adapted such that it offers the 

possibility of pre-loading certain data each time a 

certain process is activated. If, in our case, the lookup 

table T [x] is defined to be such obligatorily available 

data, a spy process would only see cache hits, and 

could not infer any information about the secret key. 

However, such a pre-loading mechanism only seems to 

be reasonable if the lookup table is sufficiently small, 

such as 2 kB in our situation. This might not be the 

case for systems where, e.g., a multiexponentiation of 

the form y = gxhr in a 2048 bit group has to be 

evaluated [40]. Also, realizing this feature might require 

substantial work on the kernels of current operating 

systems. 

• Another option, especially for large lookup tables, is to 

mark them as uncachable, which implies that a victim 

process will only see cache misses. 

• The task scheduler could itself be hardened against 

our (and similar) attacks. Namely, one could limit the 

minimum time period between two context switches 

to, e.g., 500µs. While such a bound is small enough 

to keep the system responsive, denial of service attacks 

on the scheduler similar to ours would no longer work. 

 

C. Countermeasures for AES 

One concrete mitigation strategy has been realized in 

OpenSSL 1.0 [18]. There, only the substitution table S is 

stored, and then the required multiplications within GF (28) 
are computed by using the following relations, which can 

be realized in a highly efficient way using the PCMPGTB 

instruction: 

 

2   x    =   (x 1) 1b 
ff  (int8_t)x > 0 

0 (int8_t)x ≤ 0 

=    (x      1) ⊕ (1b ∧ PCMPGTB(x, 0)) 

3 • x  =   2 • x ⊕ x 

In this case, the required table contains 28 = 256 entries of 

20 = 1 bytes each, and on standard x86-architectures with 

a cache-line size of 26 = 64 bytes we have that only l = 2 

bits  of  each  xi
∗  are  leaked.  Looking  at  Table  1  now  shows 

that  we  have  p3  =  1,  i.e.,  every  ki
∗  ∈ {0, 1}4·2   is  a  valid 

partial key-column candidate for every xi
∗  and y∗

i 
. For this 

reason, our key search algorithm does not work anymore. 

Because of the large prevalence of AES another mitigation 

strategy is currently embarked by software vendors. Namely, 

they are increasingly often offering hardware support of 

AES in their chips, e.g., [25], rendering access-driven cache 

attacks impossible. 



Dogo Rangsang Research Journal                                                 UGC Care Group I Journal 

ISSN : 2347-7180                                                          Vol-08 Issue-14 No. 01 February : 2021 

Page | 871                                                                                         Copyright @ 2021 Authors 

REFERENCES 

[1] J.-F. Gallais, I. Kizhvatov, and M. Tunstall, “Improved trace- 
driven cache-collision attacks against embedded AES imple- 
mentations,” in WISA 2010 (to appear), 

 

[2] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi, 
“Cryptanalysis of DES implemented on computers with 
cache,”  in  CHES  2003,  ser.  LNCS,  C.  D.  Walter,  Ç .  Koç, 
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