
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 857 Copyright @ 2021 Authors

Access-Based Cache Attacks on AES Practiced with Cache Games

Mr.ALOK KUMAR PATTNAIK*, Mrs.PRAGYAN PARAMITA PANDA

Dept. OF Computer Science and Engineering, NIT , BBSR

alokkumar@thenalanda.com*, pragyanparamita@thenalanda.com

Abstract— Instead of relying on a scheme's theoretical flaws,

side channel attacks on cryptographic systems take advantage
of information obtained via physical implementations. Much
progress was made, in particular, during the past few years for
the class of access-driven cache-attacks. The locations of
memory accesses made by a victim process are the source of
information leaking for such attacks. In this study, we evaluate
the AES situation and provide an attack that can practically
instantly decrypt AES-128 with just a handful of observed
encryptions while still retrieving the entire secret key. Unlike
the majority of prior assaults, ours doesn't require any
knowledge of the plaintext or the ciphertext (such as its
distribution, etc.). Additionally, we demonstrate for the first
time how to recover the plaintext without having access to the
ciphertext. Furthermore, a non-privileged user account can be
used to run our spy process. It is the first functional attack for
implementations employing compressed tables, where it is no
longer possible to determine the start of AES rounds. for all
successful prior assaults. Our attack's outcomes are all
supported by a fully functional implementation, not just by
theoretical arguments or computer simulations. A contribution
that is possibly of independent relevance is a denial-of-service
assault on the present Linux scheduler (CFS), which enables
innovative, high-precision monitoring of memory accesses.
Lastly, we provide some generalisations of our assault and
make some suggestions for potential defences against it.
Keywords-AES; side channel; access-based cache-attacks;

I. INTRODUCTION

Cryptographic schemes preventing confidential data from

being accessed by unauthorized users have become in-

creasingly important during the last decades. Before being

deployed in practice, such schemes typically have to pass

a rigorous reviewing process to avoid design weaknesses

and bugs. However, theoretical soundness of a scheme

is not necessarily sufficient for the security of concrete

implementations of the scheme.

Side-channel attacks are an important class of implemen-

tation level attacks on cryptographic systems. They exploit,

for instance, the leakage of information from electromag-

netic radiation or power consumption of a device, and

running times of certain operations. Especially, side-channel

This work was in part funded by the European Community’s Seventh

Framework Programme (FP7) under grant agreement no. 216499.

attacks based on cache access mechanisms of microproces-

sors represented a vivid area of research in the last few years,

e.g., [1]–[15]. These cache based side-channel attacks (or

cache attacks for short) split into three types: time-driven,

trace-driven, and access-driven attacks.

In time-driven attacks an adversary is able to observe the

overall time needed to perform certain computations, such as

whole encryptions [8]–[11]. From these timings he can make

inferences about the overall number of cache hits and misses

during an encryption. On the other hand, in trace-driven

attacks, an adversary is able to obtain a profile of the cache

activity during an encryption, and to deduce which memory

accesses issued by the cipher resulted in a cache hit [12]–

[15]. Finally, access-driven attacks additionally enable the

adversary to determine the cache sets accessed by the

cipher [4]–[6]. Therefore, he can infere which elements of,

e.g., a lookup table have been accessed by the cipher.

Using the fact that accessing data which has already been

copied into the cache is up to two orders of magnitude

faster than accessing data in the main memory, access-driven

attacks roughly work as follows: assume two concurrently

running processes (a spy process S and a cryptographic

victim process V) using the same cache. After letting V
run for some small amount of time and potentially letting

it change the state of the cache, S observes the timings

of its own memory accesses, which depend on the state of

the cache. These measurements allow S to infer information

about the memory locations previously accessed by V .

A. Our Contributions

In a nutshell, we present a novel, practically efficient

access-driven cache attack on the Advanced Encryption

Standard (AES) [16], [17], one of the most popular

symmetric-key block-ciphers. On a high-level the main prop-

erties of our attack are two-fold: first, our attack works under

very weak assumptions, and is thus the strongest working

access-driven attack currently known. Second, we provide a

concrete and practically usable implementation of the attack,

based on new techniques. We also resolve a series of so far

open issues and technicalities.

Let us describe these properties and the underlying tech-

nical contributions in more detail. In fact, for our attack

to work we only need to assume that the attacker has a test

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 858 Copyright @ 2021 Authors

machine at his disposal prior to the attack, which is identical
to the victim machine. The test machine is used to carry out

an offline learning phase which consists of about 168′000
encryptions. Further, two artificial neural network have to
be trained on an arbitrary platform.

To carry out the attack all we need to be able to is to

execute a non-privileged spy process (e.g., our spy process

does not need to have access to the network interface) on the

victim machine. We don’t require any explicit interactions,

such as interprocess communication or I/O. Osvik et al. [6],

[7] refer to attacks in this setting as asynchronous attacks.

Our attack technique has the following features:

• In contrast to previous work [5]–[7], our spy process

neither needs to learn the plain- or ciphertexts involved,

nor their probability distributions in order recover the

secret key.

• For the first time, we describe how besides the key

also the plaintext can be recovered without knowing

the ciphertexts at all.

• Our attack also works against AES implementations

using so called compressed tables, which are typically

used in practice, e.g., in OpenSSL [18]. When using

compressed tables, the first, respectively last round of

an encryption typically cannot be identified any more,

which renders previous attacks impossible.

• We have a fully working implementation of our attack

techniques against the 128-bit AES implementation of

OpenSSL 0.9.8n on Linux. It is highly efficient and

is able to recover keys in “realtime”. More precisely,

it consists of two phases: in an oberservation phase,

which lasts about 2.8 seconds on our test machine,

about 100 encryptions have to be monitored. Then, an

offline analysis phase, lasting about 3 minutes recovers

the key. The victim machine only experiences a delay

during the observation phase. This slowdown is suffi-

ciently slight to not raise suspicions, since it might as

well be caused by high network traffic, disk activity,

etc.. To the best of our knowledge, this is the first fully

functional implementation in the asynchronous setting.

At the heart of the attack is a spy process which is able

to observe (on average) every single memory access

of the victim process. This novelly high granularity in

the observation of cache hits and misses is reached by

a new technique exploiting the behavior of the Com-

pletely Fair Scheduler (CFS) used by modern Linux

kernels. We believe that this scheduler attack could be

of independent interest.

• Finally, we also describe a novel approach to recon-
struct the AES key from the leaked key bits leaked.

To emphasize the practicability of our attack, let us

sketch how it could be used to mount a targeted malware

attack (which are currently regularly seen in practice). In

a targeted attack we may assume that the attacker knows

the configuration of the victim machine and can thus obtain

an identical machine, which is one of our preconditions.

Next, standard malware infection techniques can be used

to compromise a non-privileged account and to deploy our

custom payload on the victim machine. Since we only need

to observe around 100 encryptions, which correspond to 1.56
kilobytes of ciphertext, we are able to recover the secret-

key almost immediately whenever AES is being used on the

victim machine after a successful infection.

B. Related Work

It was first mentioned in [19], [20] that the cache behavior

potentially poses a security threat. The first formal studies

of such attacks were given by Page [21], [22].

First practical results for time-driven cache attacks on

the Data Encryption Standard (DES) were given in [2],

and an adoption for AES was mentioned without giving

details. Differently efficient time-driven attacks on AES can

be found in [6]–[11], some of which require that the first

respectively last round of AES can be identified. In [23], an

analytical model for forecasting the security of symmetric

ciphers against such attacks is proposed.

Trace-driven cache attacks were first described in [21].

Other such attacks on AES can be found, e.g., in [12]–

[15]. Especially, [12] proposes a model for analyzing the

efficiency of trace-driven attacks against symmetric ciphers.

Percival [4] pioneered the work on access-driven attacks

and described an attack on RSA. Access-driven attacks on

AES were pioneered by Osvik et al. [6], [7]. They describe

various attack techniques and implementations in what they

call the synchronous model. The synchronous model makes

rather strong assumptions on the capabilities on an attacker,

i.e., it assumes that an attacker has the ability to trigger

an encryption for known plaintexts and know when an

encryption has begun and ended. Their best attack in the

synchronous model requires about 300 encryptions.

Osvik et al. also explore the feasibility of asynchronous

attacks. They refer to asynchronous attacks as an “extremely

strong type of attack”, and describe on a rather high-level

how such attacks could be carried out, assuming that the

attacker knows the plaintext distribution and that the attack is

carried out on a multi-threaded CPU. Also, they implement

and perform some measurements on multi-threaded CPUs

which allow to recover 47 key-bits. However, a description

(let alone an implementation) of a full attack is not given,

and many open questions are left unresolved. Further, the

authors conjecture that once fine grained observations of

cache-accesses are possible, the plaintext distribution no

longer needs to be known. Loosely speaking, one can

say that Osvik et al. postulate fully worked and practical

asynchronous attacks as an open problem.

This is where the work of Neve et al. [5] picks up. They

make advances towards realizing asynchronous attacks. To

this end they describe and implement a spy process that

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 859 Copyright @ 2021 Authors

§

§

§

§

is able to observe a “few cache accesses per encryption”

and which works on single threaded CPUs. They then

describe a theoretical known ciphertext attack to recover

keys by analyzing the last round of AES. The practicality

of their attack remains unclear, since they do not provide an

implementation and leave various conceptual issues (e.g.,

quality of noise reduction, etc.) open.

We improve over prior work by providing a first practical

access-driven cache attack on AES in the asynchronous

model. The attack works under weaker assumptions than

previous ones, as no information about plain- and ciphertext

is required1, and it is more efficient in the sense that we

only need to observe about 100 encryptions. We also reach a

novelly high granularity when monitoring memory-accesses.

Further, our attack also works against compressed tables,

which were not considered before.

Finally, several hardware and software based mitigations

strategies for AES have been proposed, e.g., [24]–[26].

C. Organization of this Document

In II we briefly recapitulate the structure of a CPU cache,

and the logics underlying it. We also describe the Advanced

Encryption Standard (AES) to the extent necessary for our

attack. In III we then explain how to recover the AES

key under the assumption that one was able to perfectly

observe the single cache-accesses performed by the victim

process. We drop this idealization in IV and show how by

combining a novel attack on the task scheduler and neural

networks sufficiently good measurements can be obtained in

practice. We give some real measurements and extensions

of our attack in V. In particular, we there sketch how to

obtain the plaintext without knowing the ciphertext. Finally,

we propose some countermeasures in §VI.

II. PRELIMINARIES

We first summarize the functioning of the CPU cache

as far as necessary for understanding our attack. We then

describe AES, and give some details on how it is typically

implemented. We close this section by describing the test

environment on which we obtained our measurements.

A. The CPU Cache and its Side Channels

We next describe the behavior of the CPU cache, and

how it can be exploited as a side channel. The CPU cache

is a very fast memory which is placed between the main

memory and the CPU [27]. Its size typically ranges from

some hundred kilobytes up to a few megabytes.

Typically, data the CPU attempts to access is first loaded

into the cache, provided that it is not already there. This

latter case is called a cache hit, and the requested data

1To be precise, the statement is true whenever AES is used, e.g., in CBC
or CTR mode, which is the case for (all) relevant protocols and applications.
In the pathological and practically irrelevant case, where the ECB mode
(which is known to be insecure by design) is used we have to require that
there is some randomness in the plaintext.

can be supplied to the CPU core with almost no latency.

However, if a cache miss occurs, the data first has to be

fetched via the front side bus and copied into the cache, with

the resulting latency being roughly two orders of magnitude

higher than in the former case. Consequently, although being

logically transparent, the mechanics of the CPU cache leak

information about memory accesses to an adversary who is

capable of monitoring cache hits and misses.

To understand this problem in more detail it is necessary

to know the functioning of an n-way associative cache,

where each address in the main memory can be mapped into

exactly n different positions in the cache. The cache consists

of 2a cache-sets of n cache-lines each. A cache-line is the

smallest amount of data the cache can work with, and it

holds 2b bytes of data, which are accompanied by tag and

state bits. Cache line sizes of 64 or 128 bytes (corresponding

to b = 6 and b = 7, respectively) are prevalent on modern

x86- and x64-architectures.

To locate the cache-line holding data from address A =
(Amax, . . . , A0), the b least significant bits of A can be

ignored, as a cache-line always holds 2b bytes. The next

a bits, i.e., (Aa+b−1, . . . , Ab) identify the cache-set. The

remaining bits, i.e., (Amax, . . . , Aa+b) serve as a tag. Now,

when requesting data from some address A, the cache logic

compares the tag corresponding to A with all tags of the
(unique) possible cache-set, to either successfully find the

sought cache-line or to signal a cache miss. The state bits

indicate if the data is, e.g., valid, shared or modified (the

exact semantics are implementation defined). We typically

have max = 31 on x86-architectures and max = 63 on x64-

architectures (however, the usage of physical address

extension techniques may increase the value of max [28]).

Addresses mapping into the same cache-set are said to

alias in the cache. When more then n memory accesses to

different aliasing addresses have occurred, the cache logic

needs to evict cache-lines (i.e. modified data needs to be

written back to RAM and the cacheline is reused). This

is done according to a predetermined replacement strategy,

most often an undocumented algorithm (e.g. PseudoLRU in

x86 CPUs), approximating the eviction of the least recently

used (LRU) entry.

With these mechanics in mind, one can see that there

are at least two situations where information can leak to

an adversary in multi-tasking operating systems (OS). Let’s

therefore assume that a victim process V , and a spy process

S are executed concurrently, and that the cache has been

initialized by S. After running V for some (small) amount

of time, the OS switches back to S.

• If S and V physically share main memory (i.e., their

virtual memories map into the same memory pages in

RAM), S starts by flushing the whole cache. After

regaining control over the CPU, S reads from mem-

ory locations and monitors cache hits and misses by

observing the latency.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 860 Copyright @ 2021 Authors

˜ x5 x9 xD x1

— −

˜ 1 2 3 1̃
 ˜

§

⊕ •

˜ s(x5) s(x9) s(xD) s(x1)

• If S and V do not physically share memory, then

they typically have access to cache aliasing memory.

In this case, S initializes the cache with some data D,

and using its knowledge of the replacement strategy,

it deterministically prepares the individual cache-line

states. When being scheduled again, S again accesses

D, and notes which data had been evicted from the

cache. This again allows S to infer information about

the memory accesses of V .

Our target is the OpenSSL library on Linux, which in

practice resides at only one place in physical memory and

is mapped into the virtual memory of every process that uses

it. In this paper we are therefore concerned with the shared-

memory scenario, where V uses lookup tables with 2c en-

tries of 2d bytes each, and uses a secret variable to index into

it. We will further make the natural assumption of cache-line

according to a fixed and invertible substitution rule, and

MixColumns multiplies a matrix by a fixed matrix M .
In the first step of each round of AES, the ShiftRows

operation performs the following permutation on the rows

of a matrix X:

x0 x4 x8 xC

ShiftRows(X) = X =
xA xE x2 x6

xF x3 x7 xB

We will denote the columns of X̃ by (x̃0 x̃1 x̃2 x̃3).

In the next step, all bytes of X̃ are substituted as defined

by an S-box given in [17]. We denote this substitution by

s(·). That is, we have SubBytes(X̃) = s(X̃) with

s(x0) s(x4) s(x8) s(xC)

in memory corresponds to a cache-line boundary. For most

compilers, this is a standard option for larger structures.

Exploiting the previously mentioned information leakage

will allow S to infer the memory locations V accesses into,

up to cache-line granularity. That is, S is able to reconstruct

l = c max(0, b d) bits of the secret index for a cache-line

size of 2b bytes. Note that l > 0 whenever the lookup table

does not entirely fit into a single cache-line. Starting from

these l bits, we will reconstruct the whole encryption key in

our attack.

B. AES – The Advanced Encryption Standard

The Advanced Encryption Standard (AES) [16] is a sym-

metric block cipher, and has been adopted as an encryption

standard by the U.S. government [17]. For self-containment,

and to fix notation, we next recapitulate the steps of the AES

s(X) =
s(xA) s(xE) s(x2) s(x6)

,

s(xF) s(x3) s(x7) s(xB)

or s(X̃) = (s(x̃0) s(x̃1) s(x̃2) s(x̃3)) for short.

Finally, the state matrices are multiplied by a constant

matrix M in the MixColumns operation:

2 3 1 1

MixColumns(s(X)) = M •s(X) =
1 1 2 3

•s(X)

3 1 1 2

As for X, we abbreviate the columns of M by bold letters.

Here and in the remainder of this document, byte values

have to be read as hexadecimal numbers.

Having said this, and denoting the round key of the ith
round by Ki, we can write AES as the following recurrence,

where X0 is the plaintext, and Xr+1 is the ciphertext:
algorithm [29, 4.2].

AES always processes blocks (x0

. . . xF) of 16 bytes at

Xi
 ⊕ Ki i = 0,

a time by treating them as 4 4 matrices. We will denote
these matrices by capital letters, and its column vectors by

Xi+1 =
 M • s(Xi) ⊕ Ki 0 < i < r, s(X̃i) ⊕ Ki i = r . (1)

bold, underlined lowercase letters:

x0 x4 x8 xC

For the 128-bit implementation of AES we have r = 10.
We will not detail the key schedule here, but only want

x1 x5 x9 xD
X = = (x

x x x) to note that K i+1 can be obtained from Ki by applying a

x2 x6 xA xE x3 x7 xB xF 0 1 2 3 nonlinear transformation using the same S-box as the cipher itself, cyclically shifting the byte vectors, and XORing
with (2i, 0, 0, 0) (where 2 has to be read as an element in The single bytes xi are treated as elements of GF (28). We

denote addition in this field by and multiplication by .

Note that the addition equals bitwise XOR. The irreducible

polynomial for multiplication is given by x8+x4+x3+x+1,

see [17] for details. We use these operations in the usual

overloaded sense to operate on matrices and vectors.

Except for XORing the current state with a round key,

the single rounds of AES makes use of three operations:

ShiftRows cyclically shifts the rows of a matrix X, SubBytes

performs a byte-wise substitution of each entry in a matrix

GF (28)). The key schedule is illustrated in Figure 2.

C. How to Implement AES

In the following we briefly describe the basic ideas how

to efficiently implement AES. These tricks are corner stones

for our attack presented in the subsequent sections.

AES is heavily based on computations in GF (28),
whereas the arithmetic logic unit (ALU) of most CPUs

only provides arithmetic on integers. The fast reference

implementation of [30] reformulates AES to only need basic

×

alignment, i.e., that the starting point of these lookup tables

˜

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 861 Copyright @ 2021 Authors

×

§

— −

•

i

∗ ∈ { }
K

K ⊆ { }

operations on 32-bit machine words. The implementation

of OpenSSL [18] further exploits redundancies and halves

the space needed for lookup tables, saving two kilobyte of

memory. In the following we present these techniques on

hand of one inner round of AES, using X and Y for the

state matrices before and after the round, and K to denote

the round key. That is, we have the following relation:

Y = M • s(X̃) ⊕ K. (2)

Consequently, we have

y
0

= m0 • s(x0) ⊕ m1 • s(x5) ⊕

m2 • s(xA) ⊕ m3 • s(xF) ⊕ k0, (3)

and similarly for y , y , y , where k denotes the first

in the latter situation, as the observed memory accesses are

indistinguishable from the previous rounds. Thus, the attacks

of, e.g., [5], [6] cannot be executed any more. In particular

this is the case for the compressed tables implementation of

OpenSSL 0.9.8.

D. Test Environment

All our implementations and measurements have been

obtained on a Intel Pentium M 1.5GHz (codename “Banias”)

processor, in combination with an Intel ICH4-M (codename

“Odem”) chipset using 512MB of DDR-333 SDRAM. On

this system, we were running Arch Linux with kernel version

2.6.33.4. As a victim process we used the OpenSSL 0.9.8n

implementation of AES, using standard configurations.
1 2 3 0

column of K when interpreting K as a matrix of 4 4 bytes,

indexed analogously to X and Y . To avoid the expensive

multiplications in GF (28) tables T0, . . . , T3 containing all

potential results are precomputed. That is, we have

Ti[x] = mi • s(x) 0 ≤ i ≤ 3.

This allows one to rewrite (3) to the following form which

only uses table lookups, and binary XORs:

y
0

= T0[x0] ⊕ T1[x5] ⊕ T2[xA] ⊕ T3[xF] ⊕ k0.

Each Ti has 28 entries of size 4 bytes each, and thus the

tables require 4kB of memory. However, they are highly

redundant. For instance, we have that

T1[x] = (3 2 1 1)T • s(x)

= (2 1 1 3)T • s(x) ≫ 3 = T0[x] ≫ 3,

where ≫ denotes a bytewise rotation towards the least
significant byte. Thus, it is possible to compute all Ti by

rotating T0. Yet, having to perform these rotations would
cause a performance penalty. The idea thus is to use one
table T the entries of which are doubled entries of T0. That

III. BREAKING AES GIVEN IDEAL MEASUREMENTS

In this section, we show how the full secret AES key can

be recovered under the assumption of ideal cache measure-

ments. That is, we assume that a spy process can observe all

cache accesses performed by a victim process in the correct

order. Making this (over-restrictive) assumption considerably

eases the presentation of our key recovery techniques. We

will show how it can be dropped in §IV.

A. Using Accesses from Two Consecutive Rounds

As discussed in II-A, having recorded the memory
accesses into the lookup tables allows one to infer l =
c min(0, b d) bits of the secret index, where the lookup

table has 2c entries of 2d bytes each, and where a cache-line

can hold 2b bytes. We therefore introduce the notation x∗
to denote the l most significant bits of x, and also extend

this notation to vectors. In our case, we have c = 8 and

d = 3. If, for instance, we assume b = 6 we have l = 5 and

consequently

110010002
∗

110012

is, if T0 has entries of the form (abcd), those of T are of
000100112

100100112

000102
=

100102 .

T1[x] = 32 bit word at offset 3 in T [x].

While saving 2kB of memory and thus reducing the L1

footprint of the implementation substantially, this approach

also allows to avoid the rotations by accessing T at the

correct offsets.

While the above techniques work for most of AES, there

are basically two ways to implement the last round which

differs from the other rounds, cf. (1). First, an additional

lookup table can be used for s(X̃) instead of M s(X̃).

Alternatively, one can reuse the existing lookup table(s) by

accessing them at positions that have been multiplied by a

1-entry of M . While the first technique can be exploited to

identify where an encryption ends (and thus also to identify

the first or last round of an encryption) by checking for

memory accesses into this new table, this is not possible

For ease of presentation, and because of its high practical

relevance on current CPUs, we will fix b = 6 for the

remainder of this paper. However, the attack conceptually

also works for other values of b, with a higher efficiency for

b < 6, and a lower efficiency if b > 6, as less information

about the secret index leaks through the cache accesses in

this case.

With this notation, and (2), it is now easy to see that the

following equations are satisfied:

k∗
i = y∗ ⊕ (M • s(x̃i))∗ 0 ≤ i ≤ 3 . (4)

Each of these equations specifies a set i 0, 1 4l
of partial key-column candidates. Namely, we define i to

consist of all elements ki 0, 1 4l for which the measured

x̃i
∗

can be completed to a full four byte vector x̃i satisfying

001012 001010102 the form (abcdabcd). We then have, e.g.,

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 862 Copyright @ 2021 Authors

{ }

K

{ }
K

K

{ }

K

∗

√

i i ki l ki

∈ { } ∈ K

l pl = E[|Ki|]/|{0, 1}4l|

1 1

2 1

3 1

4 0.3955 . . .
5 3.6063 . . . · 10−3

Assume now that an attacker is able to observe 160M +
31 = N + 31 memory accesses. This means that quanti-

tatively the accesses of M full encryptions are observed,

but we do not require that the first observed access also is

the first access of an encryption. The 31 remaining accesses

6

7

8

Table 1.

1.5021 . . . · 10−6
5.9604 . . . · 10−8

2.3283 . . . · 10−10

Depending on the number l of leaked bits, only a fraction pl of

belong to the (M + 1)st encryption. On a high level, to

circumvent the problem of not being able to identify round

ends/beginnings, we now perform the following steps:

• We treat each of the first N observed memory accesses
the keys in {0, 1}4l can be parts of the secret key’s ith column, if x∗

i and
y∗
i

are known.
as if it was the beginning of an AES round.

• For each of these potential beginnings, we compute
the sets of potential key-column candidates. For each

(4). These sets can be computed by enumerating all

possible values of x̃i.

232−4l element of 0, 1 4l we thereby count how often it lies

in these sets.

The cardinality of i turns out not to be constant for all

x̃i
∗
. However, we will need to argue about the probability

that some x̃i
∗

is a partial key-column candidate. We therefore
compute the expected cardinality of the i by assuming that

the x̃i
∗

are equally distributed in 0, 1 4l. Even though the
encryption process is deterministic, this assumption seems
to be natural, as otherwise the different states within an

encryption would very likely be strongly biased, resulting

in a severe security threat to AES.

Table 1 displays the expected sizes of i for all possible

values of l. The last column of the table gives the probability
pl that a random k∗

i ∈ {0, 1}4l is a partial key-column

• From these frequencies we derive the probability that
a given element of 0, 1 4l is a correct part of the

unknown key.

More precisely, for any of the potential N beginnings

of an AES round, we compute the sets i of partial key-

column candidates for i = 0, . . . , 3, and count how often

each possible k∗
i 0, 1 4l also satisfies k∗

i i. We

denote this frequency by fi(ki
∗). By the former remark, and

because of the 31 last monitored memory accesses, we have

enough observations to complete (4) for any of these N
offsets.

A simple observation yields that k∗
i is an element of

candidate for a random x̃i
∗
. One can see that for 1 ≤ l ≤ 3 Ki at least zk∗

i
M times, if ki

∗
is the truncated part of the

every x̃∗ can be completed to a x̃ satisfying (4). Thus, in correct ith column of a round key in zk∗ different rounds.
i i ∗ i

 this case, this approach does not yield any information about

the secret key K. The contrary extreme happens if we have

l = 8, i.e., if we can monitor the exact entries of the lookup

table accessed by the victim process. In this case, we can

recover the key only from the states X, Y of two consecutive

rounds. The interesting case is where 3 < l < 8 where we

can learn a limited amount of information about the secret

key. We will be concerned with this case in the following.

B. Using Accesses from Continuous Streams

The observations of the previous section typically cannot

be directly exploited by an attacker, as for implementations

of AES using compressed tables it is hard to precisely

Put differently, we have fi(ki) ≥ zk
i
∗ M . For each of the

remaining N − zk∗
i
M wrong starting points we may assume

that ki occurs in Ki with probability pl. This is, because
solving (4) for wrong values of x∗

i , y∗
i

should not leak

any information about the correct key, even if x∗
i , y∗

i
are

not fully random, but overlapping parts of correct values
from subsequent rounds. As in the previous section, this

assumption experimentally proved to be sufficiently satisfied

for our purposes.

Denoting the binomial distribution for n samples and
probability p by Binomial(n, p), we can now describe the

properties of fi(k∗
i) as follows:

f (k∗) ∼ Binomial(N − z ∗ M, p) + z ∗ M
starts. Rather, an attacker is able to monitor a continuous

stream of memory accesses performed by the victim process.

Consequently, we will show how the key can be recon-

structed from observations of M encryptions.

We remark that the order of memory accesses within each

round is implementation dependent, but the single rounds are

always performed serially, and each round always requires

16 table lookups. Thus, as (4) puts into relation states of

consecutive rounds, it is always possible to complete all four

equations (i.e., for i = 0, . . . , 3) within the first 31 memory

accesses after the first access in a round.

E[fi(k∗
i)] = Npl + zk

i
∗ M (1 − pl)

V[fi(k∗
i)] = (N − zk

i
∗ M)pl(1 − pl) .

From these equations one can see that every k∗
i occurring

in a round key causes a peak in the frequency table. We
can now measure the difference of these peaks and the large

floor of candidates ki
∗

which do not occur in a round key.

This difference grows linearly in the number M of observed
encryptions. On the other hand, the standard deviation

σ[fi(k∗
i)] = V[fi(ki

∗)] only grows like the square root of

M (note here, that N is a fixed constant times M). Thus, for

determine where one round stops and where the next one

4l
|{0, 1} |

24

28

E[|Ki|]

24

28

212 212

216 214.661...

220 211.884...

224 27.9774...

228 24

232 1

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 863 Copyright @ 2021 Authors

3

S

3

3

• S

i

S

S · ·

S

3

3

3

{ }

i

S
S

{ }

implies fixing
∗k

3

3

• S

3 3

3 3 3

S]{ }

S] { }

{ }] { }]{ }

an increasing number of encryptions, the peaks will become

better to separate from the floor.

Using the fi(ki
∗) and the Bayes Theorem [31], [32] it is

now possible to compute a posteriori probabilities qi(k∗
i)

that a given ki
∗

really occurred in the key schedule of the
victim process.

C. Key Search

As stated in the previous section, key candidates k∗
i will

experience a peak in the frequency table if they are part of

the correct key schedule, while all other k∗
i will not do so

ki+4∗
for all possible choices of ki+4∗

as before.

However, because of the nonlinear structure of the

key schedule of AES, we are now able to put into

relation ti+3∗
with parts of ki+3, and check whether the

nonlinearity can be solved for any i, i.e., for any fixed

position of in Figure 2 (there, we indicated the case

i = 2). If this is not the case, we discard ki+4∗
,

otherwise we add it to the heap.

We proceed analogously for ki+5∗
.

Let now the topmost element of the heap already
contain candidates for ki

∗
up to ki+5∗

. 3 3
with high probability. Next, we are therefore concerned with

assigning scores to sets of partial key-column candidates,

and to search for sets with high scores, which then are very

likely to stem from the original key.

We chose the mean log-probability to assign a score to

a set of candidates. That is, for a set of candidates, the

score is computed as follows:

h(S) =
 1 Σ

log q (k∗) .

From Figure 2 we can see that given four kj in a

line allows to fill the complete key schedule. Given

, we already fixed 4 4 l = 80 bits of such a

“line”. Further, the solving the nonlinearities in the

key schedule yields 24 more bits thereof. That is, only

24 bits of the potential key remain unknown. We now

perform a brute-force search over these 224 possibilities

at each possible position of S in the key schedule. Note
|S|

k∗
i
∈S

We assume that every element in such a set is tagged with

the position of the key schedule it is a candidate for.
We now iteratively search for the correct, unknown key.

here that typically there is at most 1 solution of the
non-linearities for a given position. In the rare case

that there are more than 1 solutions, we perform the

following steps for either of them.
For all possible completions of ki

∗
, . . . , ki+3∗

, we 3 3
Loosely speaking, our technique outputs the K for which compute the whole key schedule, i.e., we compute kj
the mean log-probability over all partial key-columns in the for i = 0, . . . , 3, j = 1, . . . , 9

i
and compute the score

whole key schedule is maximal. The algorithm stated below

starts by fixing one entry of the key schedule which has a

good score. Then, whenever adding a further part of the key,

the key schedule of AES also forces one to fix some other

parts, cf. Figure 2 (there, the ti denote temporary variables

without further semantics). Our algorithm now iteratively

repeats these steps until a K implying a key schedule with

a high score is found.

• We start by searching for partial key-column candidates

for ki
∗

, i.e., for the last column of the ith round key.
Therefore, we initialize a heap containing singletons for

all possible values of k∗
3, sorted by their score h({k∗

3}).

• The topmost element of the heap, ki
∗

is removed,
and combined with all partial key-column candidates

k∗
3, interpreted as candidates for ki+1∗

, i.e., as par-
tial key-column candidates for the last column of the
(i + 1)st round’s key. As can be seen from Figure 2,
combining {ki

∗
} with a candidate for ki+1∗

also

for kj
∗

: i = 0, . . . , 3, j = 0, . . . , 9 . We store the key

corresponding to the set with the highest score, together

with its score.

• Now, we continue processing the heap until the topmost

element of the heap has a smaller score than the stored

full key. In this case, we output the stored key as the

secret key and quit. This is, because typically the score

of sets will decrease when extending the set, because

even when adding a candidate with very high score,

most often other parts with worse score also have to be

added because of the structure of the key schedule.

We remark that the symmetry of the key schedule can be

used to increase the efficiency when actually implementing

our attack in software. For instance, a triangle with some

fixed “base line” has the same score h() as the triangle

flipped vertically. For this reason, the score only has to be

computed for one of these triangles in the first two steps of
3

i+1
2

3
because of the relation of round

our attack.

keys. We denote this operation of adding a partial key-

column candidate ki+1∗
and all associated values to

ki
∗

by . All the resulting sets ki
∗

ki+1∗
are

added to the heap, according to their scores.

This step is applied analogously whenever the topmost

element of the heap does not at the same time contain
candidates for ki

∗
and ki+3∗

.

IV. ATTACKING AES IN THE REAL WORLD

In the previous section we showed how the full secret

key can efficiently be recovered under the assumption that

the cache can be monitored perfectly. That is, we assumed

that an attacker is able to observe any single cache-access

performed by the victim process. We now show this over-

restrictive assumption can be dropped. We therefore first 3 3

If the topmost element of the heap already contains

a candidate for ki+3∗
, we compute the combinations

describe the way the task scheduler of modern Linux kernel

works, and explain how its behavior can be exploited for our

i i

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 864 Copyright @ 2021 Authors

−

≤

Figure 2. Key schedule of the 128 bit variant of AES. By kn we denote the mth column of the nth round key. The tn are temporary variables without m any further semantics. The bottommost elements, i.e., k0

i , are passed as inputs to the nonlinearity at the top. During the key search, incrementally parts of
the key schedule are fixed in order to find a full key schedule with maximal score.

purposes. We then briefly recapitulate the concept of neural

networks, and show how they can serve an attacker to treat

inaccurate measurements.

A. CFS – The Completely Fair Scheduler

virtual

runtime

maximum

“unfairness”

reached

process 1

 process 2

Scheduling is a central concept in multitasking OS where

CPU time has to be multiplexed between processes, creating

the illusion of parallel execution. In this context, there are

 process 3

time

three different states a process can possibly be in (we do not

need to distinguish between processes and threads for now):

• A running process is currently assigned to a CPU and
uses that CPU to execute instructions.

• A ready process is able to run, but temporarily stopped.
• A blocked process is unable to run until some external

event happens.

The scheduler decides when to preempt a processes (i.e.

transisition from running to ready) and which process is next

to be activated when a CPU becomes idle (i.e. transition

from ready to running). This is a difficult problem, because

of the multiple, conflicting goals of the scheduler:

• guaranteeing fairness according to a given policy,

• maximizing throughput of work that is performed by

processes (i.e. not waste time on overhead like context

switching and scheduling decisions) and

• minimizing latency of reactions to external events.

Starting from Linux kernel 2.6.23, all Linux systems are

equipped with the Completely Fair Scheduler (or CFS) [33],

whose general principle of operation we describe in the

following. Its central design idea is to asymptotically behave

like an ideal system where n processes are running truely

parallel on n CPUs, clocked at 1/nth of normal speed each.

To achieve this on a real system, the CFS introduces a virtual

runtime τi for every process i. In the ideal system, all virtual

runtimes would increase simultaneously and stay equal when

the processes were started at the same time and never block.

In a real system, this is clearly impossible: only the running

Figure 3. Functioning of the Completely Fair Scheduler. Here, three
process are running concurrently. After process 1 was the assigned the CPU
for some time, process 2 is the next to be activated to keep the unfairness

among the different processes smaller than some threshold.

process’ virtual runtime can increase at a time. Therefore

CFS keeps a timeline (an ordered queue) of virtual runtimes

for processes that are not blocked. Let the difference between

the rightmost and leftmost entries be ∆τ = τright τleft. This

difference in virtual runtime of the most and least favourable

scheduled processes can be interpreted as unfairness, which

stays always zero in an ideal system. CFS lives up to its

name by bounding this value: ∆τ ∆τmax. It always selects

the leftmost process to be activated next and preempts the

running rightmost process when further execution would

exceed this maximum unfairness ∆τmax.

This logic is illustrated in Figure 3. There, three processes

are running on a multitasking system. At the beginning,

process 1 is the next to be activated because it has the least

virtual runtime. By running process 1 for some time the

unfairness is allowed to increase up to ∆τmax. Then CFS

switches to process 2, which became the leftmost entry on

the timeline in the meantime. This procedure is repeated

infinitely so that every process asymptotically receives its

fair share of 1/nth CPU computing power per time.

A very important question is how the virtual runtime

τunblock of unblocking processes is initialized. It is desirable

that such a process is activated as soon as possible and given

≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫

01 02 04 08 10 20 40 80 1b 36

t0
⊕

t1
⊕

t2
⊕

t3
⊕

t4
⊕

t5
⊕

t6
⊕

t7
⊕

t8
⊕

t9
⊕

s s s s s s s s s

≫

s

k0
⊕

k1
⊕

k2
⊕

k3
⊕

k4
⊕

k5
⊕

k6
⊕

k7
⊕

k8
⊕

k9
⊕

k10 0 0 0 0 0 0 0 0 0 0 0

k0
⊕

k1
⊕

k2
⊕

k3
⊕

k4
⊕

k5
⊕

k6
⊕

k7
⊕

k8
⊕

k9
⊕

k10 1 1 1 1 1 1 1 1 1 1 1

k0
⊕

k1
⊕

k2
⊕

k3
⊕

k4
⊕

k5
⊕

k6
⊕

k7
⊕

k8
⊕

k9
⊕

k10 2 2 2 2 2 2 2 2 2 2 2

k0
⊕

k1
⊕

k2
⊕

k3
⊕

k4
⊕

k5
⊕

k6
⊕

k7
⊕

k8
⊕

k9
⊕

k10 3 3 3 3 3 3 3 3 3 3 3

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 865 Copyright @ 2021 Authors

−

§

≤ − −

−

Time

Thread i

Thread i+1

Victim process

measure

accesses

tsleep

program timer

busy wait

twakeup

measure

 accesses

• It then computes tsleep and twakeup, which designate the

points in time when thread i should block and thread

i + 1 should unblock, respectively. It programs a timer

to unblock thread i + 1 at twakeup.

• Finally, thread i enters a busy wait loop until tsleep is
reached, where it blocks to voluntarily yield the CPU.

OS kernel

Figure 4. Sequence diagram of the denial of service attack on CFS.
Multiple threads run alternatingly and only leave very small periods of
time to the victim process.

enough time to react to the event it was waiting for with low

latency. The concept of treating a process very favourably

by the scheduler in this situation is called sleeper fairness.

In CFS terms this means assigning it the lowest possible

virtual runtime while not violating CFS’ invariants: To not

exceed the maximum unfairness τunblock τright ∆τmax

must hold. Also, virtual runtime must not decrease across

blocking and unblocking to prevent a trivial subversion of

CFS’ strategy. Therefore the virtual runtime τblock a process

had when it blocked needs to be remembered and serves as

another lower bound. Finally, we get

τunblock = max(τblock, τright − ∆τmax).

Note that by blocking for a sufficiently long time, a process

can ensure that it will be the leftmost entry on the timeline

with τleft = τright ∆τmax and preempt the running process

immediately.

B. A Denial of Service Attack for CFS

We will now show how the fairness conditions, and in

particular the sleeper fairness, of CFS can be exploited by

an attacker. On a high level, the idea is the following:

the spy process S requests most the available CPU time,

and only leaves very small intervals to the victim process

V . By choosing the parameters of S appropriately, the

victim process will, on average, only be able to advance by

one memory access before it is preempted again. Then, S
accesses each entry of the lookup table, and checks whether

a cache hit, or a cache miss occurs. After that V is again

allowed to run for “a few” CPU cycles, and V measures

again, etc.

In this section, we will describe the underlying denial of

service (DoS) attack on CFS. The procedure for measuring

cache access can be found in IV-C.

When getting started, our spy process launches some hun-

dred identical threads, which initialize their virtual runtime

to be as low as possible by blocking sufficiently long. Then

they perform the following steps in a round-robin fashion,

which are also illustrated in Figure 4:

• Upon getting activated, thread i first measures which

memory access were performed by V since the previous
measurement.

During the time when no spy thread runs, the kernel first

activates the victim process (or some other process running

concurrently on the system). This process is allowed to

execute until the timer expires which unblocks thread i + 1.

Because of the large number of threads and the order they

run, their virtual runtimes will only increase very slowly.

While a thread’s virtual runtime is kept sufficiently low

in this way, it will be the leftmost in the timeline when

it unblocks and immediately preempt the currently running

process. This mechanism ensures that S immediately regains

control of the CPU after V ran.

Typically, twakeup tsleep is set to about 1500 machine
cycles. Subtracting time spent executing kernel code and for

context switching, this leaves less than 200 cycles for the

CPU to start fetching instructions from V , decode and issue

them to the execution units and finally retire them to the

architecturally visible state, which is saved when the timer

interrupts. When V performs memory accesses which result

in cache misses, these few hundreds cycles are just enough

to let one memory access retire at a time, on average.

Because of different timers used within the system, accu-

rately setting tsleep and twakeup is a challenging issue. In a first

step, we have to find out the precise relation between the

time-stamp-counter (in machine cycles), and the wall time

of the operating system (in ns as defined by the POSIX timer

API). This can be achieved by repeatedly measuring the CPU

time using the rdtsc instruction, and the OS time, and

interpolating among these values. This approximation only

has to be performed once for every hardware setting. For our

test environment, we got 0.6672366819ns per CPU cycle. At

the start of the attack, the offset of the time-stamp-counter

to the OS time is measured, so we are able to convert time

measured by rdtsc to OS time with very high accuracy.

Note that since newer Linux versions change the cpu clock

to save power when the idle thread runs, a dummy process

with very low priority is lauched to prevent the idle thread

from changing the linear relationship between OS time and

time-stamp-counter.

Even with exact computation of twakeup and tsleep, there

are still other sources of inaccuracy: First, the time spent

in the OS kernel stays constant for many measurements, but

sometimes abruptly changes by hundreds of machine cycles.

This is dynamically compensated by a feedback loop that

adjusts twakeup tsleep according to the rate of observed mem-

ory accesses. And second, the fact that the clock and timer

devices don’t actually operate with nanosecond accuracy, as

their API may suggest. In our hardware setting, the actual

time when the timer expires lies in an interval of about ±100

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 866 Copyright @ 2021 Authors

−

#define CACHELINESIZE 64

#define THRESHOLD 200

unsigned measureflush(void *table,

size_t tablesize, uint8_t *bitmap) {

size_t i;

uint32_t t1, t2;

unsigned bit, n_hits = 0;

for (i=0; i<tablesize/CACHELINESIZE; i++) {

 asm (" xor %%eax, %%eax \n"

" cpuid \n"

" rdtsc \n"

" mov %%eax, %%edi \n"

" mov (%%esi), %%ebx \n"

" xor %%eax, %%eax \n"

" cpuid \n"

" rdtsc \n"

" clflush (%%esi) \n" :

"=a"(t2),

"=D"(t1) :

"S"((const char *)table +
CACHELINESIZE * i) :

"ebx", "ecx", "edx", "cc");

bit = (t2 - t1 < THRESHOLD) ? 1 : 0;

n_hits += bit;

bitmap[i/8] &= ˜(1 << (i%8));

bitmap[i/8] |= bit << (i%8);

}

return n_hits;

}

Listing 5. Complete C source-code for checking which parts of a lookup

table table have been accessed by some process shortly before.

machine cycles around twakeup. In theory, this could also be

compensated with a more complex computational model of

the hardware. In practice, just assuming a linear relationship

between TSC and OS time is sufficient for our purposes.

To hide the spy process from the user twakeup tsleep is

dynamically increased if no memory accesses are detected

for an empirically set number of measurements. This allows

the system to react to the actions of an interactive user with

sufficient speed while the spy waits for a victim to start and

after the victim terminates.

Remark: Note that in spirit our DoS attack is similar

to that in [34]. However, while their attack is still suited for

the current BSD family, it does not work any more for the

last versions of the Linux kernel. This is, because the logics

of billing the CPU time of a process has advanced to a much

higher granularity (from ms to ns), and no process can be

activated without being billed by CFS any more, which was

a central corner stone of the attack in [34].

C. Testing for Cache Accesses

While in the previous section we described how the

fairness condition of the CFS can be exploited to let the

victim process advance by only one table lookup on average,

we will now show how the spy process can learn information

about this lookup. That is, we show how the spy process can

find the memory location the victim process indexed into,

up to cache line granularity.

An implementation of this procedure in C is given in

Listing 5, which we now want to discuss in detail. On a

high level, it measures the time needed for each memory

access into the lookup table, and infers whether this data

had already been in the cache before or not.

We start by describing the inner block of the for-loop.

The asm keyword starts a block of inline assembly,

consisting of four parts: the assembly instructions, the out-

puts of the block, its inputs, and a list of clobbered registers.

These parts are seperated by colons. For ease of presentation,

we describe these blocks in a different order in the following.

Inputs: Only one input is given to the assembly block,

namely a position in the lookup table. The given command

specifies to store this position into the register %esi. The

lookup table is traversed during the outer for loop, starting

at the very beginning in the first iteration.
Assembly Instructions: The first instruction,

xor %eax, %eax is a standard idiom to set the

register %eax to zero, by XORing it with its own content.

Then, the cpuid instruction stores some information about

the used CPU into the registers %eax,%ebx,%ecx,%edx.

We do not need this information in the following. The

only purpose of these two instructions is the sideeffect

of the latter: namely, cpuid is a serializing instruction,

i.e., it logically seperates the instructions before and after

cpuid, as the CPU must not execute speculatively over

such an instruction. Then, a 64 bit time stamp is stored into

%edx:%eax by using the rdtsc instruction. The most

significant part of this time stamp is discarded, and the

least significant part (which is stored in %eax) is moved

to %edi to preserve it during the following operations.

Having this, the procedure accesses data at address %esi

in the main memory. and stores it to %ebx. Similar to

the beginning, the CPU is forced to finish this instruction,

before again a timestamp is stored to %eax, and the

accessed data is flushed from the cache again by flushing

its cacheline using clflush(%%esi).
Outputs: In each iteration, two outputs are handed back

to the routine. The content of the register %%eax is stored

to t2, and that of %%edi is stored to t1.
Clobbered Registers: The last block describes a list

of clobbered registers. That is, it tells the compiler which

registers the assembly code is going to use and modify. It

is not necessary to list output registers here, as the compiler

implicitely knows that they are used. The remaining cc

register refers to the condition code register of the CPU.

Now, depending on the difference of t1 and t2, the

procedure decides whether the accesses resulted in a cache

hit (bit=1) or not (bit=0). These cache hits and misses

describe whether or not the victim processes accessed the

corresponding cache line in its last activation with high

probability. The THRESHOLD of 200 CPU cycles has been

found by empirical testing. Note here, that the serializing

property of the cpuid instructions forces the CPU to always

execute the same instructions to be timed between two

rdtsc instructions, disregarding superpipelining and out- of-

order instruction scheduling.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 867 Copyright @ 2021 Authors

Σ

§

∈

§ §

§

§

These steps are performed for the whole lookup table,

starting at the beginning of the table in the memory (i=0),

and counting up in steps of size of the cache line, as

this is the highest precision that can be monitored. The

number n_hits of cache hits, and a bitmap bitmap

containing information about where cache hits respectively

misses occured, are then handed back to the caller of the

function.

D. Using Neural Networks to Handle Noise

Naturally, the measurements obtained using the tech-

niques from IV-B and IV-C are not perfect, but overlaid

by noise. This is because not only the victim and the spy

process, but also other processes running concurrently on

the same system, perform memory accesses, which can

cause wrong identifications of cache hits and misses. Also,

sometimes the spy process will be able to advance by more

than only one memory access at a time. Further, massive

noise can be caused by prediction logics of the CPU, cf. IV-

D4.

Thus, filtering out noise is a core step in our attack,

which we achieve by using artificial neural networks (neural

networks, ANNs), the functioning and training of which we

explain next.

1) Introduction to Artificial Neural Networks:

On a very high level, an artifical neural network [35]–[38] is

a computational model processing data. Typical applications

are the approximation of probability distributions, pattern

recognition, and classification of data.

A neural network can be conceived as a directed graph

with a value being attached to each of its nodes. Some of the

nodes are labeled as input respectively output nodes. Except

for the input nodes, the values of all nodes are computed

from the values attached to its predecessors.

For a node v, let u1, . . . , um be its predecessors, and let
Xv, Xui denote the variables attached to these nodes. Then

Xv is computed as

m

Xv = σ(w0 + wiXui) .
i=1

for some wi R and a (typically nonlinear) activation

function σ.

Before being deployed in practice, artificial neural net-

works typically have to undergo a training phase, where the

weights wi are adjusted using back-propagation techniques.

This can be done by first assigning randomly distributed

values to the wi, and by then testing the neural network on

some inputs samples, for which a target output is known.

In the simplest case, the error of the output is then nu-

merically differentiated with respect to the weights, and

the weights are brought into the opposite direction of the

obtained gradient by subtracting a ratio of it. These steps are

iteratively executed until the quality of the neural network

is good enough, i.e., until the error is sufficiently small.

(a) Input of the neural network.

(b) Output of the neural network.

Figure 6. Input and output of our artificial neural networks. The input
is given by a bitmap, where white squares indicate observed cache hits.
The ANN filters out noise, and outputs probabilities that memory accesses
were actually performed by the victim process. The darker the square, the
higher is the probability that at the given point in time the specified memory
location was accessed.

More advanced techniques than just subtracting a ratio of the

gradient contain, e.g., the so-called L-BFGS method [39].

We refer to [37], [38] for detailed discussions of artificial

neural networks.

2) Inputs and Outputs of Our ANN:

The first of your two neural networks outputs the probability

that at some given point t0 in time, a memory access

was performed by the victim process at memory location

adr0. It therefore takes as input a segment of the bitmap

obtained using the techniques presented in IV-C. This

bitmap contains a 1 whenever a cache hit was observed

for a certain memory location and point in time, and a 0
otherwise.

For (t0, adr0), this segment of the bitmap consists of

all observations (t−11, adr−11) up to (t11, adr11). That is,

all cache hits/misses monitored up to 11 activations of the
victim process before and after the questionable point in time
are given as inputs to the ANN for the memory locations

close to the questionable one. If parts of the resulting square

of monitored cache hits/misses do not exist, e.g., because the

associated addresses are outside of the lookup table, they are

filled with all zeros.

Figure 6 shows the inputs and outputs of a well-trained

artificial neural networks. The inputs are given by a bitmap

which indicates at which points in time which memory

accesses resulted in cache hits or misses. This bitmap is

obtained by using the algorithm described in IV-C. Because

of the size of the lookup table (2kB) and the size of each

cache line (26 = 64B), 32 addresses have to be considered.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 868 Copyright @ 2021 Authors

§

·

\ ∈

§

Σ

§

1
32n

v∈V1

v

v∈V0

v

2
n

w w

 1

Σ Σ

Now, the neural network processes all cache hits in any of

these 32 addresses for any given point in time. The output

is shown in Figure 6(b): there, a dark square at (t0, adr0)
indicates that the victim process accessed adr0 at t0 with

very high probability, whereas light squares indicate that

the corresponding memory location has not been accessed

with high probability. As one can see, on average the

victim process only advances by 1 memory access on each

activation (there is one black square per output column),

which emphasizes the high precision of the denial of service

attack presented in IV-B.

The example shows 61 activations, corresponding to

nearly 4 rounds, of AES. Among the results, there are

2 wrong positives, and 3 undetected memory accesses.
However, this precision experimentically turned out to be

sufficient for the ideal attack described in §III.

then manipulated using the function

1
σ12(x) =

1 + e−x
,

which is interpreted as an approximation of the target

probability distribution.

Let now be given a set V of test inputs which consists

of 32 n observed memory accesses, where 32 is the

number of addresses, and n is the number of activations

of the victim process. Let further V1 be the subset of time-

address-pairs (t, adr), at which a cache hit occurred (i.e., the

victim process accessed address adr at activation t), and let

V0 = V V1. Let further yv (0, 1) be the output of the

neural network for position v = (t, adr). We then define the

error function which we are aiming to minimize as

e (V) = log y + log(1 − y)

!

.

t0. This is important for accurately estimating the timeline of

memory accesses. In particular, two sources of inexactness

For the second neural network, the error function is just

the mean square error, i.e., we have

are detected. First, as always 8 table entries are loaded into

1 Σ 2
e (W) = (t − y) ,

indices map into the same cache line. This phenomenon

is not detectable by the techniques from IV-C, as it only

causes one single cache hit. Second, sometimes some other

process than the victim process may be activated between

two activations of the spy process and thus no table lookup

is performed at all. Also, in rare cases, more than one

memory access performed by the victim process can be

retired because of inaccuracies in the parameters of the

scheduler DoS attack.

The input of this second ANN is the sum of outputs

for one column of the first ANN. That is, for a column

corresponding to some time t0, the input is given by

31

xt0
= y(t0 ,adri),

i=0

and the output is given by the expected number of lookup

table accesses at time t0. By y(t0 ,adri) we denote the output

of the first ANN at time t0 and memory location adri.

3) Parameters of the Neural Network:

We now briefly describe the parameters of the ANN we use

to obtain whether or not a cache hit occurred at (t0, adr0).
Besides the input and the output layer, our neural network

has one more hidden layer. In a first step, the (11+1+11)2 =
529 bits input bits of the first ANN are first combined

linearly, and then transformed into 23 hidden nodes using

the nonlinear function

1 1 1 x
σ11(x) =

1 + e−x −
2

=
2

tanh(
2

) .

These intermediate results are again combined linearly, and

where W consists of n columns of 32 observations each,

tw is the target number of memory accesses in this column,

and yw is the output of the neural network. In a first step,

23 hidden nodes are created using the non-linear function

σ21(x) = tanh(log x) .

In a second step, the inner nodes are combined into one

node by only computing a weighted sum (i.e., σ22(x) = x).

Finally, somewhat non-standard, the output of our neural net-

work is the variable attached to this node times the original

input to the ANN. This real number is then interpreted as

the number of table lookups the victim process performed at

time t0. The consequential timing reconstruction turns out

to be sufficiently precise to serve as input for the theoretical

attack described in III-B.

4) Sources of Noise:

As can be seen in Figure 6, the noise obtained from real

measurements is not entirely unstructured. We now briefly

explain the sources of this structure.

The vertical lines in Figure 6(a) stem from linear cache

prediction logics of the CPU, which informally also fetches

data from the memory locations next to the required ones

into the cache. Thus, when the encryption process access

some address adr0 in the cache, sometimes adr1 and adr2
will be loaded into the cache as well.

The horizontal lines can be explained by speculative

execution. On a high level, if parts of the CPU are idle,

it looks ahead in the instruction list, and already computes

results in advance. Thus, the results are already available

when the according instruction is actually reached, or they

are dismissed if they are not needed because, e.g., a context

w∈W

the cache at a time, the victim process may advance by

more than 1 table lookup in the case that subsequent lookup

We then use a second ANN to estimate how many

memory access the victim process performed at activation

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 869 Copyright @ 2021 Authors

i

§

i

§

§

§

§

· ·
§

2

§

§

§

i

switch happens before. This also explains why most of the

horizontal lines in Figure 6(a) end in a real memory access

in Figure 6(b).

The remaining noise is due to other processes running

concurrently on the same system.

V. RESULTS AND DISCUSSION

large N , the 9 correct candidates for each kj
∗

will exactly be

given by the partial key-column candidates with the highest

frequencies.

Now, the key search algorithm from III-C can be short-

ened significantly, as for each kj
∗

only 9 choice are left

compared to 24·l = 220 before. Having assigned values of,
e.g., k2∗

and k3∗
, there will typically be at most one possible 3 3

In the following we give some timings obtained from real

measurements, and discuss extensions of our attack.

A. Results

The following numbers were obtained on our test platform

specified in II-D. Our spy process was specified to start

250 threads and to monitor 100 encryptions of the victim

process.

• Running time: Performing 100 AES encryptions (i.e.,

encrypting 1.56kB) takes about 10ms on our platform.

Now when monitoring its memory accesses, this blows

up to 2.8 seconds. We believe that this delay is suffi-

ciently small for a user not to become sceptical, as such

a delay could also be explained by high disk activity

or network traffic.

• Denoising: The obtained measurements are first refined
by applying our neural networks. This step approx-

imately takes 21 seconds when running as a normal

process on the target machine.

• Preparing key search: Next, the a posteriori probabili-

ties of all partial key-column candidates are computed

by analyzing their frequencies, cf. III-B. This step

approximately takes 63 seconds.

• Key search: Finally, the correct key is searched as
explained in III-C. The runtime of this step varies

between 30 seconds and 5 minutes, with an average

of about 90 seconds.

Thus, finding the key on average takes about 3 minutes.

However, if at all, the user will only notice the first few sec-

onds, as all other processes are executed as normal processes

without attacking the scheduler any more. Alternatively, the

data collected in the first step could be downloaded to, and

evaluated on, another machine. This data consists of one

bitmap of size 2l = 25 = 32 bits for each memory access,

cf. IV-C. For each encryption 160 memory accesses are

monitored. Thus, 160 100 32 bits = 62.5kB would have

to be downloaded.

B. Accelerating the Key Search

If a higher number of encryptions can be observed by the
spy process, the key search of our attack can be accelerated

considerably. Using the notation from III-B, this is because

the peaks of the fi(k∗
i) corresponding to the true partial key-

solution for k3∗
among the 9 possible values. This allows

one to implement the key search in a brute force manner.

On our test environment, 300 encryptions (i.e., 4.69kB of

encrypted plaintext) are sufficient for this approach.

C. Extensions to AES-192 and AES-256

While our implementation is optimized for AES-128, the

presented key search algorithm conceptually can easily be

adopted for the case of AES-192 and AES-256. However,

the heap used in III becomes significantly more complex

for key sizes larger than 128 bits. This problem does

not occur for the key search technique presented in the

previous paragraph, as its complexity is rather influenced

by the number of rounds than by the size of the ciphertext.

We leave it as future work to obtain practically efficient

implementations of either of these two techniques.

D. Decryption without Ciphertext

In previous work it was always implicitly assumed that

sniffing the network over which the ciphertext is sent is a

comparatively trivial task, and thus that obtaining the key is

sufficient for also recovering the plaintext. We go one step

further and show how our attack can be used to also recover

the plaintext without knowing the ciphertext. Because of

space limitations we will only describe the plaintext recovery

technique given ideal observations of the cache.

As in III-B we assume that we have a continuous stream

of cache hits/misses, without knowing where one encryption

starts and the next one ends. Further, we assume that the

full key K has already been recovered. We then perform

the following steps to recover the plaintext without knowing

the ciphertext:

• As in III-B, we consider each of the N possible offsets

in the stream of observations, and treat it as if it was the

beginning of an AES round. As earlier, we use xi, yi

to denote the ith column of the state matrix X before
respectively after the round.

• For each possible number of the inner round, i.e.,

j = 1, . . . , 9, and each column number, i.e., i =
0, . . . , 3, we now solve the following equation, under

the constraint that x∗
i , y∗

i
are equal to the observed

values:
column candidates become easier to separate from the floor

of wrong ones. As stated there, this is because the expec-
kj = y

i
⊕ M • s(x̃i) .

tation value of fi(k∗
i) grows much faster than its standard

deviation. Thus, after sufficiently many observations, i.e., for

Enumerating all possibilities shows that this equation

typically has 0 or 1 solutions, where is 0 is dominating.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 870 Copyright @ 2021 Authors

−

 (!

• ⊕

 ∧

For each j, we consider all possibly resulting state

matrices, i.e., all possible Xj = (x0, x1, x2, x3).
• For each Xj , we now compute the offset at which

the corresponding encryption started by just subtracting

16(j 1) from the current offset. Further, we compute

the corresponding plaintext which can easily be done

as the key is already known.

• For each of the resulting plaintexts, we now count its
frequency. At some offset (namely, the correct starting
point of an encryption), the correct plaintext will occur

at least 9 times, whereas all other resulting plaintexts

will be randomly distributed by a similar argument as

in §III-A.

An ad-hoc real-world implementation of this approach

takes about 2 minutes to recover the plaintext of a single

encryption, i.e., to reconstruct 16B of the input. However,

this must be seen as a proof of concept, which leaves

much space for optimization, and which shows that it is

not necessary to know the ciphertext to recover both, the

key and the plaintext.

VI. COUNTERMEASURES

In the following we discuss some possible mitigation

strategies to avoid information leakage, or at least to limit

it to an extent which renders our attack impossible. An

extensive list of countermeasures against access-driven cache

attacks can be found in [6].

A. Academical Generic Mitigation Strategies

The probably most obvious generic countermeasure

against cache-based attacks is to avoid the usage of CPU

caches at all, or to flush the whole cache on any context

switch, i.e., whenever the scheduler preempts one process

and activates a different one. However, these strategies are

only of academical interest, as fetching memory from the

RAM is between 10 and 100 times slower than accessing

data which has already been copied into the cache. Another

solution is to avoid key-dependent table lookups, which may

be appropriate for certain security sensitive applications, but

typically results in a high computational overhead.

B. Generic (Semi-Efficient) Countermeasures

Several generic countermeasures against access-based

cache attacks, which still seem to be sufficiently efficient

(at least for client machines), are conceivable:

• One natural way to hamper our attack is to make all

high-resolution timers (such as rdtsc) inaccessible

to processes. Although this does not fully prevent

our attack, to the best of our knowledge testing for

cache hits would become too inefficient to remain

unsuspicious to the user in this case. However, many

software packages (e.g., runtime linkers, multimedia

applications) extensively use rdtsc, and thus only

very few scenarios, where this approach is appropriate,

are conceivable.

• The OS could be adapted such that it offers the

possibility of pre-loading certain data each time a

certain process is activated. If, in our case, the lookup

table T [x] is defined to be such obligatorily available

data, a spy process would only see cache hits, and

could not infer any information about the secret key.

However, such a pre-loading mechanism only seems to

be reasonable if the lookup table is sufficiently small,

such as 2 kB in our situation. This might not be the

case for systems where, e.g., a multiexponentiation of

the form y = gxhr in a 2048 bit group has to be

evaluated [40]. Also, realizing this feature might require

substantial work on the kernels of current operating

systems.

• Another option, especially for large lookup tables, is to

mark them as uncachable, which implies that a victim

process will only see cache misses.

• The task scheduler could itself be hardened against

our (and similar) attacks. Namely, one could limit the

minimum time period between two context switches

to, e.g., 500µs. While such a bound is small enough

to keep the system responsive, denial of service attacks

on the scheduler similar to ours would no longer work.

C. Countermeasures for AES

One concrete mitigation strategy has been realized in

OpenSSL 1.0 [18]. There, only the substitution table S is

stored, and then the required multiplications within GF (28)
are computed by using the following relations, which can

be realized in a highly efficient way using the PCMPGTB

instruction:

2 x = (x 1) 1b
ff (int8_t)x > 0

0 (int8_t)x ≤ 0

= (x 1) ⊕ (1b ∧ PCMPGTB(x, 0))

3 • x = 2 • x ⊕ x

In this case, the required table contains 28 = 256 entries of

20 = 1 bytes each, and on standard x86-architectures with

a cache-line size of 26 = 64 bytes we have that only l = 2

bits of each xi
∗ are leaked. Looking at Table 1 now shows

that we have p3 = 1, i.e., every ki
∗ ∈ {0, 1}4·2 is a valid

partial key-column candidate for every xi
∗ and y∗

i
. For this

reason, our key search algorithm does not work anymore.

Because of the large prevalence of AES another mitigation

strategy is currently embarked by software vendors. Namely,

they are increasingly often offering hardware support of

AES in their chips, e.g., [25], rendering access-driven cache

attacks impossible.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 871 Copyright @ 2021 Authors

REFERENCES

[1] J.-F. Gallais, I. Kizhvatov, and M. Tunstall, “Improved trace-
driven cache-collision attacks against embedded AES imple-
mentations,” in WISA 2010 (to appear),

[2] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi,
“Cryptanalysis of DES implemented on computers with
cache,” in CHES 2003, ser. LNCS, C. D. Walter, Ç . Koç,
and C. Paar, Eds., vol. 2779. Springer, 2003,

[3] B. Brumley and R. Hakala, “Cache-timing template attacks,”
in ASIACRYPT 2009, ser. LNCS, S. Halevi, Ed., vol. 5677.
Springer, 2009,

[4] C. Percival, “Cache missing for fun and profit,” http://www.
daemonology.net/hyperthreading-considered-harmful/,

[5] M. Neve and J.-P. Seifert, “Advances on access-driven cache
attacks on AES,” in SAC 2006, ser. LNCS, E. Biham and
A. M. Youssef, Eds., vol. 4356. Springer, 2006,

[6] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache at-
tacks on AES, and countermeasures,” Journal of Cryptology,
vol. 23, no. 1, pp. 37–71,

[7] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of AES,” in CT-RSA 2006, ser.
LNCS, D. Pointcheval, Ed., vol. 3860. Springer, 2006,

[8] O. Aciiçmez, W. Schindler, and Ç . Koç, “Cache based remote
timing attack on the AES,” in CT-RSA 2007, ser. LNCS,
M. Abe, Ed., vol. 4377. Springer, 2007,

[9] D. J. Bernstein, “Cache-timing attacks on AES,” http://cr.yp.
to/papers.html, 2004,

[10] M. Neve, J.-P. Seifert, and Z. Wang, “A refined look at
Bernstein’s AES side-channel analysis,” in ASIACCS 2006,
F.-C. Lin, D.-T. Lee, B.-S. Lin, S. Shieh, and S. Jajodia, Eds.
ACM, 2006,

[11] J. Bonneau and I. Mironov, “Cache-collision timing attacks
against AES,” in CHES 2006, ser. LNCS, L. Goubin and
M. Matsui, Eds., vol. 4249. Springe, 2006,

[12] O. Acıiçmez and Ç . Koç, “Trace-driven cache attacks on
AES,” Cryptology ePrint Archive, Report 2006/138, 2006,

[13] X. Zhao and T. Wang, “Improved cache trace attack on
AES and CLEFIA by considering cache miss and S-box
misalignment,” Cryptology ePrint Archive, Report 2010/056,
2010,

[14] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and
G. Palermo, “AES power attack based on induced cache
miss and countermeasure,” in ITCC 2005. IEEE Computer
Society, 2005,

[15] C. Lauradoux, “Collision attacks on processors with cache
and countermeasures,” in WEWoRC 2005, ser. LNI, C. Wolf,
S. Lucks, and P.-W. Yau, Eds., vol. 74. GI, 2005,

[16] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” AES
Algorithm Submission,

[17] FIPS, Advanced Encryption Standard (AES). National
Institute of Standards and Technology, 2001,

[18] OpenSSL, “OpenSSL: The Open Source toolkit for
SSL/TSL,” http://www.openssl.org/,

[19] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side chan-
nel cryptanalysis of product ciphers,” Journal of Computer
Security, vol. 8, no. 2/3, pp. 141–158,

[20] P. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in CRYPTO 96,
ser. LNCS, N. Koblitz, Ed., vol. 1109. Springer, 1996,

[21] D. Page, “Theoretical use of cache memory as a cryptanalytic
side-channel,” Department of Computer Science, University
of Bristol, Tech. Rep. CSTR-02-003,

[22] ——, “Defending against cache based side-channel attacks,”
Information Security Technical Report, vol. 8, no. 1, pp. 30–
44,

[23] K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen, “An analyt-
ical model for time-driven cache attacks,” in FSE 2007, ser.
LNCS, A. Biryukov, Ed., vol. 4593. Springer, 2007,

[24] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software
mitigations to hedge AES against cache-based software side
channel vulnerabilities,” Cryptology ePrint Archive, Report
2006/052, 2006,

[25] S. Gueron, “Advanced Encryption Standard (AES) in-
structions set,” www.intel.com/Assets/PDF/manual/323641.
pdf, 2008,

[26] R. Könighofer, “A fast and cache-timing resistant implemen-
tation of the AES,” in CT-RSA 2008, ser. LNCS, T. Malkin,
Ed., vol. 4964. Springer, 2008,

[27] “Intel 64 and IA-32 architectures optimization reference man-
ual,” http://www.intel.com/Assets/PDF/manual/248966.pdf,
2010,

[28] “Intel 64 and IA-32 architectures software developers manual.
Volume 3A: System Programming Guide, Part 1,” http://www.
intel.com/Assets/PDF/manual/253668.pdf, 2010,

[29] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The
Advanced Encryption Standard.

[30] V. Rijmen, A. Bosselaers, and P. Barreto, “Optimised ANSI C
code for the Rijndael cipher,” http://fastcrypto.org/front/misc/
rijndael-alg-fst.c,

[31] M. Bayes, “An essay towards solving a problem in the
doctrine of chances,” Philosophical Transactions, vol. 53, pp.
370–418,

[32] J. Bernardo and A. Smith, Bayesian Theory.

[33] I. Molnár, “Design of the CFS scheduler,” http://people.
redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt, 2007,

[34] D. Tsafrir, Y. Etsion, and D. Feitelson, “Secretly monopoliz-
ing the cpu without superuser privileges,” in USENIX Security
2007. USENIX, 2007,

http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://www.openssl.org/
http://www.intel.com/Assets/PDF/manual/323641.pdf
http://www.intel.com/Assets/PDF/manual/323641.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://fastcrypto.org/front/misc/rijndael-alg-fst.c
http://fastcrypto.org/front/misc/rijndael-alg-fst.c
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 872 Copyright @ 2021 Authors

[35] M. Jordan and C. Bishop, “Neural networks,” ACM Comput-
ing Surveys, vol. 28, no. 1, pp. 73–75,

[36] W. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity,” Bulletin of Mathematical
Biophysics, vol. 5, no. 4, pp. 115–113,

[37] C. Bishop, Neural Networks for Pattern Recognition.

[38] P. Simard, D. Steinkraus, and J. Platt, “Best practices for
convolutional neural networks applied to visual document
analysis,” in ICDAR 2003. IEEE Computer Society, 2003,

[39] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM Journal
on Scientific and Statistical Computing, vol. 16, no. 5, pp.
1990–1208,

[40] B. Möller, “Algorithms for multi-exponentiation,” in SAC
2001, ser. LNCS, vol. 2259. Springer, 2001,

