

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 873 Copyright @ 2021 Authors

2 MB exclusive LLC

1.5 MB exclusive LLC

Algorithms for Exclusive Last-level
Caches' Bypass and Insertion

Ms. SWARNAKANTI SAMANTARAY*, Mr.ALOK KUMAR PATTNAIK

Dept. OF Computer Science and Engineering, NIT , BBSR
swarnakanti@thenalanda.com*,alokkumar@thenalanda.com

ABSTRACT

Due to cross-level cache block replication, inclusive last-level
caches (LLCs) lose valuable silicon estate. This unused cache
space causes greater performance losses than exclusive LLCs
as the industry shifts towards cache hierarchies with larger
inner levels. Yet, exclusive LLCs make it more difficult to
develop replacement policies. A block can gather a filtered
access history in an inclusive LLC, but in an exclusive design,
this is not possible because the block is de-allocated from the
LLC on a hit. Because of this, the widely used least-recently-
used replacement policy and its approximations are rendered
useless, making careful selection of the insertion ages of
cache blocks even more crucial in exclusive systems. On the
other hand, it is not necessary to fill every block into an
exclusive LLC. This is known as selective cache bypassing
and is not possible to implement in an inclusive LLC because
that would violate inclusion. This paper explores insertion
and bypass algorithms for ex- clusive LLCs. Our detailed
execution-driven simulation re- sults show that a combination
of our best insertion and by- pass policies delivers an
improvement of up to 61.2% and on average (geometric
mean) 3.4% in terms of instructions re- tired per cycle (IPC)
for 97 single-threaded dynamic instruc- tion traces spanning
selected SPEC 2006 and server appli- cations, running on a 2
MB 16-way exclusive LLC compared to a baseline exclusive
design in the presence of well-tuned multi-stream hardware
prefetchers. The corresponding im- provements in throughput
for 35 4-way multi-programmed workloads running with an 8
MB 16-way shared exclusive LLC are 20.6% (maximum)
and 2.5% (geometric mean).

Categories and Subject Descriptors

B.3 [Memory Structures]: Design Styles

General Terms

Algorithms, design, measurement, performance

Keywords

Exclusive last-level cache, bypass policy, insertion policy

1. INTRODUCTION
Inclusive last-level caches (LLCs) simplify cache coherence

protocol; an LLC tag lookup is enough to decide if a cache
block is not present in the inner levels of the cache hierarchy.
In an exclusive LLC, however, a block is allocated only on
an eviction from the inner level cache and de-allocated on
a hit when the block is recalled by the inner level cache.1
As a result, a separate coherence directory array (decoupled
from the LLC tag array) is needed to maintain coherence
efficiently. While coherence simplification and silent clean
evictions from the inner level are seen as major advantages of
an inclusive LLC, such a design, by definition, wastes silicon
estate due to replication of cached data in multiple levels of
the hierarchy. As the industry moves toward a three-level or
a four-level cache hierarchy with reasonably large inner lev-
els, such cross-level replication begins to hurt performance
in an inclusive design when compared to an exclusive one.
This observation has already motivated commercial proces-
sor designers to adopt fully or partially exclusive LLCs [1].

1.05

1.045

1.04

1.035

1.03

1.025

1.02

1.015

1.01

1.005

1
FSPEC ISPEC SERVER ALL

Figure 1: A comparison of IPC between exclusive and

inclusive LLCs with a 512 KB L2 cache in each design.

The performance gains in an exclusive design over an iden-
tical inclusive design usually come from two factors. One of
these is the overall capacity advantage enjoyed by the ex-
clusive design. The second performance factor is related
to premature evictions in the inner levels of the hierarchy

1 To enable fast cross-thread access to shared data, shared blocks
may not be de-allocated on hits. We leave the exploration of re-
placement policies for shared blocks in such a non-inclusive/non-
exclusive design to future work.

IP
C
 n

o
rm

a
liz

e
d
 t
o
 2

 M
B
 in

cl
u
si

ve
 L

LC

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 874 Copyright @ 2021 Authors

caused by LLC replacements in an inclusive design. In the
absence of access hints from the L1 and L2 caches, the last
level (L3 in this study) of an inclusive design can end up
making wrong replacement decisions [14]. The risk of pre-
mature evictions from the L1 and L2 caches triggered by
LLC replacements is non-existent in an exclusive design.

In Figure 1, we show the performance of an exclusive LLC
relative to an inclusive LLC for 97 single-threaded dynamic
instruction traces representing different regions of floating-
point SPEC 2006 (FSPEC), integer SPEC 2006 (ISPEC),
and server (SERVER) applications with a well-tuned multi-
stream hardware prefetcher enabled. For the left bar, the
simulated three-level cache hierarchy in both inclusive and
exclusive cases is identical in capacity and associativity at
every level. More specifically, the left bar presents simu-
lation results for an architecture with a 512 KB 8-way L2
cache and a 2 MB 16-way LLC. The bar on the right shows
the performance of an exclusive LLC relative to an inclusive
design, where the exclusive LLC is sized (1.5 MB 12-way)
such that the effective capacity advantage of the exclusive
design is nullified. In both cases, the inclusive LLC sim-
ulates a not-recently-used (NRU) replacement policy (one
bit age per block) and the exclusive LLC simulates a one-
bit not-recently-filled (NRF) replacement policy. The NRU
policy victimizes the not recently used block (age zero) from
the way with the smallest id. The NRF policy updates the

this paper. In this figure, we consider a baseline exclusive
LLC with NRF replacement policy and no bypass (i.e., all
L2 cache evictions are allocated in the LLC). We keep the
hardware prefetchers turned off to gain a better understand-
ing of the demand request behavior (we will present results
with prefetchers turned on in Section 5). The experiments
are conducted on a single-core system with a 2 MB 16-way
exclusive LLC. The L2 cache is 512 KB 8-way set associa-
tive and instruction and data L1 caches are 16 KB 4-way
and 32 KB 8-way set associative, respectively. The L1 and
L2 caches execute a pseudo-LRU replacement policy.

1.2

1.15

1.1

1.05

1

0.95

0.9

0.85

0.8

0.75

age bit array only on a fill and is otherwise similar to NRU.
Both the policies reset the age bits of all the blocks (except
the one most recently accessed/filled) in a set to zero only if
all blocks in that set have age of one. For each application
category, the bar on the right in Figure 1 brings out the per-
formance difference stemming from the premature evictions
from the inner levels of the cache hierarchy in the inclusive
design. The bar on the left further adds the capacity ad-
vantage that an exclusive design enjoys. On average, for 97
traces, the exclusive design enjoys a 3.1% higher IPC than
the inclusive design.

While premature LLC replacements can cause performance
degradation in inclusive designs, a block resident in the LLC
of an inclusive design can still observe a filtered version of
access recency during its life time. The situation can fur-
ther improve with access hints from the inner levels or other
proactive mechanisms [14]. This is not possible in an ex-
clusive design. A block resides in the LLC of an exclusive
design from the time it is evicted from the L2 cache to the
time it is either recalled by the L2 cache or evicted by the

0.7

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

FSPEC ISPEC SERVER ALL

(a)

FSPEC ISPEC SERVER ALL

(b)

LLC, whichever is earlier. Due to the absence of any access
information in an exclusive LLC, the popular least-recently-
used (LRU) replacement policy and all its well-researched
derivatives lose significance. As a result, the design of re-
placement policies in an exclusive LLC requires a fresh look.
A replacement policy has three distinct algorithmic com-
ponents, namely, insertion age algorithm, age update algo-
rithm, and victim selection algorithm. In this paper, we
explore the insertion age algorithms.

Selective bypass is an important optimization that can be
exercised in an exclusive design, since every block evicted
from the L2 cache is not required to be filled into the LLC.
In an inclusive design, all blocks fetched from memory must
be filled in the LLC to maintain inclusion. We explore LLC
bypass algorithms in this paper for an exclusive design that
can identify clean as well as modified blocks that need not
be filled in the LLC. Good LLC bypass policies can improve
performance in two ways, namely, by reducing the band-
width demand of the on-die interconnect as well as the LLC
controller and by allocating the LLC capacity only to the
blocks with relatively short reuse distances.

 Motivation
Figure 2 motivates the two design problems, namely, by-

pass and insertion in exclusive LLCs, that we explore in

Figure 2: (a) Normalized LLC misses for random re-

placement and a number of oracle-assisted replacement

policies. (b) Dead allocation and bypass analysis for a

number of oracle-assisted bypass policies.

Figure 2(a) presents the number of LLC misses normal-
ized to the baseline NRF policy for a number of schemes,
namely, the popular random replacement with no bypass
often used for victim caches (Random), Belady’s optimal
longest-forward-distance replacement [3, 26] with no bypass
(Belady), Belady’s optimal replacement extended with by-
pass which drops an incoming block if its next forward use
distance is larger than all the blocks in the target LLC
set (Belady-B), and the baseline policy extended with opti-
mal bypass which drops an incoming block if its next forward
use distance is larger than the current victim in the target
LLC set (Base-B). In this paper, we never bypass instruc-
tion blocks. All these experiments are done on an offline
cache simulator that has access to the entire LLC alloca-
tion/lookup trace. The cache state at the end of warmup
is loaded from a checkpoint. The tie between blocks with
“unknown” forward distance (next potential use is beyond
the trace length) is broken arbitrarily.

These results show that random replacement leads to 4%
more LLC misses compared to the baseline policy. On the

Random
Belady
Belady−B
Base−B

Trace−dead

LLC−dead−Base

LLC−dead−Belady

Belady−B−drop

Base−B−drop

F
ra

ct
io

n
 o

f
LL

C
 a

ll
o
ca

ti
o
n
s

N
o
rm

a
liz

e
d
 L

LC
 m

is
se

s

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 875 Copyright @ 2021 Authors

other hand, Belady, Belady-B, and Base-B show significant
potential for improvement. On average, these three schemes
save 16%, 16%, and 14% LLC misses.2 It is interesting to
note that Belady and Belady-B are equally effective meaning
that augmenting an already good replacement policy with
a bypass decision does not bring any extra advantage in
terms of LLC hits. In this case, even though a bypass policy
cannot improve the volume of LLC hits, it can save a signif-
icant amount of on-die interconnect bandwidth if one could
implement a bypass scheme at the L2 cache boundary. It
is, however, encouraging to note that a forward-looking by-
pass scheme working with the NRF policy (Base-B) can save
14% of LLC misses. As expected, the potential for hit rate
improvement of a good bypass scheme increases as the re-
placement policy gets inferior. We, however, make a note of
the fact that Base-B comes surprisingly close to Belady and
Belady-B, the gap being maximized in the server workloads.
We will explain this with the help of Figure 2(b).

Figure 2(b) shows additional data pertaining to the bypass
potential in an exclusive design. For each trace category,
Figure 2(b) shows five different statistics: 1) the number of
blocks allocated in the LLC but not used again in the rest of
the trace as a fraction of all allocations (Trace-dead), 2) the
fraction of blocks allocated in the LLC that are not recalled
by the L2 cache before getting evicted from the baseline
LLC (LLC-dead-Base), 3) the fraction of blocks allocated in
the LLC that are not recalled by the L2 cache before getting
evicted from the LLC while executing optimal replacement
with no bypass (LLC-dead-Belady), 4) the fraction of all
L2 cache evictions bypassed by Belady-B (Belady-B-drop),
and 5) the fraction of all L2 cache evictions bypassed by
Base-B (Base-B-drop). Among these, the first bar shows
the fraction of useless allocations that would have happened
in an LLC of infinite capacity. Although this fraction is a di-
rect function of the trace length (longer traces are likely to
have smaller values of this fraction), this data emphasizes
the facts that the L1 and L2 caches are doing a wonder-
ful job in absorbing all short-term reuses and that most of
these reuse clusters are located very far apart. The next bar
shows the fraction of useless LLC allocations in the base-
line LLC. This is about 75%, on average. This fraction is
a realistic representation of the bypass potential. A bypass
algorithm should try to make room in the LLC so that a sub-
set of the blocks contributing to the difference of the first
two bars can be retained. The third bar shows that even
an optimal replacement policy does about 68% of useless
allocations in the LLC. This result underscores the impor-
tance of a good bypass policy even if the replacement policy
is optimal. The fourth bar further confirms this result by
showing an equivalent volume of bypasses that an optimal
replacement policy with optimal bypass would observe. This
result brings to fore the large potential of on-die intercon-
nect bandwidth saving that an LLC bypass policy running at
the L2 cache boundary can achieve. Finally, the rightmost
bar shows that a forward-looking bypass policy executing
with the baseline replacement policy can be as effective as
optimal bypass and replacement running together in terms
of the fraction of bypassed blocks. We have already noted
that the performance gap between Base-B and Belady-B is
maximum for the server workloads. This is expected since
the bypass fraction is minimum in these workloads leading
to the invocation of suboptimal NRF replacement of Base-B
for a significant fraction of fills.

Given the large potential in terms of replacement and by-
pass algorithms, this paper systematically deduces and im-
plements a few such algorithms (Sections 2 and 3). In this
study, we explore only the insertion component of the re-
placement algorithms. Although our bypass algorithms can

2 The optimal replacement and optimal bypass gains may change
for a different interleaving of LLC requests.

be seamlessly integrated with the L2 cache, we implement
them in the LLC controller and as a result, explore only the
capacity benefit of these algorithms. Our detailed execution-
driven simulation results (Sections 4 and 5) show that the
combination of our best insertion and bypass algorithms im-
proves the IPC of 97 single-threaded traces by up to 61.2%
and on average 3.4% on a 2 MB 16-way exclusive LLC com-
pared to the baseline exclusive design with aggressive multi-
stream hardware prefetchers enabled. The corresponding
maximum and average improvements in throughput for 35
4-way multi-programmed workloads are 20.6% and 2.5%.

 Related Work
In this section, we briefly review the studies that are most

relevant to our work. The capacity advantage of exclusive
LLCs compared to inclusive LLCs has been studied in [29],
while several techniques to get rid of premature evictions
from inner level caches in an inclusive hierarchy have been
proposed in [14]. The importance of treating shared blocks
specially in an exclusive LLC has been highlighted in [24].
Multi-level exclusive caching in the context of distributed
disk caches has been studied in [7].

Exclusive caches are functionally equivalent to large vic-
tim caches [18]. Selective victim caching (analogous to an
exclusive LLC with bypass enabled) has been explored in
the context of small victim caches that work well with L1
caches [5, 11]. A design of a large victim cache with selective
insertion based on frequency of misses has been presented
in [2] and is shown to work well with inclusive LLCs. A
recent work exploits the dead blocks in an inclusive LLC to
configure an “embedded” victim cache [21].

Dead block prediction schemes [11, 19, 21, 22, 23, 25] have
close connection with our bypass proposal. Most of the ex-
isting dead block prediction schemes select a dead block in a
cache set either for replacement or as a target of a prefetch
after the block has spent some time in the cache. These pro-
posals usually correlate the instruction address and/or data
address with the death of a cache block. A recent proposal
shows how to design an address-oblivious dead block pre-
dictor that exploits the reuse probabilities to improve the
replacement decisions in an inclusive LLC [4]. On the other
hand, our bypass algorithms identify a block that would be
dead-on-fill in the LLC at the time of fill. While instruc-
tion or data address can improve the quality of bypass, our
bypass algorithms do not rely on any such information.

A few recent proposals have explored bypass algorithms
for LLCs.3 One proposal [6] remembers the tag of a by-
passed block (if the incoming block is bypassed) or the vic-
timized block (if the incoming block is not bypassed) to
observe the next use to the bypassed/allocated block and
the saved/victimized block, and accordingly learns whether
bypassing is a good decision. However, this proposal ran-
domly selects incoming blocks for bypassing based on a by-
pass probability, which is adjusted dynamically based on the
effectiveness of bypassing. Another proposal [19] shows how
to use a program counter (PC)-based skewed dead block
predictor that learns the caching behavior of a few sample
sets in the LLC to identify blocks that are dead-on-fill and
bypass such blocks. Access counter-based LLC bypass al-
gorithms that take help of a prediction table indexed by
a hash function of the PC are explored in [22]. Our by-
pass algorithms do not require separate prediction tables or
any PC-related information, but exploit the reuse frequency
that a block sees while in the L2 cache and the number of
times it has traveled between the L2 cache and the exclu-
sive LLC. It is important to note that bypass algorithms
have also been studied in the context of small data caches.

3 Often these proposals do not clearly mention the nature of the
cache hierarchy being considered. We assume that these are done
in the context of exclusive or partially inclusive caches.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 876 Copyright @ 2021 Authors

1

0.9

0.8

0.7

0.6

0.5

0.4 TC>=3

TC=2

0.3 TC=1
TC=0

0.2

0.1

These proposals require a profile pass that gathers the local-
ity information [17], or build a PC and data address-based
locality predictor [8], or carry out an instruction-based char-
acterization of the potential of data cache bypassing [28], or
employ a classification of data cache misses into capacity or
conflict to drive the bypass decision [5]. Our proposal does
not require any profile run or any PC/address/instruction
information or miss classification.

There have been several recent studies on insertion age
selection for LLCs. Some of these studies require PC infor-
mation of the source instruction of a to-be-filled block [9,
13]. Also, several of these studies usually identify the inser-
tion age with LRU, MRU, or other access recency positions
in a set [9, 13, 16, 20, 27]. As a result, these proposals get
tied to the notion of an access recency order, which is non-
existent in an exclusive cache (in the absence of any extra
information, the only meaningful order among the blocks
in an exclusive cache set is the fill order). A recent study
assigns insertion age based on re-reference interval predic-
tion and updates the predicted age on a hit in an inclusive
LLC [15]. Although such an option of age update is non-
existent in an exclusive LLC, we will show how to design
somewhat analogous policies for exclusive LLCs. A decision
tree-based technique for selecting the insertion age relative
to the access recency order has been explored in [20]. Our
insertion policy proposals are necessarily independent of ac-
cess recency order.

2. CHARACTERIZATION OF DEAD AND

LIVE LLC BLOCKS
Use recency and use frequency are the two properties that

are traditionally employed to determine the death and live-
ness of a cache block. Exclusive LLCs make the effective

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

FSPEC

FSPEC

ISPEC

ISPEC

(a)

(b)

SERVER

SERVER

ALL

ALL

use of these two properties challenging because a block is
de-allocated from the LLC on its first recall from the inner-
level caches. As a result, the only meaningful order among
the blocks in an LLC set is the fill order. Unfortunately, the
fill order among the blocks in an LLC set has little correla-
tion with their use recency order because blocks evicted from
multiple L2 cache sets may get allocated in the same LLC
set. Even though the L2 cache exercises a use recency based
replacement algorithm (e.g., pseudo-LRU in our case), the
fill order in an LLC set is an arbitrary interleaving of the use
recency orders of multiple L2 cache sets from different cores
or the same core. Reconstructing the correct use recency
order in an LLC set is costly, since it requires a global use
recency order in the L2 caches across multiple cores. In this
paper, we design our bypass and insertion schemes based on
estimates of average recall distance of LLC blocks and their
use count in the L2 cache. The average recall distance of an
LLC block B is defined as the mean number of LLC alloca-
tions between the allocation of B in the LLC and the recall
of B from the L2 cache.

 Estimate of Recall Distance
In a three-level cache hierarchy with an exclusive LLC, a

block is filled into the L2 cache when it is first brought from
the DRAM. On an L2 cache eviction, it makes its first trip
to the LLC. If it is recalled from the LLC before it is evicted,
it will eventually make its second trip to the LLC when it
is victimized from the L2 cache again. These trips continue
until the block is evicted from the LLC. A block with a high
trip count is expected to have a low average recall distance.
The trip count of a block in an exclusive LLC translates to
the use count of the block in an inclusive LLC.

To understand the trip count behavior in the presence of
optimal LLC replacement decisions, Figure 3(a) shows the
distribution of LLC allocations among four trip count (TC)
bins (the first trip from the L2 cache to the LLC is denoted
by TC=0). While every block brought into the cache hierar-

Figure 3: (a) Distribution of LLC allocations with trip

count in the presence of optimal replacement with no

bypass (Belady) in the LLC. (b) Fraction of LLC alloca-

tions in each trip count bin in the presence of optimal

replacement with optimal bypass (Belady-B) in the LLC.

chy gets allocated in the LLC for the first time with TC=0,
only a fraction of that will survive to experience a TC=1

allocation. The difference between TC=0 and TC=1 allo-
cation fractions brings out the percentage of useless alloca-
tions that happen at TC=0. Overall, this is about 55% of all
LLC allocations. We note that this forms a major portion of
the overall useless allocation fraction of 68% (see LLC-dead-
Belady in Figure 2(b)). We will refer to the blocks allocated
with TC=0 as the T C0 blocks and the rest as T C≥1 blocks.

Figure 3(b) further shows the fraction of allocations that
take place in each TC bin when an optimal bypass is enabled
on top of optimal replacement (Belady-B) in the LLC. This
fraction for a particular bin is computed as the number of
LLC allocations made from that bin over the number of in-
coming blocks belonging to that bin. Note that the incoming
blocks belonging to the TC=k bin are necessarily a subset
of the blocks allocated from the TC=k − 1 bin for k ≥ 1 (the
remaining subset gets evicted from the LLC before they can
make the next trip). These data show that overall, only
27% of the T C0 blocks are allocated in the LLC and the
remaining 73% of the T C0 blocks are bypassed. The alloca-
tion percentage progressively increases as a block moves to
higher TC bins. These data clearly bring out the fact that
the likelihood of an LLC block being live increases with its
TC value (up to a limit). We derive three major conclusions
from these data. First, the TC=0 bin is the ideal bypass
target and the T C≥1 blocks should be mostly allocated in
the LLC. However, it is important to separate the dead T C0

blocks from the live T C0 blocks (these live T C0 blocks will
eventually become T C≥1 blocks). We explore L2 use count
in the next section as a possible feature to carry out this

TC=0
TC=1
TC=2

TC>=3

F
ra

ct
io

n
 o

f
LL

C
 a

ll
o
ca

ti
o
n
s

d
o
n
e
 b

y
B
e
la

d
y−

B

F
ra

ct
io

n
 o

f
LL

C
 a

ll
o
ca

ti
o
n
s

w
it

h
 b

yp
a
ss

 d
is

a
b
le

d

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 877 Copyright @ 2021 Authors

max

max

classification. Second, since T C≥1 blocks are mostly live,
they can be assigned a high insertion age, if they are not
bypassed. However, we need more properties of the non-
bypassed T C0 blocks to appropriately grade their insertion
ages. For this purpose, we explore L2 cache use count in
the next section. Finally, two TC bins, namely, T C0 and
T C≥1 are enough to derive most of the benefits. There-
fore, we need one bit per L2 cache block and no storage for
LLC blocks for maintaining the trip count (a block recalled
from the LLC is always classified as T C≥1 in the L2 cache).
More TC bits would help the server traces, but the overall
utilization of these bits would be low.

 Use Count and Synergy with Trip Count
In the last section, we have seen that trip count can serve

as a reasonably good starting point for identifying a large
fraction of bypass candidates (a major portion of T C0 blocks)
and live blocks in exclusive LLCs. In the following, we ex-
plore the possibility of exploiting the use count of a block
during its residency in the L2 cache to further tune the clas-
sification of dead and live blocks. Every time a block is filled
into the L2 cache (from DRAM or LLC) by a demand re-
quest, its use count is set to one. A block filled into the
L2 cache by a prefetch request sets its use count to zero.
Only a demand hit in the L2 cache can increment the use
count. While the trip count is loosely related to the average
distance between clusters of near-term reuses to a block, the
L2 cache use count captures the size of the last such cluster
seen by a block. In Figure 4(a), we start by exploring the
distribution of LLC allocations among three L2 cache use
count (L2UC) bins. The LLC executes Belady’s optimal re-
placement policy with no bypass. Note that in the absence of
prefetching, a block evicted from the L2 cache cannot have a
zero L2UC. Even in the presence of prefetching, such blocks

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

FSPEC

ISPEC

(a)

(b)

SERVER

ALL

may exist only due to premature or incorrect prefetches. In
Section 3.4, we will discuss how to handle such blocks when
they come for LLC allocation. The data in Figure 4(a) show
that about 58% of blocks allocated in the LLC observe only a
single use in the L2 cache. The next L2UC bin contributes
about 30% of LLC allocations. The remaining allocations
come with at least three L2UC. While these data do not
offer any insight into classification of dead and live blocks,
they do confirm that two bits for maintaining L2UC per L2
cache block is enough for all practical purposes. Recogniz-
ing the fact that L2UC is only a filtered (or sampled) access
count, we also looked at the cumulative use count (CUC)
of a block in the L1 cache counted from the time the block
is brought into the L1 cache till the time it is evicted from
the L2 cache (this corresponds to L1 cache use count per
L2-LLC trip). We found that we need four bits per cache
block to properly maintain CUC. In the following, we will
explore if the added accuracy in CUC (compared to L2UC)
can help improve the classification of dead and live blocks.

Design of good bypass and insertion age assignment al-
gorithms requires understanding of the distribution of dead
and live blocks in an optimal setting. One way to explore
this is to observe the distribution of victims when the LLC
executes Belady’s optimal replacement because optimal vic-
tim selection is synonymous to optimal death prediction.
To understand the distribution of good LLC victims, we ex-
ecute Belady’s optimal replacement in the LLC with bypass
disabled while maintaining three L2UC bins (L2UC=0 is
excluded), fifteen CUC bins (CUC=0 is excluded), and the
cross-product of the TC bins with the L2UC and CUC bins

i.e., six TC×L2UC bins and thirty TC×CUC bins. This
creates four bin classes, namely, L2UC, CUC, TC×L2UC,
and TC×CUC. We would like to know which of these bin
classes could serve as a good feature for identifying dead and
live blocks. One way to resolve this question is to identify,
within each bin class, the bin with the maximum number of
victims. Clearly, such a bin would capture most of the opti-

Figure 4: (a) Distribution of LLC allocations with L2

cache use count. (b) Median of victim and live block

fractions in the most prominent victim bin for four bin

classes. The victim fraction is the victim count of the

most prominent victim bin out of all LLC victims across

all bins, while the live fraction is computed over the

LLC allocations done from the most prominent victim

bin only. The data for (a) and (b) are collected in the

presence of optimal replacement with no bypass (Belady)

in the LLC.

mal victims. However, we want a low volume of live blocks
in that bin so that the likelihood of victimizing live blocks
is minimized. The goal is to identify the bin class that has
a bin which maximizes the victim coverage and minimizes
the live coverage. To achieve this, we do the following.

When a block is allocated into the LLC, its membership
bin in each of these four bin classes is decided based on its
TC, L2UC, and CUC values. For example, a block with
TC=0, L2UC=2, and CUC=10 will fall into L2UC=2 bin,

CUC=10 bin, TC×L2UC=(0, 2) bin, and TC×CUC=(0,
10) bin. When a block is victimized from the LLC by the
optimal replacement policy, the victim counts of the block’s
four membership bins are each incremented by one. For each
trace, we identify the bin covering the maximum fraction of

victims (V C) in each of the four bin classes C with C ∈
{L2UC, CUC, TC×L2UC, TC×CUC}. For different traces,
these four identified bins (one in each bin class) may turn
out to be different. For each of these four identified bins (one
in each bin class C), we also record the live fraction (LC),
computed as the number of LLC hits experienced by blocks
belonging to a bin over the number of LLC allocations done
from that bin.

Figure 4(b) presents the median of V C and LC for each
of the three trace categories for each bin class C. The vic-

tim fraction is maximized in L2UC with TC×L2UC follow-

L2UC>=3

L2UC=2

L2UC=1

SERVER

FSPEC

Victim

Live

ISPEC

D
is

tr
ib

ut
io

n
of

 L
LC

 v
ic

ti
m

 a
nd

 l
iv

e
fr

ac
ti

on
 w

it
h

Be
la

dy

F
ra

ct
io

n
 o

f
LL

C
 a

ll
o
ca

ti
o
n
s

w
it

h
 b

yp
a
ss

 d
is

a
b
le

d

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 878 Copyright @ 2021 Authors

2

2

4

4

ing next, while the live fraction is minimized in TC×L2UC
across the board, especially for the server traces. In the
server traces, the gap in the live fraction between L2UC

and TC×L2UC is much bigger than the gap in the victim
fraction. Assuming that minimizing the live fraction is an
equally important objective as maximizing the victim cov-

erage, we decide to use the TC×L2UC bins for inferring the
bypass candidates and insertion ages. We will refer to these
bins as the TC-UC bins and L2UC as UC. It is encouraging

to note that a high median victim fraction in TC×L2UC
across application categories essentially indicates the exis-
tence of at least one TC-UC bin for each trace such that the
dead blocks have a strong affinity toward it (with a member-
ship likelihood of 0.55 for FSPEC, 0.80 for ISPEC, and 0.40
for SERVER). Also, the likelihood of misclassifying a live
block belonging to such a bin as a dead block is negligibly
small in FSPEC (0.03) and ISPEC (less than 0.01), while
for SERVER it is about one-third. Our algorithms attempt
to learn this bin and any other prominent dead bins dynam-
ically. Even though the statistics presented in Figure 4(b)
summarize the aggregate observed behavior for each trace,
it is important to note that the prominent dead bins can
change over time within the same application trace.

3. BYPASS AND INSERTION POLICIES

This section discusses the design and implementation of
the bypass and insertion algorithms for exclusive LLCs. First
we discuss the dynamic learning framework that all our al-
gorithms use and then present the algorithms.

 General Framework
The bypass and insertion decisions should be based on

the population of dead and live blocks in the TC-UC bins.
Note that a block allocated in the exclusive LLC is classi-
fied as dead if it gets evicted before getting recalled by the

When updating the D−L and L counters in an LLC bank,
the observers also maintain the max(D − L), min(D − L),
max(L), and min(L) across the TC-UC bins, excluding the
UC=0 bins, within that LLC bank. In addition to these,
the aggregate D − L over all TC-UC bins, excluding the
UC=0 bPins, is maintained per LLC bank. We will refer to
this as UC=0 (D − L). One of our insertion algorithms re-
quires that the observers maintain the aggregate L over all
TCP=0 bins with positive UC. We will refer to this aggregate
as TC=0,UC=0 (L). The updates of the maximum, min-
imum, and the aggregate values take place mostly off the
critical path of LLC activities. Every N LLC allocations

per bank all the D − L and L counters (including the max,
min, and aggregate values) in that LLC bank are halved so
that a temporally-aware exponential average is maintained.
N is equal to the number of observer sets per LLC bank
multiplied by the LLC associativity. Even with a storage
overhead of two bytes per counter, the overall counter over-

head is small. Our simulations use eight-bit D − L and L
counters for the single-threaded configuration and nine-bit
counters for the multi-programmed configuration. The max,
min, and aggregate registers are sized accordingly. Also, ev-
ery L2 cache block stores three additional bits to maintain
the TC and UC values of the block.

 Bypass Algorithms
Good bypass algorithms would bypass incoming blocks

that belong to bins with high D − L populations, yet low
enough L populations. More specifically, an incoming block

belonging to TC-UC bin b with counter values (D − L)b and

Lb qualifies as a bypass candidate if (D − L)b ≥ 1 (max(D −
L) + min(D − L)) and Lb ≤ 1 (max(L) + min(L)). However,
we find that there are situations where the overall magnitude

of D −L is so high that even if the second condition fails, by-
passing can be done without any performance degradation.
Therefore, we ovPerride the outcomes of these comparisons

L2 cache (these are essentially LLC victims); otherwise the
block is classified as live. Ideally, we would like to learn the if (D − L)b ≥ 3

UC/=
0

(D − L). A more carefully chosen

dead and live populations in each TC-UC bin. Depending
on the membership bin of an incoming block and the dead
and live populations of that bin, we would like to take a
decision about whether to bypass this block or what initial

weight of magnitude lower than 3 may improve the bypass
performance further. We summarize our bypass algorithm
in the following where bypass is a boolean-valued variable.

1
age to assign if it is not bypassed. To carry out this learn-
ing, we dedicate sixteen sample sets per 1024 sets of LLC

bypass = ((D − L)b ≥ (max(D − L) + min(D − L))
2

that observe the dead and live populations of each TC-UC
bin. These sets will be referred to as the observers. The ob-

AND Lb ≤
1

(max(L) + min(L)))
2

servers allocate all blocks and implement a static insertion
age assignment scheme based on the single-bit TC value of
an incoming block. We will introduce this age assignment
scheme in Section 3.3.

OR ((D − L) ≥
3

b

4

X

UC=0

(D − L)) (1)

For each TC-UC bin per LLC bank, the observers main-
tain two values, namely, the difference of dead and live al-
locations to the observers (D − L) and the live allocations
to the observers (L). Our algorithms need eight D − L and
eight L counters per LLC bank corresponding to the eight
TC-UC bins. When a block arrives at the LLC for allocation
to one of the observers, the block’s TC-UC bin b is decided
based on the block’s TC, UC values (carried by the eviction
message from the L2 cache). The observer increments the

D − L counter of bin b by one when the block is allocated.
On a hit to a block B in an observer set, the observer decre-
ments the D − L counter of the bin the block B belongs to
by two and increments that bin’s L counter by one. The ob-
servers maintain three bits per cache block to remember the
bin an allocated block belongs to. The non-observer sets,
however, do not need to store any such information. A non-
observer set, when allocating a block, first determines the
block’s membership bin based on the block’s TC, UC values
and then queries the D − L and L counters of that bin. The
returned D − L and L values are input to the bypass and
insertion algorithms.

If an incoming block finds an invalid way in the target set
and bypass is true according to the above formula, it is filled
into the LLC with an insertion age of zero. In other words,
invalid ways in the LLC are always utilized, but with a zero
insertion age in the case a bypass is recommended. On the
other hand, if bypass is true and there is no invalid way in
the target set, the incoming block is bypassed. A bypassed
block is treated exactly the same way as an LLC victim and
it mimics the LLC eviction protocol.

To minimize the risk of performance loss, we employ duel-
ing on set samples [27] and always duel our bypass algorithm
with the no-bypass algorithm of the observers. For this pur-
pose, in addition to the observer sets, we dedicate an equal
number of LLC sets (sixteen per 1024 LLC sets) that always
execute our bypass algorithm. We have observed that the
static version of the bypass policy that does not employ any
dueling degrades the performance of several applications.

 Insertion Algorithms
We present three algorithms for insertion age assignment

with progressively increasing complexity. These algorithms

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 879 Copyright @ 2021 Authors

x+1

Db+Lb

are applied to those blocks for which bypass is false as com-
puted by Formula (1). We assume a two-bit budget to main-

tain ages per LLC block. Our algorithms apply to data
blocks only and instruction blocks are always filled with the

highest age i.e., three. Our LLC replacement policy first
looks for an invalid way in the target set. If there is no such
way, it victimizes the block with the minimum age and also
decrements all the ages in that set by this minimum before
the new block is inserted to reflect the correct relative age

order. A tie among the blocks with the minimum age is
broken by selecting the block with the least physical way id.

Our first insertion algorithm is inspired by the distribution
of liveness in T C0 and T C≥1 blocks as shown in Figure 3(b).
This algorithm assigns all T C≥1 blocks an insertion age of
three and all T C0 blocks an insertion age of one. This is the
policy exercised by our observer sets, since it does not require
any dynamic learning. We will refer to this policy as the TC-
AGE policy. The TC-AGE policy is similar to SRRIP-style
static algorithms originally proposed for inclusive LLCs [15].
In our age assignment setting where a lower age corresponds
to a higher replacement priority, the SRRIP algorithm would
assign an insertion age of one to a newly allocated block and
promote it to the highest possible age on a hit in an inclusive
LLC. In an exclusive LLC, the blocks that have already seen

mand hit in near future. Our bypass algorithm continues
to remain oblivious to such cases and treats the UC=0 bins
exactly the way it treats the other bins. Our TC-AGE inser-
tion algorithm does not do anything special for the UC=0
blocks. The other two insertion algorithms assign a zero in-
sertion age to a (TC=0, UC=0) block belonging to bin b if

it satisfies (D − L)b > (x − 1)Lb (here b is (TC=0, UC=0)).
All other (TC=0, UC=0) blocks receive an insertion age of
one. All (TC≥1, UC=0) blocks receive an insertion age of
three. Figure 5 shows our bypass and TC-UC-AGE logic
diagrams.

(D−

BYPASS

(a)

UC==0 AND TC==0

LLC hit(s) are the T C≥1 blocks.
Our second insertion algorithm continues to assign the

highest age, i.e., three to the T C≥1 blocks, but it assigns
more finely graded ages to the T C0 blocks. To achieve this,
it takes help of the dead and live populations learned by
the observers. This algorithm recognizes the fact that the
T C0 blocks belonging to bins with low hit rates should not
get a positive age. If a certain bin b satisfies Db > xLb or

equivalently, (D − L)b > (x − 1)Lb, that would translate to
a hit rate bounded above by 1 for blocks belonging to bin

b (hit rate is Lb). We would like to assign an insertion

age of zero to an incoming block if it belongs to a TC=0
bin with too low a hit rate. However, we find that there are

(D−L)_b

(x−1)L_b

(3/4)AGGL

L_b

1 0

0 1

1 0

0 1

3 1

TC

(b)

1
INSERTION

0 2 AGE

situations where the hit rate of the target bin is low, but Figure 5: Logic diagrams for our (a) bypass and (b) TC-
the bin still has a fairly high number of live blocks i.e., Lb is
above a threshold. In these cases, assigning a zero insertion

UC-AGE algorithms. AGG(D − L) refers to
P

L) and AGGL refers to

P

UC=0 (D −

age is too risky. Overall, we assign an insertion age of zero
to a T C0 block belonging to bin b with positive UC if

TC=0,UC=0 (L). Note that the
existence of an invalid way in the target set can override

(D − L)b > (x − 1)Lb AND Lb <
3

X

(L). (2)
the bypass decision and force an insertion with age zero.

4
TC=0,UC/=0

All the remaining T C0 blocks with positive UC are inserted
at an age of one. We will refer to this policy as the TC-UC-
AGE policy. We evaluate this policy for x = 4, 8.

Our third insertion algorithm is similar to the TC-UC-
AGE policy, but instead of assigning an age of one to all
the T C0 blocks with positive UC that do not satisfy For-
mula (2), it grades them from age one to three based on
live population. First, the algorithm ranks the three TC=0,
UC 0 bins based on their L values and tags the bin having
the smallest L value with an age of one and the one with the
highest L value with an age of three. Next, the algorithm
determines the bin that the incoming block belongs to and
assigns the corresponding insertion age to this block. We
will refer to this policy as the TC-UC-RANK policy. Un-
like bypass policies, none of our insertion age assignment
schemes requires dueling because a slightly wrong insertion
age is not as harmful as a wrong bypass decision.

 Handling Prefetches
We give some special consideration to the bins with UC=0.

As we have pointed out, the blocks belonging to these bins
are the result of either premature, yet correct, prefetches
that failed to see a demand hit during their residency in
the L2 cache or incorrect prefetches that will not see a de-

 Introducing Thread-awareness
Upgrading our bypass and insertion algorithms to a multi-

threaded environment requires maintaining the D − L and
L counters for each TC-UC bin per thread. Each thread is
also assigned a separate set of observers. The observers ear-
marked for a particular thread execute TC-AGE insertion
for that thread and the best emerging duel winner for each
of the other threads (similar to TADIP-F [16]) if bypassing
is enabled. We use four observers per thread per 1024 LLC
sets. Our counter update schemes do not require storage of
thread id in the LLC to incorporate thread-awareness. We
assume one thread per core in this article. At the time of an
LLC allocation, the core id of the source L2 cache is available
because this information is needed to update the coherence
directory and therefore, the appropriate D − L counter can
be incremented. At the time of an LLC hit, the core id
of the requester is available and therefore, the appropriate

D − L counter can be decremented and the appropriate L
counter can be incremented. Also, the maximum, minimum,
and aggregate values of several counters, as discussed in Sec-
tion 3.1, must be maintained per thread.

4. EVALUATION METHODOLOGY
Our simulations are done on a cycle-accurate execution-

driven x86 simulator. Our 4 GHz 4-way dynamically sched-

L)_b

=

(3/4)AGG(D−L) 1

=

(1/2)(max(D−L)+min(D−L))

(1/2)(max(L)+min(L))

=

L_b

0

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 880 Copyright @ 2021 Authors

uled out-of-order issue core model closely follows the core mi-
croarchitecture of the Intel Core i7 processor [12]. Through-
out this study, we assume one physical thread context per
core. Each core has its own L1 and L2 caches. The L1 in-
struction cache is 16 KB 4-way associative and the L1 data
cache is 32 KB 8-way associative. The unified L2 cache is
512 KB 8-way associative. The L2 cache is partially inclu-
sive (also known as non-inclusive) of the L1 caches in the
sense that an L2 cache eviction always queries the L1 caches
for up-to-date state and data, but the L1 cache may choose
to retain the block instead of invalidating. For the single-
thread studies, we model a 2 MB 16-way exclusive LLC par-
titioned into two banks, each being 1 MB 16-way. For the
multi-programming studies, we model four cores with pri-
vate L1 and L2 caches and the cores are connected over a
ring. Each core hop of the ring has a shared 2 MB 16-way
exclusive LLC bank attached to it leading to an aggregate
8 MB 16-way shared LLC. The block size at all the three lev-
els of the cache hierarchy is 64 bytes. We model a six-cycle
hit latency (tag+data) for the L2 cache and an eight-cycle
hit latency (tag+data) for each LLC bank [10]. The ring hop
time is one cycle. We model a coherence directory that can
accommodate eight times the number of aggregate L2 cache
tags and is 16-way associative (same as the LLC). The co-
herence directory banks are co-located with the LLC banks.
For all simulations, we model a two-channel integrated mem-
ory controller clocked at the core frequency with each chan-
nel connecting to an 8-way banked DDR3-1866 DIMM. The

three single-threaded workload categories and overall (ALL).
In each category, the leftmost three bars show the perfor-
mance of static TC-AGE insertion and dynamic learning-
based TC-UC-AGE insertion with x = 4, 8. To avoid un-
necessarily increasing the number of policy bars, we will
show the performance of TC-UC-RANK only in the pres-
ence of bypassing. The next five bars show the performance
of LLC bypassing executing with three different insertion
algorithms. In each of these five cases, the evaluated pol-
icy (e.g., Bypass+TC-UC-AGE-x8) is always dueled with
the observers executing TC-AGE and if the observers emerge
the winner, the followers disable bypassing, but continue to
execute the insertion component (e.g., TC-UC-AGE-x8).

1.13

1.12

1.11

1.1

1.09

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97

0.96

0.95

DRAM part (933 MHz) has burst length of 64 bits and 10-
10-10 access cycle parameters. We model per-core aggres-

0.94
FSPEC ISPEC SERVER ALL

sive multi-stream instruction and data prefetchers that bring
blocks into the L2 cache of the core.

Our single-threaded traces are drawn from three work-
load categories, as already discussed: FSPEC, ISPEC, and
SERVER. We first identified 213 representative dynamic
code regions each of length close to thirty million dynamic
instructions prefixed with a trace of several hundreds of mil-
lion load/store instructions to warm up the caches. While
the entire trace of about thirty million dynamic instructions
is run in detailed cycle-accurate timing mode, the last six
million instructions are used to measure IPC and other per-
formance indices. All the policies evaluated in this paper are
executed from the beginning of the warmup trace to make
sure that the detailed cycle-accurate measurement phase
captures a steady-state snapshot. Out of these 213 regions,
we picked 97 regions that are likely to be sensitive to uncore
optimizations (have at least five misses per kilo instructions
with baseline NRF). In these 97 traces, we have 44 FSPEC
traces spanning one dozen applications, namely, bwaves, cac-
tusADM, dealII, GemsFDTD, lbm, leslie3d, milc, soplex,
sphinx3, tonto, wrf, and zeusmp. We have 23 ISPEC traces
spanning seven applications: bzip2, gcc, gobmk, libquan-
tum, mcf, omnetpp, and xalancbmk. Finally, we select 30
server traces from applications like SAP, SAS, SPECjbb,
SPECweb2005, TPC-C, TPC-E, etc.

We present results for 35 4-way multi-programmed work-
loads prepared by mixing four representative single-threaded
traces from all three workload categories. Within a mix,
each thread first executes its warmup region before starting
the detailed performance simulation. If a thread finishes its
performance simulation phase early, it continues executing
so that we can model the shared LLC contention properly.
The mix terminates when every thread has finished its per-
formance simulation phase.

5. SIMULATION RESULTS

 Single-threaded Workloads
We first present the simulation results with hardware data

prefetchers disabled. Figure 6 summarizes the geometric
mean IPC of several policies normalized to 1-bit NRF for the

Figure 6: Summary of performance of several policies
normalized to 1-bit NRF.

We have also experimented with a 2-bit approximation
of least-recently-filled (LRF) replacement policy that ranks
the blocks in a set by their fill order (can only distinguish
between the last three fills). Finally, the rightmost bar in
each workload category shows the performance of a dynamic
insertion policy (DIP) [27] in the presence of TC-AGE in-

sertion. This policy inserts all T C≥1 blocks at age three
and duels the T C0 blocks between insertion age of zero and
one. This policy shows one way to implement DRRIP-style
dynamic policies originally proposed for inclusive LLCs [15].

The TC-AGE policy improves performance by more than
1% averaged over the 97 traces (see the ALL group). This
result motivated us to use the TC-AGE policy for the ob-
servers in the place of NRF. The TC-UC-AGE policy im-
proves the overall performance by almost 4%, with ISPEC
showing an average performance improvement of more than
7% compared to NRF. Overall, there is no performance dif-
ference between x = 4 and x = 8 for TC-UC-AGE. Our by-
pass algorithm running with TC-AGE improves overall per-
formance by 2.8%, with ISPEC showing an impressive 5.3%
improvement. However, these data show that the TC-UC-
AGE insertion algorithm alone can achieve better perfor-
mance across the board compared to bypassing dueled with
TC-AGE. Nonetheless, the Bypass+TC-AGE policy still of-
fers an attractive design point. LLC bypassing coupled with
TC-UC-AGE offers the best performance across the board
with x = 8. The best combination i.e., Bypass+TC-UC-

AGE-x8 improves the overall IPC of the 97 traces by 4.3%
with FSPEC, ISPEC, and SERVER showing individual im-
provements of 3.9%, 8.5%, and 1.8%, respectively. Corre-
spondingly, it saves 7.6%, 11.4%, and 8.4% of the base-
line LLC misses. The IPC benefits coming from the LLC

miss savings in the SERVER category are dwarfed because
these workloads lose a lot of cycles in L1 instruction cache
misses (even with the instruction prefetcher enabled). Over-
all, the Bypass+TC-UC-AGE-x8 policy requires less than
0.5% extra storage when computed as a fraction of the L2
cache and the LLC data array storage for our configuration.
This overhead is summarized in Table 1.

TC−AGE

TC−UC−AGE−x4

TC−UC−AGE−x8
Bypass+TC−AGE

Bypass+TC−UC−AGE−x4

Bypass+TC−UC−AGE−x8

Bypass+TC−UC−RANK−x4
Bypass+TC−UC−RANK−x8

2−bit LRF

DIP+TC−AGE

IP
C
 n

o
rm

a
li
ze

d
 t

o
 1

−
b
it

 N
R
F

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 881 Copyright @ 2021 Authors

 Table 1: Summary of overhead

State Storage (bits) Bits
TC and UC 3 per L2 cache block 24K
LLC age 2 per LLC block 64K

Bin identity 3 per obs. LLC block
(16 obs. sets per 1024
LLC sets)

1.5K

16-entry obs. CAM
(per 1024 LLC sets)

10 per CAM entry
(partial set index)

320

TOTAL 89.8K

The performance results for Bypass+TC-UC-RANK show
that the addition of insertion age ranking mechanism based
on live population does not improve beyond what Bypass+
TC-UC-AGE delivers with x = 8. In fact, in ISPEC cat-
egory, the ranking mechanism slightly hurts performance
because it cannot distinguish between the T C0 and T C≥1
blocks inserted with age three. The 2-bit LRF policy im-
proves ISPEC by 2.5%, but degrades the server workloads
by 5.4%. The primary shortcoming of this policy is that a
block’s age in a set climbs down to zero within four fills to
that set and the block becomes eligible for eviction. The
1-bit NRF policy requires a higher expected number of fills
before it resets a block’s age to zero (see Section 1). Finally,
the DIP+TC-AGE policy improves the overall IPC by 3.2%
with ISPEC improving by about 7%. Next, we analyze the
performance of our best policy (Bypass+TC-UC-AGE-x8)
in greater detail.

1.5

1.45

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9

0 10 20 30 40 50 60 70 80 90 100

Traces

(a)

traces running with our best LLC policy (Bypass+TC-UC-
AGE-x8) compared to the baseline 1-bit NRF. The traces
in each of the three categories are sorted by the IPC im-
provements in both the curves. Some of the traces are also
marked on the curve with their IPC improvements shown
within parentheses. It is important to note that different re-
gions of the same application (e.g., GemsFDTD) react very
differently to our policy, thereby emphasizing the need to
simulate multiple regions of the same application. Over-
all, the FSPEC traces show a performance improvement of
at most 31% while suffering from a performance loss of at
most 2%. The ISPEC traces experience IPC improvement
of up to 44% while losing at most 1% performance. The
server traces show an IPC improvement of up to 19%, but
also suffer from up to 6% performance losses (the poorly
performing SPECjbb trace is not friendly to TC-UC-AGE).
The trend in LLC misses corresponds well with the trend in
IPC improvement.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 10 20 30 40 50 60 70 80 90 100

Traces

(a)

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50 60 70 80 90 100

Traces

1.15

1.1

1.05

1

1.15

1.1

1.05

1

0.95

0 10 20 30 40 50 60 70 80 90 100
Traces

(b)

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0 10 20 30 40 50 60 70 80 90 100

Traces

(b)

Figure 7: Distribution of (a) IPC improvements and (b)

LLC misses of our best policy normalized to 1-bit NRF.

We have shortened libquantum to libq.

Figures 7(a) and 7(b) respectively show the details of the
IPC improvements and normalized LLC misses of individual

Figure 8: (a) Distribution of bypass fraction in our

best policy. (b) Details of additional performance gains

achieved by bypassing on top of TC-UC-AGE-x8.

Next, we quantify the contributions of the LLC bypass
component in our best policy (Bypass+TC-UC-AGE-x8).
Figure 8(a) shows, for each trace, the fraction of L2 cache
evictions bypassed by the Bypass+TC-UC-AGE-x8 policy
at the time of LLC allocation. We also identify some of
the application traces that show moderate to high bypass
fractions. The traces are sorted exactly in the same order
as in Figure 7(a). Overall, across 97 traces, on average,
32% of the L2 cache evictions are not allocated in the LLC.
For FSPEC, ISPEC, and SERVER categories, the bypass
percentages are 37%, 52%, and 11%, respectively.

To further quantify the performance impact of LLC by-
passes in our best policy, the bottom panel of Figure 8(b)
shows the IPC of Bypass+TC-UC-AGE-x8 relative to TC-
UC-AGE-x8, while the top panel reproduces the bypass frac-

p (0.99) etp omn

)

jbb (0.94

SPEC

0) go (1.1
)

D (0.98

GemsFDT

3) plex (1.0 so

8) dealII (1.0

(1.14) mcf

D (1.12)

msFDT

Ge

(1.05) TPC−E
(1.18) libq

)

M (1.12

cactusAD

(1.21) gcc

9)

SAS (1.1

2)

nx3 (1.2

sphi

c (1.23) lan xa
8) nx3 (1.2 sphi

f (1.31)

wr

)

mcf (1.44

RVER SE ISPEC EC FSP

Overall average = 0.32

libq gcc

soplex milc
mcf

gcc

leslie3d dealII

libq
SAS

SPECjbb

SAS

TPC−C

−C

TPC

TPC−E
xalanc

M

ctusAD

ca

SPECjbb
mcf

gcc
c

xalan

hinx3

sp

LL
C
 m

is
se

s
n
o
rm

a
li
ze

d
 t

o
 1

−
b
it

 N
R
F

IP
C
 n

o
rm

a
li
ze

d
 t

o
 1

−
b
it

 N
R
F

IP
C
 n

o
rm

a
li
ze

d
 t

o
 T

C
−
U

C
−
A
G

E
−
x8

B
yp

as
s

fr
ac

ti
on

B
yp

as
s

fr
ac

ti
on

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 882 Copyright @ 2021 Authors

tion distribution for ease of comparing. Some of the appli-
cation traces that enjoy noticeable benefit from LLC by-
pass are marked on the graph of the bottom panel. It is
clear that the server traces do not enjoy much performance
benefit from LLC bypasses as far as the capacity benefit
is concerned. However, several FSPEC and ISPEC traces
show significant improvements in IPC due to LLC bypass.
A high bypass fraction does not necessarily translate to per-
formance improvement because the retained blocks may not
always have small enough reuse distances that can fit within
the LLC reach. Nonetheless, our impressive bypass fraction
can lead to interconnect bandwidth savings and result in
further performance improvements, if our bypass scheme is
implemented at the L2 cache interface.

Figure 9 shows the IPC of our best policy (Bypass+TC-
UC-AGE-x8) relative to the DIP+TC-AGE policy, with sev-
eral interesting trace points marked on the curve to show ex-
actly where we gain and lose. The traces are sorted exactly
the same way as in Figure 7(a). As we have already noted,
we see different regions of the same application behaving
differently (e.g., GemsFDTD, libquantum, SAS). Overall,
while we see several traces gaining significantly compared to
DIP+TC-AGE, the losses are not large.

1.3

1.25

1.2

1.15

1.1

1.05

1.22

1.2

1.18

1.16

1.14

1.12

1.1

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

1.22

1.2

1.18

1.16

1.14

1.12

1.1

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

(a)

(b)

1

0.95
0 10 20 30 40 50 60 70 80 90 100

Traces

Figure 9: IPC of our best policy normalized to

DIP+TC-AGE.

Figures 10(a) and 10(b) show an application-level compar-
ison between Bypass+TC-UC-AGE-x8 and DIP+TC-AGE
for SPEC 2006 and server workloads, respectively. The nor-
malized IPC figure for each application shown in these charts
is computed by taking the geometric mean of the normalized
IPCs of all the traces belonging to that application. Over-
all, for the nineteen SPEC 2006 applications, our best policy
improves IPC by 5.4% compared to 1-bit NRF, while for the
eight server applications, the corresponding improvement is
1.9%. The respective improvements achieved by DIP+TC-
AGE are 4.1% and 1.1%.

Finally, we turn to the performance results with an aggres-
sive multi-stream hardware prefetcher enabled. Figure 11(a)
shows the IPC improvements achieved by Bypass+TC-UC-
AGE-x8 compared to the 1-bit NRF baseline with prefetch-
ers enabled. Within each workload category, the traces are
sorted by IPC improvements. Overall, for FSPEC, the IPC
improvement averages at 2%; for ISPEC it is 6%; for server
traces it is 4%. While the average IPC improvements for

Figure 10: Details of IPC improvement achieved by our

best policy and DIP+TC-AGE for (a) selected SPEC

2006 applications and (b) server applications.

prefetchers enabled is, on average, 28% of all L2 cache evic-
tions. On the complete set of 213 traces, the average IPC
improvement achieved by Bypass+TC-UC-AGE-x8 is 2.4%,
with maximum slowdown being 2.8%.

Figure 11(b) further summarizes the IPC of Bypass+TC-
UC-AGE-x8 normalized to that of DIP+TC-AGE in the
presence of prefetching. The traces are sorted in the same
way as in Figure 11(a). The traces with noticeable gains
or losses are marked. Figures 12(a) and 12(b) show the
application-level IPC improvements for our best policy and
DIP+TC-AGE normalized to the 1-bit NRF baseline with
prefetchers enabled. For the SPEC 2006 applications, our
policy improves IPC by 3.7%, on average. The correspond-
ing improvement in the server applications is 3.6%.

 Multi-programmed Workloads
The results for the 4-way multi-programmed workloads

are summarized in Figure 13. The left panel of Figure 13(a)
evaluates the performance of three policies, namely, thread-
oblivious Bypass+TC-UC-AGE-x8, thread-aware Bypass+
TC-UC-AGE-x8, and thread-aware DIP+TC-AGE in terms

IPCPolicy i i FSPEC and ISPEC have dropped compared to the non-
of average IPC or throughput improvement (P

IPCBase).
i i

prefetched scenario (as expected), the improvement has gone
up for server traces. We find that our special handling of the
UC=0 bins (see Section 3.4) helps the server traces signifi-
cantly, since it is usually hard to accurately prefetch data for
the server workloads. Overall, with prefetchers enabled, the
IPC improvement achieved by our best policy (Bypass+TC-
UC-AGE-x8) across 97 traces is 3.4%. The correspond-
ing improvement seen by DIP+TC-AGE is 2.8%. The by-
pass fraction achieved by Bypass+TC-UC-AGE-x8 with the

The thread-aware dueling mechanism is borrowed from the
TADIP-F proposal [16]. We show the performance compar-
ison for both non-prefetched and prefetched scenarios. The
right panel of Figure 13(a) quantifies the per-mix through-
put improvement of thread-aware Bypass+TC-UC-AGE-x8
with prefetchers enabled. In summary, thread-awareness
brings bigger performance gains in the absence of prefetch-
ing. The thread-aware Bypass+TC-UC-AGE-x8 policy im-
proves the throughput by 2.5% in the presence of prefetch-

wrf

GemsFDTD SAS

soplex milc libq SPECjbb

gcc

GemsFDTD
cactusADM libq

SAS

 Bypass+TC−UC−AGE−x8

DIP+TC−AGE

Bypass+TC−UC−AGE−x8

DIP+TC−AGE

IP
C
 n

o
rm

a
li
ze

d
 t

o
 D

IP
+
T
C
−
A
G

E

IP
C
 n

or
m

al
iz

ed
 t

o
1−

b
it

 N
R
F

IP
C
 n

or
m

al
iz

ed
 t

o
1−

b
it

 N
R
F

P

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 883 Copyright @ 2021 Authors

IPCBase

1.65

1.6

1.55

1.5

1.45

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95
0 10 20 30 40

50 60 70 80 90 100

Traces

(a)

1.1

1.09

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97

(a)

1.2

1.15

1.1

1.05

1

0.95

0.9

0 10 20 30 40 50 60 70 80 90 100

Traces

(b)

1.1

1.09

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97

(b)

Figure 11: (a) Distribution of IPC improvements of our

best policy normalized to 1-bit NRF. (b) IPC of our

best policy normalized to DIP+TC-AGE. Both results

are with prefetchers enabled.

ing, while the thread-aware DIP+TC-AGE policy improves
the throughput by 1.3%.

The maximum slowdown of any individual thread should
be within an acceptable range. The left panel of Figure 13(b)

Policy

Figure 12: Details of IPC improvement achieved by our

best policy and DIP+TC-AGE for (a) SPEC 2006 and

(b) server applications in the presence of prefetchers.

trip count and use count, which improves the average (geo-
metric mean) IPC of 97 single-threaded traces by 3.4% com-
pared to a baseline not-recently-filled replacement policy in
a 2 MB 16-way exclusive LLC with aggressive multi-stream
prefetchers. The corresponding improvement in throughput

quantifies a conservative fairness metric mini
IPCi i.e.,

i

seen by 35 4-way multi-programmed mixes is 2.5%.

the normalized IPC of the slowest thread in each mix for the
thread-aware Bypass+TC-UC-AGE-x8 policy with hardware
prefetchers enabled. The mixes are ordered in the same way
as in the right panel of Figure 13(a). Except for a few mixes,
the slowdown experienced by the slowest thread is within
2% compared to the baseline and, on average, this is 1%.
Finally, the right panel of Figure 13(b) details the bypass
fraction achieved by thread-aware Bypass+TC-UC-AGE-x8
with hardware prefetchers enabled. While several mixes en-
joy sizeable bypass fractions, the average is 9%.

6. SUMMARY
This work makes the important observation that LRU and

its approximations lose meaning in exclusive LLCs and pro-
poses a number of design choices for selective bypassing and
insertion age assignment for such designs in a three-level
cache hierarchy. Our LLC bypass and age assignment deci-
sions are based on two properties of a block when it is con-
sidered for allocation in the LLC. The first one is the number
of trips (trip count) made by the block between the L2 cache
and the LLC from the time it is brought into the hierarchy
till it is evicted from the LLC. The second property is the
number of L2 cache hits (use count) experienced by a block
during its residency in the L2 cache. Our best proposal is a
combination of bypass and age insertion schemes based on

7. ACKNOWLEDGMENTS
The authors thank Aravindh Anantaraman, Nithiyanan-

dan Bashyam, Julius Mandelblat, Larisa Novakovsky, and
Joseph Nuzman for useful feedback.

8. REFERENCES
[1] Advanced Micro Devices. Family 10h AMD Opteron

Processor Product Data Sheet. June 2010.
support.amd.com/us/Processor TechDocs/40036.pdf.

[2] A. Basu et al. Scavenger: A New Last Level Cache
Architecture with Global Block Priority. In
Proceedings of the 40th International Symposium on
Microarchitecture , pages 421–432, December 2007.

[3] L. A. Belady. A Study of Replacement Algorithms for
a Virtual-storage Computer. In IBM Systems Journal,
5(2): 78–101, 1966.

[4] M. Chaudhuri. Pseudo-LIFO: The Foundation of a
New Family of Replacement Policies for Last-level
Caches. In Proceedings of the 42nd International
Symposium on Microarchitecture, pages 401–412,
December 2009.

[5] J. D. Collins and D. M. Tullsen. Hardware
Identification of Cache Conflict Misses. In Proceedings

GemsFDTD

lbm

Google_query

mcf xalanc

soplex omnetpp

SPECjbb

milc
sphinx3

IntelliMatch
TPC−C

 Bypass+TC−UC−AGE−x8

DIP+TC−AGE

Bypass+TC−UC−AGE−x8

DIP+TC−AGE

IP
C
 n

o
rm

a
li
ze

d
 t

o
 D

IP
+
T
C
−
A
G

E

IP
C
 n

or
m

al
iz

ed
 t

o
1−

b
it

 N
R
F

IP
C
 n

or
m

al
iz

ed
 t

o
1−

b
it

 N
R
F

IP
C

 n
or

m
al

iz
ed

 t
o

1−
bi

t
N

R
F

1.
30

1.
28

xal anc

 FSPEC ISPE C SER VER

 Avg. = 1.02 Avg . = 1.06 Avg . = 1.04

mc f

TPC −C SAS

GemsFD TD

omn etpp

TPC−E

sphinx3

lbm

libq

 dealII
gcc

SPE Cjbb

 milc
SAS

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 884 Copyright @ 2021 Authors

Thread−unaware−best

Thread−aware−best

TA−DIP+TC−AGE

1.04

1.035

1.03

1.025

1.02

1.015

1.01

1.005

1
Non−prefetched Prefetched

1.1

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

0.92

0.9

0.88

(a)

1.22

1.2

1.18

1.16

1.14

1.12

1.1

1.08

1.06

1.04

1.02

1

0.98

0

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

5 10 15 20 25 30 35

Mixes

Competitions: Cache Replacement Championship ,
June 2010.

[14] A. Jaleel et al. Achieving Non-Inclusive Cache
Performance with Inclusive Caches. In Proceedings of
the 43rd International Symposium on
Microarchitecture , December 2010.

[15] A. Jaleel et al. High Performance Cache Replacement
using Re-reference Interval Prediction (RRIP). In
Proceedings of the 37th International Symposium on
Computer Architecture , pages 60–71, June 2010.

[16] A. Jaleel et al. Adaptive Insertion Policies for
Managing Shared Caches. In Proceedings of the 17th
International Conference on Parallel Architecture and
Compilation Techniques , pages 208–219, October
2008.

[17] T. L. Johnson. Run-time Adaptive Cache
Management. PhD thesis, University of Illinois,
Urbana, May 1998.

[18] N. P. Jouppi. Improving Direct-mapped Cache
Performance by the Addition of a Small Fully
Associative Cache and Prefetch Buffers. In
Proceedings of the 17th International Symposium on
Computer Architecture , pages 364–373, June 1990.

[19] S. Khan, Y. Tian, and D. A. Jimenez. Sampling Dead
Block Prediction for Last-level Caches. In Proceedings
of the 43rd International Symposium on
Microarchitecture , December 2010.

[20] S. Khan and D. A. Jimenez. Insertion Policy Selection
Using Decision Tree Analysis. In Proceedings of the
28th IEEE International Conference on Computer
Design , October 2010.

0 5 10 15 20 25 30 35

Mixes

(b)

0 5 10 15 20 25 30 35

Mixes [21] S. Khan et al. Using Dead Blocks as a Virtual Victim
Cache. In Proceedings of the 19th International

Figure 13: (a) Throughput improvements, (b) fairness

and bypass fraction for the 4-way multi-prog. workloads.

of the 32nd International Symposium on
Microarchitecture , pages 126–135, November 1999.

[6] H. Gao and C. Wilkerson. A Dueling Segmented LRU
Replacement Algorithm with Adaptive Bypassing. In
1st JILP Workshop on Computer Architecture
Competitions: Cache Replacement Championship ,
June 2010.

[7] B. S. Gill. On Multi-level Exclusive Caching: Offline
Optimality and Why Promotions Are Better Than
Demotions. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies , pages
49–65, February 2008.

[8] A. Gonzalez, C. Aliagas, and M. Valero. A Data
Cache with Multiple Caching Strategies Tuned to
Different Types of Locality. In Proceedings of the 9th
International Conference on Supercomputing , pages
338–347, July 1995.

[9] M. Hayenga, A. Nere, and M. Lipasti. MadCache: A
PC-aware Cache Insertion Policy. In 1st JILP
Workshop on Computer Architecture Competitions:
Cache Replacement Championship , June 2010.

[10] HP Labs. CACTI. Available at
www.hpl.hp.com/research/cacti/.

[11] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in
the Memory System: Predicting and Optimizing
Memory Behavior. In Proceedings of the 29th
International Symposium on Computer Architecture ,
pages 209–220, May 2002.

[12] Intel Corporation. Intel Core i7 Processor.
www.intel.com/products/processor/corei7/index.htm.

[13] Y. Ishii, M. Inaba, and K. Hiraki. Cache Replacement
Policy Using Map-based Adaptive Insertion. In 1st
JILP Workshop on Computer Architecture

Conference on Parallel Architectures and Compilation
Techniques, pages 489–500, September 2010.

[22] M. Kharbutli and Y. Solihin. Counter-based Cache
Replacement and Bypassing Algorithms. In IEEE
Trans. on Computers , 57(4): 433–447, April 2008.

[23] A-C. Lai, C. Fide, and B. Falsafi. Dead-block
Prediction & Dead-block Correlating Prefetchers. In
Proceedings of the 28th International Symposium on
Computer Architecture , pages 144–154, June/July
2001.

[24] K. M. Lepak and R. D. Isaac. Mostly Exclusive
Shared Cache Management Policies. US Patent
7640399 , Advanced Micro Devices, Inc. (Sunnyvale,
CA, US), December 2009.
www.freepatentsonline.com/7640399.html.

[25] H. Liu et al. Cache Bursts: A New Approach for
Eliminating Dead Blocks and Increasing Cache
Efficiency. In Proceedings of the 41st International
Symposium on Microarchitecture, pages 222–233,
November 2008.

[26] R. L. Mattson et al. Evaluation Techniques for
Storage Hierarchies. In IBM Systems Journal, 9(2):
78–117, 1970.

[27] M. K. Qureshi et al. Adaptive Insertion Policies for
High Performance Caching. In Proceedings of the 34th
International Symposium on Computer Architecture ,
pages 381–391, June 2007.

[28] G. Tyson et al. A Modified Approach to Data Cache
Management. In Proceedings of the 28th International
Symposium on Microarchitecture, pages 93–103,
November/December 1995.

[29] Y. Zheng, B. T. Davis, and M. Jordan. Performance
Evaluation of Exclusive Cache Hierarchies. In
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, pages
89–96, March 2004.

N
or

m
al

iz
ed

 I
P
C
 o

f
th

e
sl

ow
es

t
th

re
ad

 (
P
re

fe
tc

he
d
)

T
hr

ou
gh

p
ut

 n
or

m
al

iz
ed

 t
o

1−
b
it

 N
R
F

B
yp

as
s

fr
ac

ti
on

 (
P
re

fe
tc

he
d
)

T
hr

ou
gh

p
ut

 n
or

m
al

iz
ed

 t
o

1−
b
it

 N
R
F

(P
re

fe
tc

he
d
)

AV

ERA

GE

= 0.99

AVE

RAG

E =

0.09

http://www.hpl.hp.com/research/cacti/
http://www.intel.com/products/processor/corei7/index.htm
http://www.freepatentsonline.com/7640399.html

