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ABSTRACT 

Due to cross-level cache block replication, inclusive last-level 
caches (LLCs) lose valuable silicon estate. This unused cache 
space causes greater performance losses than exclusive LLCs 
as the industry shifts towards cache hierarchies with larger 
inner levels. Yet, exclusive LLCs make it more difficult to 
develop replacement policies. A block can gather a filtered 
access history in an inclusive LLC, but in an exclusive design, 
this is not possible because the block is de-allocated from the 
LLC on a hit. Because of this, the widely used least-recently-
used replacement policy and its approximations are rendered 
useless, making careful selection of the insertion ages of 
cache blocks even more crucial in exclusive systems. On the 
other hand, it is not necessary to fill every block into an 
exclusive LLC. This is known as selective cache  bypassing  
and is not  possible  to implement in an inclusive LLC because  
that  would  violate  inclusion. This paper explores insertion 
and bypass algorithms for ex- clusive LLCs. Our detailed 
execution-driven simulation re- sults show that a combination 
of our best insertion and by- pass policies delivers an 
improvement of up to 61.2% and on average (geometric 
mean) 3.4% in terms of instructions re- tired per cycle (IPC) 
for 97 single-threaded dynamic instruc- tion traces spanning 
selected SPEC 2006 and server appli- cations,  running on a 2 
MB 16-way  exclusive LLC compared to a baseline exclusive 
design in the presence of well-tuned multi-stream hardware 
prefetchers. The corresponding im- provements in throughput 
for 35 4-way multi-programmed workloads running with an 8  
MB  16-way  shared exclusive LLC are 20.6% (maximum) 
and 2.5% (geometric mean). 
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1. INTRODUCTION 
Inclusive last-level caches (LLCs) simplify cache coherence 

protocol; an LLC tag lookup is enough to decide if a cache 
block is not present in the inner levels of the cache hierarchy. 
In an exclusive LLC, however, a block  is allocated  only on 
an eviction from the inner level cache and de-allocated on 
a hit when the block is recalled by the inner level cache.1 
As a result, a separate coherence directory array (decoupled 
from the LLC tag array) is needed to maintain coherence 
efficiently. While coherence simplification and silent clean 
evictions from the inner level are seen as major advantages of 
an inclusive LLC, such a design, by definition, wastes silicon 
estate due to replication of cached data in multiple levels of 
the hierarchy. As the industry moves toward a three-level or 
a four-level cache hierarchy with reasonably large inner lev- 
els, such cross-level replication begins to hurt performance 
in an inclusive design when compared to an exclusive one. 
This observation has already motivated commercial proces- 
sor designers to adopt fully or partially exclusive LLCs [1]. 
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Figure 1: A comparison of IPC between exclusive and 

inclusive LLCs with a 512 KB L2 cache in each design. 
 

The performance gains in an exclusive design over an iden- 
tical inclusive design usually come from two factors. One of 
these is the overall capacity advantage enjoyed by the ex- 
clusive  design.    The  second  performance  factor  is  related 
to premature evictions in the  inner levels of the hierarchy 

 
 

1 To enable fast cross-thread access to shared data, shared blocks 
may not be de-allocated on hits. We leave the exploration of re- 
placement policies for shared blocks in such a non-inclusive/non- 
exclusive design to future work. 
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caused by LLC replacements in an inclusive design. In the 
absence of access hints from the L1 and L2 caches, the last 
level (L3 in this study) of an inclusive design can end up 
making wrong replacement decisions [14]. The risk of pre- 
mature evictions from the L1 and L2 caches  triggered  by 
LLC replacements is non-existent in an exclusive design. 

In Figure 1, we show the performance of an exclusive LLC 
relative to an inclusive LLC for 97 single-threaded dynamic 
instruction traces representing different regions of floating- 
point  SPEC  2006  (FSPEC),  integer  SPEC  2006  (ISPEC), 
and server (SERVER) applications with a well-tuned multi- 
stream hardware prefetcher enabled. For the left bar, the 
simulated three-level cache hierarchy in both inclusive and 
exclusive cases is identical in capacity and associativity at 
every level. More specifically, the left bar presents simu- 
lation results for an architecture with a 512 KB 8-way L2 
cache and a 2 MB 16-way LLC. The bar on the right shows 
the performance of an exclusive LLC relative to an inclusive 
design, where the exclusive LLC is sized (1.5 MB 12-way) 
such that the effective capacity advantage of the exclusive 
design is nullified. In both cases, the inclusive LLC sim- 
ulates a not-recently-used (NRU) replacement policy (one 
bit age per block) and the exclusive LLC simulates a one- 
bit not-recently-filled (NRF) replacement policy. The NRU 
policy victimizes the not recently used block (age zero) from 
the way with the smallest id. The NRF policy updates the 

this paper. In this figure, we consider a baseline exclusive 
LLC with NRF replacement  policy  and no  bypass (i.e.,  all 
L2 cache evictions are allocated in the LLC). We keep the 
hardware prefetchers turned off to gain a better understand- 
ing of the demand request behavior (we will present results 
with prefetchers turned on in Section 5). The experiments 
are conducted on a single-core system with a 2 MB 16-way 
exclusive LLC. The L2 cache is 512  KB 8-way set associa- 
tive and instruction and data L1  caches  are 16 KB 4-way 
and 32 KB 8-way set associative,  respectively.  The L1 and 
L2 caches execute a pseudo-LRU replacement policy. 
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age bit array only on a fill and is otherwise similar to NRU. 
Both the policies reset the age bits of all the blocks (except 
the one most recently accessed/filled) in a set to zero only if 
all blocks in that set have age of one. For each application 
category, the bar on the right in Figure 1 brings out the per- 
formance difference stemming from the premature evictions 
from the inner levels of the cache hierarchy in the inclusive 
design. The bar on the left further adds the capacity ad- 
vantage that an exclusive design enjoys. On average, for 97 
traces, the exclusive design enjoys a 3.1% higher IPC than 
the inclusive design. 

While premature LLC replacements can cause performance 
degradation in inclusive designs, a block resident in the LLC 
of an inclusive design can still observe a filtered version of 
access recency during its life time. The situation can fur- 
ther improve with access hints from the inner levels or other 
proactive mechanisms [14]. This is not possible in an ex- 
clusive design. A block resides in the LLC of an exclusive 
design from the time it is evicted from the L2 cache to the 
time it is either recalled by the L2 cache or evicted by the 
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LLC, whichever is earlier. Due to the absence of any access 
information in an exclusive LLC, the popular least-recently- 
used (LRU) replacement policy and all its well-researched 
derivatives lose significance. As a result, the design of re- 
placement policies in an exclusive LLC requires a fresh look. 
A replacement policy has three distinct algorithmic com- 
ponents, namely, insertion age algorithm, age update algo- 
rithm, and victim selection algorithm. In this paper, we 
explore the insertion age algorithms. 

Selective bypass is an important optimization that can be 
exercised in an exclusive design, since every block evicted 
from the L2 cache is not required to be filled  into the LLC. 
In an inclusive design, all blocks fetched from memory must 
be filled in the LLC to maintain inclusion. We explore LLC 
bypass algorithms in this paper for an exclusive design that 
can identify clean as well as modified blocks that need not 
be filled in the LLC. Good LLC bypass policies can improve 
performance in two ways, namely, by reducing the band- 
width demand of the on-die interconnect as well as the LLC 
controller and by allocating the LLC capacity only to the 
blocks with relatively short reuse distances. 

 

 Motivation 
Figure 2 motivates the two design problems, namely, by- 

pass and insertion in exclusive LLCs, that we explore in 

Figure 2: (a) Normalized LLC misses for random re- 

placement and a number of oracle-assisted replacement 

policies. (b) Dead allocation and bypass analysis for a 

number of oracle-assisted bypass policies. 

Figure 2(a) presents the number of LLC misses normal- 
ized to the baseline NRF policy for a number of schemes, 
namely, the popular random replacement with no bypass 
often used for victim caches (Random), Belady’s optimal 
longest-forward-distance replacement [3, 26] with no bypass 
(Belady), Belady’s optimal replacement extended with by- 
pass which drops an incoming block if its next forward use 
distance is  larger  than  all  the  blocks  in  the  target  LLC 
set (Belady-B), and the baseline policy extended with opti- 
mal bypass which drops an incoming block if its next forward 
use distance is larger than the current victim in the target 
LLC set (Base-B).  In this paper,  we never bypass instruc- 
tion blocks. All these experiments are done on an offline 
cache simulator that has access to the entire LLC alloca- 
tion/lookup trace. The cache state at the end of warmup 
is loaded from a checkpoint. The tie between blocks with 
“unknown” forward distance (next potential use is beyond 
the trace length) is broken arbitrarily. 

These results show that random replacement leads to 4% 
more LLC misses compared to the baseline policy. On the 
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other hand, Belady, Belady-B, and Base-B show significant 
potential for improvement. On average, these three schemes 
save 16%, 16%, and 14% LLC misses.2 It is interesting to 
note that Belady and Belady-B are equally effective meaning 
that  augmenting an already good  replacement  policy with 
a bypass decision does not bring any extra advantage in 
terms of LLC hits. In this case, even though a bypass policy 
cannot improve the volume of LLC hits, it can save a signif- 
icant amount of on-die interconnect bandwidth if one could 
implement a bypass scheme at the L2 cache boundary. It 
is, however, encouraging to note that a forward-looking by- 
pass scheme working with the NRF policy (Base-B) can save 
14% of LLC misses. As expected, the potential for hit rate 
improvement of a good bypass scheme increases as the re- 
placement policy gets inferior. We, however, make a note of 
the fact that Base-B comes surprisingly close to Belady and 
Belady-B, the gap being maximized in the server workloads. 
We will explain this with the help of Figure 2(b). 

Figure 2(b) shows additional data pertaining to the bypass 
potential in an exclusive design. For each trace category, 
Figure 2(b) shows five different statistics: 1) the number of 
blocks allocated in the LLC but not used again in the rest of 
the trace as a fraction of all allocations (Trace-dead), 2) the 
fraction of blocks allocated in the LLC that are not recalled 
by the L2 cache before getting evicted from the baseline 
LLC (LLC-dead-Base), 3) the fraction of blocks allocated in 
the LLC that are not recalled by the L2 cache before getting 
evicted from the LLC while executing optimal replacement 
with no bypass (LLC-dead-Belady),  4) the fraction  of  all 
L2 cache evictions bypassed by Belady-B (Belady-B-drop), 
and 5) the fraction of all L2 cache evictions bypassed by 
Base-B (Base-B-drop). Among these, the first bar shows 
the fraction of useless allocations that would have happened 
in an LLC of infinite capacity. Although this fraction is a di- 
rect function of the trace length (longer traces are likely to 
have smaller values of this fraction), this data emphasizes 
the facts that the L1 and L2 caches are doing a wonder- 
ful job in absorbing all short-term reuses and that most of 
these reuse clusters are located very far apart. The next bar 
shows the fraction of useless LLC allocations in the base- 
line LLC. This is about 75%, on average.  This fraction is 
a realistic representation of the bypass potential. A bypass 
algorithm should try to make room in the LLC so that a sub- 
set of the blocks contributing to the difference of the first 
two bars can be retained. The third bar shows that even 
an optimal replacement policy does about 68% of useless 
allocations in the LLC. This result underscores the impor- 
tance of a good bypass policy even if the replacement policy 
is optimal. The fourth bar further confirms this result by 
showing an equivalent volume of bypasses that an optimal 
replacement policy with optimal bypass would observe. This 
result brings to fore the large potential of on-die intercon- 
nect bandwidth saving that an LLC bypass policy running at 
the L2 cache boundary can achieve. Finally, the rightmost 
bar shows that a forward-looking bypass policy executing 
with the baseline replacement policy can be as effective as 
optimal bypass and replacement running together in terms 
of the fraction of bypassed blocks. We have already noted 
that the performance gap between Base-B and Belady-B is 
maximum for the server workloads. This is expected since 
the bypass fraction is minimum in these workloads leading 
to the invocation of suboptimal NRF replacement of Base-B 
for a significant fraction of fills. 

Given the large potential in terms of replacement and by- 
pass algorithms, this paper systematically deduces and im- 
plements a few such algorithms (Sections 2 and 3). In this 
study, we explore only the insertion component of the re- 
placement algorithms. Although our bypass algorithms can 

 

2 The optimal replacement and optimal bypass gains may change 
for a different interleaving of LLC requests. 

be seamlessly integrated with the L2 cache, we implement 
them in the LLC controller and as a result, explore only the 
capacity benefit of these algorithms. Our detailed execution- 
driven simulation results (Sections 4 and 5) show that the 
combination of our best insertion and bypass algorithms im- 
proves the IPC of 97 single-threaded traces by up to 61.2% 
and on average 3.4% on a 2 MB 16-way exclusive LLC com- 
pared to the baseline exclusive design with aggressive multi- 
stream hardware prefetchers enabled. The corresponding 
maximum and average improvements in throughput for 35 
4-way multi-programmed workloads are 20.6% and 2.5%. 

 

 Related Work 
In this section, we briefly review the studies that are most 

relevant to our work. The capacity advantage of exclusive 
LLCs compared to inclusive LLCs has been studied in [29], 
while several techniques to get rid of premature evictions 
from inner level caches in an inclusive hierarchy have been 
proposed in [14]. The importance of treating shared blocks 
specially in an exclusive LLC has been highlighted in [24]. 
Multi-level exclusive caching in the context of distributed 
disk caches has been studied in [7]. 

Exclusive caches are functionally equivalent to large vic- 
tim caches [18]. Selective victim caching (analogous to an 
exclusive LLC with bypass enabled) has  been explored in 
the context of small victim caches that work well with L1 
caches [5, 11]. A design of a large victim cache with selective 
insertion based on frequency of misses has been presented 
in [2] and is shown to work well with inclusive LLCs. A 
recent work exploits the dead blocks in an inclusive LLC to 
configure an “embedded” victim cache [21]. 

Dead block prediction schemes [11, 19, 21, 22, 23, 25] have 
close connection with our bypass proposal. Most of the ex- 
isting dead block prediction schemes select a dead block in a 
cache set either for replacement or as a target of a prefetch 
after the block has spent some time in the cache. These pro- 
posals usually correlate the instruction address and/or data 
address with the death of a cache block. A recent proposal 
shows how to design an address-oblivious dead block pre- 
dictor that exploits the reuse probabilities to improve the 
replacement decisions in an inclusive LLC [4]. On the other 
hand, our bypass algorithms identify a block that would be 
dead-on-fill in the LLC at  the  time of  fill.  While instruc- 
tion or data address can improve the quality of bypass, our 
bypass algorithms do not rely on any such information. 

A few recent proposals have explored bypass algorithms 
for LLCs.3 One proposal [6] remembers the tag of a by- 
passed block (if the incoming block is bypassed) or the vic- 
timized block (if the incoming block is not bypassed) to 
observe the next use to the bypassed/allocated block and 
the saved/victimized block, and accordingly learns whether 
bypassing is a good decision. However, this proposal ran- 
domly selects incoming blocks for bypassing based on a by- 
pass probability, which is adjusted dynamically based on the 
effectiveness of bypassing. Another proposal [19] shows how 
to use a program counter (PC)-based skewed dead block 
predictor that learns the caching behavior of a few sample 
sets in the LLC to identify blocks that are dead-on-fill and 
bypass such blocks. Access counter-based LLC bypass al- 
gorithms that  take  help  of  a  prediction  table  indexed by 
a hash  function of the  PC are explored in [22].   Our by- 
pass algorithms do not require separate prediction tables or 
any PC-related information, but exploit the reuse frequency 
that a block sees while in the L2 cache and the number of 
times it has traveled between the L2 cache and the exclu- 
sive LLC. It is important to note that bypass  algorithms 
have also been studied in the context of small data caches. 

 
 

3 Often these proposals do not clearly mention the nature of the 
cache hierarchy being considered. We assume that these are done 
in the context of exclusive or partially inclusive caches. 
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These proposals require a profile pass that gathers the local- 
ity information [17], or build a PC and data address-based 
locality predictor [8], or carry out an instruction-based char- 
acterization of the potential of data cache bypassing [28], or 
employ a classification of data cache misses into capacity or 
conflict to drive the bypass decision [5]. Our proposal does 
not require any profile run or any PC/address/instruction 
information or miss classification. 

There have been several recent studies on insertion age 
selection for LLCs. Some of these studies require PC infor- 
mation of the source instruction of a to-be-filled block [9, 
13]. Also, several of these studies usually identify the inser- 
tion age with LRU, MRU, or other access recency positions 
in a set [9, 13, 16, 20, 27]. As a result, these proposals get 
tied to the notion of an access recency order, which is non- 
existent in an exclusive cache (in the absence of any extra 
information, the only meaningful  order among the  blocks 
in an exclusive cache set is the fill order). A recent study 
assigns insertion age based on re-reference interval predic- 
tion and updates the predicted age on a hit in an inclusive 
LLC [15]. Although such an option of age update is non- 
existent in an exclusive LLC, we will show how to design 
somewhat analogous policies for exclusive LLCs. A decision 
tree-based technique for selecting the insertion age relative 
to the access recency order has been explored in [20]. Our 
insertion policy proposals are necessarily independent of ac- 
cess recency order. 

 

2. CHARACTERIZATION OF DEAD AND 

LIVE LLC BLOCKS 
Use recency and use frequency are the two properties that 

are traditionally employed to determine the death and live- 
ness of a cache block. Exclusive LLCs make the effective 
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use of these two properties challenging because a block is 
de-allocated from the LLC on its first recall from the inner- 
level caches. As a result, the only meaningful order among 
the blocks in an LLC set is the fill order. Unfortunately, the 
fill order among the blocks in an LLC set has little correla- 
tion with their use recency order because blocks evicted from 
multiple L2 cache sets may get allocated  in the same LLC 
set. Even though the L2 cache exercises a use recency based 
replacement algorithm (e.g.,  pseudo-LRU in our case), the 
fill order in an LLC set is an arbitrary interleaving of the use 
recency orders of multiple L2 cache sets from different cores 
or the same core. Reconstructing the correct use recency 
order in an LLC set is costly, since it requires a global use 
recency order in the L2 caches across multiple cores. In this 
paper, we design our bypass and insertion schemes based on 
estimates of average recall distance of LLC blocks and their 
use count in the L2 cache. The average recall distance of an 
LLC block B is defined as the mean number of LLC alloca- 
tions between the allocation  of B in the LLC and the recall 
of B from the L2 cache. 

 Estimate of Recall Distance 
In a three-level cache hierarchy with an exclusive LLC, a 

block is filled into the L2 cache when it is first brought from 
the DRAM. On an L2 cache eviction, it makes its first trip 
to the LLC. If it is recalled from the LLC before it is evicted, 
it will eventually make its second trip to the LLC when it 
is victimized from the L2 cache again. These trips continue 
until the block is evicted from the LLC. A block with a high 
trip count is expected to have a low average recall distance. 
The trip count of a block in an exclusive LLC translates to 
the use count of the block in an inclusive LLC. 

To understand the trip count behavior in the presence of 
optimal LLC replacement decisions, Figure 3(a) shows the 
distribution of LLC allocations among four trip count (TC) 
bins (the first trip from the L2 cache to the LLC is denoted 
by TC=0). While every block brought into the cache hierar- 

Figure 3: (a) Distribution of LLC allocations with trip 

count in the presence of optimal replacement with no 

bypass (Belady) in the LLC. (b) Fraction of LLC alloca- 

tions in each trip count bin in the presence of optimal 

replacement with optimal bypass (Belady-B) in the LLC. 

chy gets allocated in the LLC for the first time with TC=0, 
only a fraction of that will survive to experience a TC=1 

allocation. The difference between TC=0 and TC=1 allo- 
cation fractions brings out the percentage of useless alloca- 
tions that happen at TC=0. Overall, this is about 55% of all 
LLC allocations. We note that this forms a major portion of 
the overall useless allocation fraction of 68% (see LLC-dead- 
Belady in Figure 2(b)). We will refer to the blocks allocated 
with TC=0 as the T C0 blocks and the rest as T C≥1 blocks. 

Figure 3(b) further shows the fraction of allocations that 
take place in each TC bin when an optimal bypass is enabled 
on top of optimal replacement (Belady-B) in the LLC. This 
fraction for a particular bin is computed as the number of 
LLC allocations made from that bin over the number of in- 
coming blocks belonging to that bin. Note that the incoming 
blocks belonging to the TC=k bin are necessarily a subset 
of the blocks allocated from the TC=k − 1 bin for k ≥ 1 (the 
remaining subset gets evicted from the LLC before they can 
make the next trip).  These data  show that overall,  only 
27% of the T C0 blocks are allocated in the LLC and the 
remaining 73% of the T C0 blocks are bypassed. The alloca- 
tion percentage progressively increases as a block moves to 
higher TC bins. These data  clearly bring  out the fact that 
the likelihood of an LLC block being live increases with its 
TC value (up to a limit). We derive three major conclusions 
from these data. First, the TC=0 bin is the ideal bypass 
target and the T C≥1 blocks  should  be  mostly  allocated  in 
the LLC. However, it is important to separate the dead T C0 

blocks from the live T C0 blocks (these live T C0 blocks will 
eventually become  T C≥1  blocks).  We explore L2  use  count 
in the next section as a possible feature to carry out this 
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max 

max 

classification. Second, since T C≥1 blocks are mostly live, 
they can be assigned a high insertion age, if they are not 
bypassed. However, we need more properties of the non- 
bypassed T C0 blocks to appropriately grade their insertion 
ages.   For this purpose, we explore L2 cache use count in 
the next section. Finally, two TC bins,  namely, T C0  and 
T C≥1 are enough to derive  most  of  the  benefits.  There- 
fore, we need one bit per L2 cache block and no storage for 
LLC blocks for maintaining the trip count (a block recalled 
from the LLC is always classified as T C≥1 in the L2 cache). 
More TC bits would help the server traces, but the overall 
utilization of these bits would be low. 

 

 Use Count and Synergy with Trip Count 
In the last section, we have seen that trip count can serve 

as a reasonably good starting point for identifying a large 
fraction of bypass candidates (a major portion of T C0 blocks) 
and live blocks in exclusive LLCs. In the following, we ex- 
plore the possibility of exploiting the use count of a block 
during its residency in the L2 cache to further tune the clas- 
sification of dead and live blocks. Every time a block is filled 
into the L2 cache (from DRAM or LLC) by a demand re- 
quest, its use count is set to one. A block filled into the 
L2 cache by a prefetch request sets its use count to zero. 
Only a demand hit in the L2 cache can increment the use 
count. While the trip count is loosely related to the average 
distance between clusters of near-term reuses to a block, the 
L2 cache use count captures the size of the last such cluster 
seen by a block. In Figure 4(a), we start by exploring the 
distribution of LLC allocations among three L2 cache use 
count (L2UC) bins. The LLC executes Belady’s optimal re- 
placement policy with no bypass. Note that in the absence of 
prefetching, a block evicted from the L2 cache cannot have a 
zero L2UC. Even in the presence of prefetching, such blocks 
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may exist only due to premature or incorrect prefetches. In 
Section 3.4, we will discuss how to handle such blocks when 
they come for LLC allocation. The data in Figure 4(a) show 
that about 58% of blocks allocated in the LLC observe only a 
single use in the L2 cache. The next L2UC bin contributes 
about 30% of LLC allocations. The remaining allocations 
come with at least three L2UC. While these data do not 
offer any insight into classification of dead and live blocks, 
they do confirm that two bits for maintaining L2UC per L2 
cache block is enough for all practical purposes. Recogniz- 
ing the fact that L2UC is only a filtered (or sampled) access 
count, we also looked at the cumulative use count (CUC) 
of a block in the L1 cache counted from the time the block 
is brought into the L1 cache till the time it is evicted from 
the L2 cache (this corresponds to L1 cache use count per 
L2-LLC trip). We found that we need four bits per cache 
block to properly maintain CUC. In the following, we will 
explore if the added accuracy in CUC (compared to L2UC) 
can help improve the classification of dead and live blocks. 

Design of good bypass and insertion age assignment al- 
gorithms requires understanding of the distribution of dead 
and live blocks in an optimal setting. One way to explore 
this is to observe the distribution of victims when the LLC 
executes Belady’s optimal replacement because optimal vic- 
tim selection is synonymous to optimal death prediction. 
To understand the distribution of good LLC victims, we ex- 
ecute Belady’s optimal replacement in the LLC with bypass 
disabled while maintaining three L2UC bins (L2UC=0 is 
excluded), fifteen CUC bins (CUC=0 is excluded), and the 
cross-product of the TC bins with the L2UC and CUC bins 

i.e., six TC×L2UC bins and thirty  TC×CUC  bins.  This 
creates four bin classes, namely,  L2UC,  CUC,  TC×L2UC, 
and TC×CUC. We would like to know which of these bin 
classes could serve as a good feature for identifying dead and 
live blocks. One way to resolve this question is to identify, 
within each bin class, the bin with the maximum number of 
victims. Clearly, such a bin would capture most of the opti- 

Figure 4:  (a) Distribution of LLC allocations with L2 

cache use count. (b) Median of victim and live block 

fractions in the most prominent victim bin for four bin 

classes. The victim fraction is the victim count of the 

most prominent victim bin out of all LLC victims across 

all bins,  while the  live fraction is  computed over the 

LLC allocations done from the most prominent victim 

bin only. The data for (a) and (b) are collected in the 

presence of optimal replacement with no bypass (Belady) 

in the LLC. 

mal victims. However, we want a low volume of live blocks 
in that bin so that the likelihood of victimizing live blocks 
is minimized. The goal is to identify the bin class that has 
a bin which maximizes the victim coverage and minimizes 
the live coverage. To achieve this, we do the following. 

When a block is allocated into the LLC, its membership 
bin in each of these four bin classes is decided based on its 
TC, L2UC, and CUC values. For example, a block with 
TC=0, L2UC=2, and CUC=10 will fall into L2UC=2 bin, 

CUC=10  bin,  TC×L2UC=(0,  2)  bin,  and  TC×CUC=(0, 
10) bin.  When a block is victimized from the LLC by the 
optimal replacement policy, the victim counts of the block’s 
four membership bins are each incremented by one. For each 
trace, we identify the bin covering the maximum fraction of 

victims (V C  ) in each of the four bin classes  C with C ∈ 
{L2UC, CUC, TC×L2UC, TC×CUC}. For different traces, 
these four identified bins (one in each bin class) may turn 
out to be different. For each of these four identified bins (one 
in each bin class C), we also record the live fraction (LC), 
computed as the number of LLC hits experienced by blocks 
belonging to a bin over the number of LLC allocations done 
from that bin. 

Figure 4(b) presents the median of V C   and LC for each 
of the three trace categories for each bin class C. The vic- 

tim fraction is maximized in L2UC with TC×L2UC follow- 
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2 

4 

4 

ing next, while the live fraction is minimized in TC×L2UC 
across the board, especially for the server traces. In the 
server traces, the gap in the live  fraction  between L2UC 

and TC×L2UC is much bigger than the gap in the victim 
fraction. Assuming that minimizing the live fraction is an 
equally important objective as maximizing the victim cov- 

erage, we decide to use the TC×L2UC bins for inferring the 
bypass candidates and insertion ages. We will refer to these 
bins as the TC-UC bins and L2UC as UC. It is encouraging 

to note that a high median victim fraction in TC×L2UC 
across application categories essentially indicates the exis- 
tence of at least one TC-UC bin for each trace such that the 
dead blocks have a strong affinity toward it (with a member- 
ship likelihood of 0.55 for FSPEC, 0.80 for ISPEC, and 0.40 
for SERVER). Also, the likelihood of misclassifying a live 
block belonging to such a bin as a dead block is negligibly 
small in  FSPEC (0.03)  and  ISPEC (less  than  0.01),  while 
for SERVER it is about  one-third.  Our algorithms  attempt 
to learn this bin and any other prominent dead bins dynam- 
ically. Even though the statistics presented in Figure 4(b) 
summarize the aggregate observed behavior for each trace, 
it is important to note that the prominent dead bins can 
change over time within the same application trace. 

 
3. BYPASS AND INSERTION POLICIES 

This section discusses the design and implementation of 
the bypass and insertion algorithms for exclusive LLCs. First 
we discuss the dynamic learning framework that all our al- 
gorithms use and then present the algorithms. 

 

 General Framework 
The bypass and insertion decisions should be based on 

the population of dead and live blocks in the TC-UC bins. 
Note that a block allocated in the exclusive LLC is classi- 
fied as dead if it gets evicted before getting recalled by the 

When updating the D−L and L counters in an LLC bank, 
the observers also maintain the max(D − L), min(D − L), 
max(L), and min(L) across the TC-UC bins, excluding the 
UC=0 bins,  within that LLC bank.   In addition to these, 
the aggregate D − L over all TC-UC bins, excluding the 
UC=0  bPins,  is  maintained  per  LLC  bank.   We  will  refer  to 
this as       UC=0 (D − L).  One of our insertion algorithms re- 
quires that the observers maintain the aggregate L over all 
TCP=0 bins with positive UC. We will refer to this aggregate 
as       TC=0,UC=0 (L).   The  updates  of  the  maximum,  min- 
imum, and the aggregate values take place mostly off the 
critical path  of  LLC  activities.  Every  N  LLC  allocations 

per bank all the D − L and L counters (including the max, 
min, and aggregate values) in that LLC bank are halved so 
that a temporally-aware exponential average is maintained. 
N is equal to the number of observer sets per LLC bank 
multiplied by the LLC associativity. Even with a storage 
overhead of two bytes per counter, the overall counter over- 

head is small. Our simulations use eight-bit D − L and L 
counters for the single-threaded configuration and nine-bit 
counters for the multi-programmed configuration. The max, 
min, and aggregate registers are sized accordingly. Also, ev- 
ery L2 cache block stores three additional bits to maintain 
the TC and UC values of the block. 

 Bypass Algorithms 
Good bypass algorithms would bypass incoming blocks 

that belong to bins with high D − L populations, yet low 
enough L populations. More specifically, an incoming block 

belonging to TC-UC bin b with counter values (D − L)b and 

Lb qualifies as a bypass candidate if (D − L)b ≥ 1 (max(D − 
L) + min(D − L)) and Lb ≤ 1 (max(L) + min(L)). However, 
we find that there are situations where the overall magnitude 

of D −L is so high that even if the second condition fails, by- 
passing can be done without any performance degradation. 
Therefore,  we  ovPerride  the  outcomes  of  these  comparisons 

L2 cache (these are essentially LLC victims); otherwise the 
block is classified as live. Ideally, we would like to learn the if (D − L)b ≥ 3 

 
UC/=
0 

(D − L).   A more carefully chosen 

dead and live populations in each TC-UC bin. Depending 
on the membership bin of an incoming block and the dead 
and live populations of that bin, we would like to take a 
decision about whether to bypass this block or what initial 

weight of magnitude lower than 3 may improve the bypass 
performance  further.   We summarize  our bypass  algorithm 
in the following where bypass is a boolean-valued variable. 

1 
age to assign if it is not bypassed.  To carry out this learn- 
ing, we dedicate sixteen sample sets per 1024 sets of LLC 

bypass = ((D − L)b ≥ (max(D − L) + min(D − L)) 
2 

that observe the dead and live populations of each TC-UC 
bin. These sets will be referred to as the observers. The ob- 

AND Lb ≤ 
1 

(max(L) + min(L))) 
2 

servers allocate all blocks and implement a static insertion 
age assignment scheme based on the single-bit TC value of 
an incoming block. We will introduce this age assignment 
scheme in Section 3.3. 

OR    ((D − L)   ≥ 
3

 
b 

4
 
X 

UC=0 

(D − L)) (1) 

For each TC-UC bin per LLC bank, the observers main- 
tain two values, namely, the difference of dead and live al- 
locations to the observers  (D − L)  and the  live  allocations 
to the observers (L). Our algorithms need eight D − L and 
eight L counters per LLC bank corresponding to the eight 
TC-UC bins. When a block arrives at the LLC for allocation 
to one of the observers, the block’s TC-UC bin b is decided 
based on the block’s TC, UC values (carried by the eviction 
message from the L2 cache).  The observer increments the 

D − L counter of bin b by one when the block is allocated. 
On a hit to a block B in an observer set, the observer decre- 
ments the D − L counter of  the bin the block B belongs  to 
by two and increments that bin’s L counter by one.  The ob- 
servers maintain three bits per cache block to remember the 
bin an allocated block belongs to. The non-observer sets, 
however, do not need to store any such information. A non- 
observer set, when allocating a block, first determines the 
block’s membership bin based on the block’s TC, UC values 
and then queries the D − L and L counters of that bin. The 
returned D − L and L values are input to the bypass and 
insertion algorithms. 

If an incoming block finds an invalid way in the target set 
and bypass is true according to the above formula, it is filled 
into the LLC with an insertion age of zero. In other words, 
invalid ways in the LLC are always utilized, but with a zero 
insertion age in the case a bypass is recommended. On the 
other hand, if bypass is true and there is no invalid way in 
the target set, the incoming block is bypassed. A bypassed 
block is  treated exactly the same way  as an LLC victim and 
it mimics the LLC eviction protocol. 

To minimize the risk of performance loss, we employ duel- 
ing on set samples [27] and always duel our bypass algorithm 
with the no-bypass algorithm of the observers. For this pur- 
pose, in addition to the observer sets, we dedicate an equal 
number of LLC sets (sixteen per 1024 LLC sets) that always 
execute our bypass algorithm. We have observed that the 
static version of the bypass policy that does not employ any 
dueling degrades the performance of several applications. 

 Insertion Algorithms 
We present three algorithms for insertion age assignment 

with progressively increasing complexity. These algorithms 
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x+1 

Db+Lb 

are applied to those blocks for which bypass is false as com- 
puted by Formula (1). We assume a two-bit budget to main- 

tain ages per LLC block. Our algorithms apply to data 
blocks only and instruction blocks are always filled with the 

highest age i.e., three. Our LLC replacement policy first 
looks for an invalid way in the target set. If there is no such 
way, it victimizes the block with the minimum age and also 
decrements all the ages in that set by this minimum before 
the new block is inserted to reflect the correct relative age 

order. A tie among the blocks with the minimum age is 
broken by selecting the block with the least physical way id. 

Our first insertion algorithm is inspired by the distribution 
of liveness in T C0 and T C≥1 blocks as shown in Figure 3(b). 
This algorithm assigns all T C≥1 blocks an insertion age of 
three and all T C0 blocks an insertion age of one. This is the 
policy exercised by our observer sets, since it does not require 
any dynamic learning. We will refer to this policy as the TC- 
AGE policy. The TC-AGE policy is similar to SRRIP-style 
static algorithms originally proposed for inclusive LLCs [15]. 
In our age assignment setting where a lower age corresponds 
to a higher replacement priority, the SRRIP algorithm would 
assign an insertion age of one to a newly allocated block and 
promote it to the highest possible age on a hit in an inclusive 
LLC. In an exclusive LLC, the blocks that have already seen 

mand  hit  in  near  future.   Our  bypass  algorithm  continues 
to remain oblivious to such cases and treats the UC=0 bins 
exactly the way it treats the other bins.  Our TC-AGE inser- 
tion algorithm does not do anything special for the UC=0 
blocks. The other two insertion algorithms assign a zero in- 
sertion age to a (TC=0, UC=0) block belonging to bin b if 

it satisfies (D − L)b > (x − 1)Lb (here b is (TC=0, UC=0)). 
All other (TC=0, UC=0) blocks receive an insertion age of 
one. All (TC≥1, UC=0) blocks receive an insertion age of 
three. Figure 5 shows our bypass and TC-UC-AGE logic 
diagrams. 

 
(D− 

BYPASS 

 

 

 

 

 

 

 

(a) 

UC==0 AND TC==0 

LLC hit(s) are the T C≥1 blocks. 
Our second insertion algorithm continues to assign the 

highest age, i.e., three to the T C≥1 blocks,  but  it  assigns 
more finely graded ages to the T C0 blocks. To achieve this, 
it takes help of the dead and live populations learned by 
the observers. This  algorithm  recognizes  the fact  that the 
T C0 blocks belonging to bins with low  hit rates  should not 
get a positive age.  If a certain bin b satisfies Db > xLb or 

equivalently, (D − L)b > (x − 1)Lb, that would translate to 
a hit rate bounded above by   1   for blocks belonging to bin 

b (hit rate is     Lb   ).  We would like to assign an insertion 

age of zero to  an incoming block  if it belongs  to  a TC=0 
bin with too low a hit rate. However, we find that there are 
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situations where the hit rate of the target bin is low, but Figure 5: Logic diagrams for our (a) bypass and (b) TC- 
the bin still has a fairly high number of live blocks i.e., Lb is 
above a threshold. In these cases, assigning a zero insertion 

UC-AGE algorithms.  AGG(D − L) refers to 
P

 
L) and AGGL refers  to 

P
 

 
UC=0 (D − 

age is too risky. Overall, we assign an insertion age of zero 
to a T C0 block belonging to bin b with positive UC if 

TC=0,UC=0 (L).   Note  that  the 
existence of an invalid way in the target set can override 

(D − L)b > (x − 1)Lb AND Lb < 
3

 
X 

(L). (2) 
the bypass decision and force an insertion with age zero. 

4 
TC=0,UC/=0 

 

All the remaining T C0 blocks with positive UC are inserted 
at an age of one. We will refer to this policy as the TC-UC- 
AGE policy. We evaluate this policy for x = 4, 8. 

Our third insertion algorithm is similar to the TC-UC- 
AGE policy, but instead of assigning an age of one to all 
the T C0 blocks with positive UC that do not satisfy For- 
mula (2), it grades them from age one to three based on 
live population. First, the algorithm ranks the three TC=0, 
UC 0 bins based on their L values and tags the bin having 
the smallest L value with an age of one and the one with the 
highest L value with an age of three. Next, the algorithm 
determines the bin that the incoming block belongs to and 
assigns the corresponding insertion age to this block. We 
will  refer to this policy as the TC-UC-RANK policy.   Un- 
like bypass policies, none of our insertion age assignment 
schemes requires dueling because a slightly wrong insertion 
age is not as harmful as a wrong bypass decision. 

 Handling Prefetches 
We give some special consideration to the bins with UC=0. 

As we have pointed out, the blocks belonging to these bins 
are the result of either premature, yet correct, prefetches 
that failed to see a  demand hit  during their  residency in 
the L2 cache or incorrect prefetches that will not see a de- 

 Introducing Thread-awareness 
Upgrading our bypass and insertion algorithms to a multi- 

threaded environment  requires  maintaining  the D − L and 
L counters for each TC-UC bin per thread. Each thread is 
also assigned a separate set of observers. The observers ear- 
marked for a particular  thread execute TC-AGE insertion 
for that thread and the best emerging duel winner for each 
of the other threads (similar to TADIP-F [16]) if bypassing 
is enabled. We use four observers per thread per 1024 LLC 
sets. Our counter update schemes do not require storage of 
thread id in the LLC to incorporate thread-awareness. We 
assume one thread per core in this article. At the time of an 
LLC allocation, the core id of the source L2 cache is available 
because this information is needed to update the coherence 
directory and therefore, the appropriate D − L counter can 
be  incremented.    At  the  time  of  an  LLC  hit,  the  core  id 
of  the requester is  available  and therefore,  the appropriate 

D − L counter can be decremented and the appropriate L 
counter can be incremented. Also, the maximum, minimum, 
and aggregate values of several counters, as discussed in Sec- 
tion 3.1, must be maintained per thread. 

 

4. EVALUATION METHODOLOGY 
Our simulations are done on a cycle-accurate execution- 

driven x86 simulator. Our 4 GHz 4-way dynamically sched- 

L)_b 
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(3/4)AGG(D−L) 1 

= 

(1/2)(max(D−L)+min(D−L)) 

 
(1/2)(max(L)+min(L)) 

= 

L_b 

0 



 

 

Dogo Rangsang Research Journal                                                 UGC Care Group I Journal 

ISSN : 2347-7180                                                          Vol-08 Issue-14 No. 01 February : 2021 

Page | 880                                                                                         Copyright @ 2021 Authors  

uled out-of-order issue core model closely follows the core mi- 
croarchitecture of the Intel Core i7 processor [12]. Through- 
out this study, we assume one physical thread context per 
core. Each core has its own L1 and L2 caches. The L1 in- 
struction cache is 16 KB 4-way associative and the L1 data 
cache is 32 KB 8-way associative.  The unified L2 cache is 
512 KB 8-way associative.  The L2 cache is partially inclu- 
sive (also known as non-inclusive) of the L1 caches in the 
sense that an L2 cache eviction always queries the L1 caches 
for up-to-date state and data, but the L1 cache may choose 
to retain the block instead of invalidating. For the single- 
thread studies, we model a 2 MB 16-way exclusive LLC par- 
titioned into two banks, each being 1 MB 16-way. For the 
multi-programming studies, we model four cores with pri- 
vate L1 and L2 caches and the cores are connected over a 
ring. Each core hop of the ring has a shared 2 MB 16-way 
exclusive LLC bank attached to it leading to an aggregate 
8 MB 16-way shared LLC. The block size at all the three lev- 
els of the cache hierarchy is 64 bytes. We model a six-cycle 
hit latency (tag+data) for the L2  cache  and an eight-cycle 
hit latency (tag+data) for each LLC bank [10]. The ring hop 
time is one cycle. We model a coherence directory that can 
accommodate eight times the number of aggregate L2 cache 
tags and is 16-way associative (same as the LLC). The co- 
herence directory banks are co-located with the LLC banks. 
For all simulations, we model a two-channel integrated mem- 
ory controller clocked at the core frequency with each chan- 
nel connecting to an 8-way banked DDR3-1866 DIMM. The 

three single-threaded workload categories and overall (ALL). 
In each category, the leftmost three bars show the perfor- 
mance of static TC-AGE insertion and dynamic learning- 
based TC-UC-AGE insertion with x = 4, 8. To avoid un- 
necessarily increasing the number of policy bars, we will 
show the performance of TC-UC-RANK only in the pres- 
ence of bypassing. The next five bars show the performance 
of LLC bypassing executing with three different insertion 
algorithms.  In each of these five cases, the evaluated pol- 
icy (e.g., Bypass+TC-UC-AGE-x8) is always dueled with 
the observers executing TC-AGE and if the observers emerge 
the winner, the followers disable bypassing, but continue to 
execute the insertion component (e.g., TC-UC-AGE-x8). 
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sive multi-stream instruction and data prefetchers that bring 
blocks into the L2 cache of the core. 

Our single-threaded traces are drawn from three work- 
load categories, as already discussed: FSPEC, ISPEC, and 
SERVER. We first identified 213 representative dynamic 
code regions each of length close to thirty million dynamic 
instructions prefixed with a trace of several hundreds of mil- 
lion load/store instructions to warm up the caches. While 
the entire trace of about thirty million dynamic instructions 
is run in detailed cycle-accurate timing mode, the last six 
million instructions are used to measure IPC and other per- 
formance indices. All the policies evaluated in this paper are 
executed from the beginning of the warmup trace to make 
sure that the detailed cycle-accurate measurement phase 
captures a steady-state snapshot. Out of these 213 regions, 
we picked 97 regions that are likely to be sensitive to uncore 
optimizations (have at least five misses per kilo instructions 
with baseline NRF). In these 97 traces, we have 44 FSPEC 
traces spanning one dozen applications, namely, bwaves, cac- 
tusADM, dealII, GemsFDTD, lbm, leslie3d, milc, soplex, 
sphinx3, tonto, wrf, and zeusmp. We have 23 ISPEC traces 
spanning seven applications: bzip2, gcc, gobmk, libquan- 
tum, mcf, omnetpp, and xalancbmk. Finally, we select 30 
server traces from applications like SAP, SAS, SPECjbb, 
SPECweb2005, TPC-C, TPC-E, etc. 

We present results for 35 4-way multi-programmed work- 
loads prepared by mixing four representative single-threaded 
traces from all three workload categories.  Within a mix, 
each thread first executes its warmup region before starting 
the detailed performance simulation. If a thread finishes its 
performance simulation phase early, it continues executing 
so that we can model the shared LLC contention properly. 
The mix terminates when every thread has finished its per- 
formance simulation phase. 

 

5. SIMULATION RESULTS 

 Single-threaded Workloads 
We first present the simulation results with hardware data 

prefetchers disabled. Figure 6 summarizes the geometric 
mean IPC of several policies normalized to 1-bit NRF for the 

Figure 6:  Summary of performance of several policies 
normalized to 1-bit NRF. 

We have also experimented with a 2-bit approximation 
of least-recently-filled (LRF) replacement policy that ranks 
the blocks in a set by their fill order (can only distinguish 
between the last three fills).  Finally, the rightmost bar in 
each workload category shows the performance of a dynamic 
insertion policy (DIP) [27] in the presence of TC-AGE in- 

sertion. This policy inserts all T C≥1  blocks  at  age  three 
and duels the T C0 blocks between insertion age of zero and 
one. This policy shows one way to implement DRRIP-style 
dynamic policies originally proposed for inclusive LLCs [15]. 

The TC-AGE policy improves performance by more than 
1% averaged over the 97 traces (see the ALL group). This 
result motivated us to use the TC-AGE policy for the ob- 
servers in the place of NRF. The TC-UC-AGE policy im- 
proves the overall performance by almost 4%, with ISPEC 
showing an average performance improvement of more than 
7% compared to NRF. Overall, there is no performance dif- 
ference between x = 4 and x = 8 for TC-UC-AGE. Our by- 
pass algorithm running with TC-AGE improves overall per- 
formance by 2.8%, with ISPEC showing an impressive 5.3% 
improvement. However, these data show that the TC-UC- 
AGE insertion algorithm alone can achieve better perfor- 
mance across the board compared to bypassing dueled with 
TC-AGE. Nonetheless, the Bypass+TC-AGE policy still of- 
fers an attractive design point. LLC bypassing coupled with 
TC-UC-AGE offers the best performance across the board 
with x = 8. The best combination i.e., Bypass+TC-UC- 

AGE-x8 improves the overall IPC of the 97 traces by 4.3% 
with FSPEC, ISPEC, and SERVER showing individual im- 
provements of 3.9%, 8.5%, and 1.8%, respectively. Corre- 
spondingly, it saves 7.6%, 11.4%, and 8.4% of the base- 
line LLC misses. The IPC benefits coming from the LLC 

miss savings in the SERVER category are dwarfed because 
these workloads lose a lot of cycles in L1 instruction cache 
misses (even with the instruction prefetcher enabled). Over- 
all, the Bypass+TC-UC-AGE-x8 policy requires less than 
0.5% extra storage when computed as a fraction of the L2 
cache and the LLC data array storage for our configuration. 
This overhead is summarized in Table 1. 
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  Table 1: Summary of overhead  
 

State Storage (bits) Bits 
TC and UC 3 per L2 cache block 24K 
LLC age 2 per LLC block 64K 

Bin identity 3 per obs. LLC block 
(16 obs. sets per 1024 
LLC sets) 

1.5K 

16-entry obs. CAM 
(per 1024 LLC sets) 

10 per CAM entry 
(partial set index) 

320 

TOTAL  89.8K 
 

The performance results for Bypass+TC-UC-RANK show 
that the addition of insertion age ranking mechanism based 
on live population does not improve beyond what Bypass+ 
TC-UC-AGE delivers with x = 8. In fact, in ISPEC cat- 
egory, the ranking mechanism slightly hurts performance 
because it cannot distinguish between the T C0 and T C≥1 
blocks inserted with age three. The 2-bit LRF policy im- 
proves ISPEC by 2.5%, but degrades the server workloads 
by 5.4%. The primary shortcoming of this policy is that a 
block’s age in a set climbs down to zero within four fills to 
that set and the block becomes eligible for eviction. The 
1-bit NRF policy requires a higher expected number of fills 
before it resets a block’s age to zero (see Section 1). Finally, 
the DIP+TC-AGE policy improves the overall IPC by 3.2% 
with ISPEC improving by about 7%. Next, we analyze the 
performance of our best policy (Bypass+TC-UC-AGE-x8) 
in greater detail. 
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traces running with our best LLC policy (Bypass+TC-UC- 
AGE-x8) compared to the baseline 1-bit NRF.  The traces 
in each of the three categories are sorted by the IPC im- 
provements in both the curves. Some of the traces are also 
marked on the curve with their IPC improvements shown 
within parentheses. It is important to note that different re- 
gions of the same application (e.g., GemsFDTD) react very 
differently to our policy, thereby emphasizing the need to 
simulate multiple regions of the same application. Over- 
all, the FSPEC traces show a performance improvement of 
at most 31% while suffering from a performance loss of at 
most 2%. The ISPEC traces experience IPC improvement 
of up to 44% while losing at most 1% performance. The 
server traces show an IPC improvement of up to 19%, but 
also suffer from up to 6% performance losses (the poorly 
performing SPECjbb trace is not friendly to TC-UC-AGE). 
The trend in LLC misses corresponds well with the trend in 
IPC improvement. 
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Figure 7: Distribution of (a) IPC improvements and (b) 

LLC misses of our best policy normalized to 1-bit NRF. 

We have shortened libquantum to libq. 

Figures 7(a) and 7(b) respectively show the details of the 
IPC improvements and normalized LLC misses of individual 

Figure 8: (a) Distribution of bypass fraction in our 

best policy. (b) Details of additional performance gains 

achieved by bypassing on top of TC-UC-AGE-x8. 

Next, we quantify the contributions of the LLC bypass 
component in our best policy (Bypass+TC-UC-AGE-x8). 
Figure 8(a) shows, for each trace, the fraction of L2 cache 
evictions bypassed by the Bypass+TC-UC-AGE-x8 policy 
at the time of LLC allocation. We also identify some of 
the application traces that show moderate to high bypass 
fractions. The traces are sorted exactly in the same order 
as in Figure 7(a). Overall, across 97 traces, on average, 
32% of the L2 cache evictions are not allocated in the LLC. 
For FSPEC, ISPEC, and SERVER categories, the bypass 
percentages are 37%, 52%, and 11%, respectively. 

To further quantify the performance impact of LLC by- 
passes in our best policy, the bottom panel of Figure 8(b) 
shows the IPC of Bypass+TC-UC-AGE-x8 relative to TC- 
UC-AGE-x8, while the top panel reproduces the bypass frac- 
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tion distribution for ease of comparing. Some of the appli- 
cation traces that enjoy noticeable  benefit from LLC by- 
pass are marked on the graph of the bottom panel.  It is 
clear that the server traces do not enjoy much performance 
benefit from  LLC bypasses  as  far  as  the  capacity  benefit 
is concerned. However, several FSPEC and ISPEC traces 
show  significant  improvements in  IPC due to  LLC bypass. 
A high bypass fraction does not necessarily translate to per- 
formance improvement because the retained blocks may not 
always have small enough reuse distances that can fit within 
the LLC reach. Nonetheless, our impressive bypass fraction 
can lead to interconnect bandwidth savings and result in 
further performance improvements, if our bypass scheme is 
implemented at the L2 cache interface. 

Figure 9 shows the IPC of our best policy (Bypass+TC- 
UC-AGE-x8) relative to the DIP+TC-AGE policy, with sev- 
eral interesting trace points marked on the curve to show ex- 
actly where we gain and lose. The traces are sorted exactly 
the same way as in Figure 7(a). As we have already noted, 
we see different regions of the same application behaving 
differently (e.g., GemsFDTD, libquantum, SAS). Overall, 
while we see several traces gaining significantly compared to 
DIP+TC-AGE, the losses are not large. 

 
1.3 

 
 

1.25 

 
 

1.2 

 
 

1.15 

 
 

1.1 

 
 

1.05 

1.22 

1.2 

1.18 

1.16 

1.14 

1.12 

1.1 

1.08 

1.06 

1.04 

1.02 

1 

0.98 

0.96 

0.94 

 
 
 
 
 

1.22 

1.2 

1.18 

1.16 

1.14 

1.12 

1.1 

1.08 

1.06 

1.04 

1.02 

1 

0.98 

0.96 

0.94 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
 

1 

 
 

0.95 
0 10 20 30 40 50 60 70 80 90 100 

Traces 

Figure 9: IPC of our best policy normalized to 

DIP+TC-AGE. 

Figures 10(a) and 10(b) show an application-level compar- 
ison between Bypass+TC-UC-AGE-x8 and DIP+TC-AGE 
for SPEC 2006 and server workloads, respectively. The nor- 
malized IPC figure for each application shown in these charts 
is computed by taking the geometric mean of the normalized 
IPCs of all the traces belonging to that application. Over- 
all, for the nineteen SPEC 2006 applications, our best policy 
improves IPC by 5.4% compared to 1-bit NRF, while for the 
eight server applications, the corresponding improvement is 
1.9%. The respective improvements achieved by DIP+TC- 
AGE are 4.1% and 1.1%. 

Finally, we turn to the performance results with an aggres- 
sive multi-stream hardware prefetcher enabled. Figure 11(a) 
shows the IPC improvements achieved by Bypass+TC-UC- 
AGE-x8 compared to the 1-bit NRF baseline with prefetch- 
ers enabled. Within each workload category, the traces are 
sorted by IPC improvements. Overall, for FSPEC, the IPC 
improvement averages at 2%; for ISPEC it is 6%; for server 
traces it is 4%.  While the average IPC improvements for 

Figure 10: Details of IPC improvement achieved by our 

best policy and DIP+TC-AGE for (a) selected SPEC 

2006 applications and (b) server applications. 

 
prefetchers enabled is, on average, 28% of all L2 cache evic- 
tions. On the complete set of 213 traces, the average IPC 
improvement achieved by Bypass+TC-UC-AGE-x8 is 2.4%, 
with maximum slowdown being 2.8%. 

Figure 11(b) further summarizes the IPC of Bypass+TC- 
UC-AGE-x8 normalized to that of DIP+TC-AGE in the 
presence of prefetching. The traces are sorted in the same 
way as in Figure 11(a).   The traces with noticeable gains 
or losses are marked. Figures 12(a) and 12(b) show the 
application-level IPC improvements for our best policy and 
DIP+TC-AGE normalized to the 1-bit NRF baseline with 
prefetchers enabled. For the SPEC 2006 applications, our 
policy improves IPC by 3.7%, on average. The correspond- 
ing improvement in the server applications is 3.6%. 

 

 Multi-programmed Workloads 
The results for the 4-way multi-programmed workloads 

are summarized in Figure 13. The left panel of Figure 13(a) 
evaluates the performance of three policies, namely, thread- 
oblivious Bypass+TC-UC-AGE-x8, thread-aware Bypass+ 
TC-UC-AGE-x8, and thread-aware DIP+TC-AGE in terms 

IPCPolicy i i FSPEC and  ISPEC  have  dropped  compared  to  the  non- 
of average IPC or throughput improvement ( P 

IPCBase ). 
i i 

prefetched scenario (as expected), the improvement has gone 
up for server traces. We find that our special handling of the 
UC=0 bins (see Section 3.4) helps the server traces signifi- 
cantly, since it is usually hard to accurately prefetch data for 
the server workloads. Overall, with prefetchers enabled, the 
IPC improvement achieved by our best policy (Bypass+TC- 
UC-AGE-x8) across 97 traces is 3.4%. The correspond- 
ing improvement seen by DIP+TC-AGE is 2.8%. The by- 
pass fraction achieved by Bypass+TC-UC-AGE-x8 with the 

The thread-aware dueling mechanism is borrowed from the 
TADIP-F proposal [16]. We show the performance compar- 
ison for both non-prefetched and prefetched scenarios. The 
right panel of Figure 13(a) quantifies the per-mix through- 
put improvement of thread-aware Bypass+TC-UC-AGE-x8 
with prefetchers enabled. In summary, thread-awareness 
brings bigger performance gains in the absence of prefetch- 
ing. The thread-aware Bypass+TC-UC-AGE-x8 policy im- 
proves the throughput by 2.5% in the presence of prefetch- 
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Figure 11: (a) Distribution of IPC improvements of our 

best policy normalized to 1-bit NRF. (b) IPC of  our 

best policy normalized to DIP+TC-AGE. Both results 

are with prefetchers enabled. 

ing, while the thread-aware DIP+TC-AGE policy improves 
the throughput by 1.3%. 

The maximum slowdown of any individual thread should 
be within an acceptable range. The left panel of Figure 13(b) 

Policy 

Figure 12: Details of IPC improvement achieved by our 

best policy and DIP+TC-AGE for (a) SPEC 2006 and 

(b) server applications in the presence of prefetchers. 

 
trip count and use count, which improves the average (geo- 
metric mean) IPC of 97 single-threaded traces by 3.4% com- 
pared to a baseline not-recently-filled replacement policy in 
a 2 MB 16-way exclusive LLC with aggressive multi-stream 
prefetchers. The corresponding improvement in throughput 

quantifies a conservative fairness metric mini 
IPCi i.e., 

i 

seen by 35 4-way multi-programmed mixes is 2.5%. 

the normalized IPC of the slowest thread in each mix for the 
thread-aware Bypass+TC-UC-AGE-x8 policy with hardware 
prefetchers enabled. The mixes are ordered in the same way 
as in the right panel of Figure 13(a). Except for a few mixes, 
the slowdown experienced by the slowest thread is within 
2% compared to the baseline and, on average, this is 1%. 
Finally, the right panel of Figure 13(b) details the bypass 
fraction achieved by thread-aware Bypass+TC-UC-AGE-x8 
with hardware prefetchers enabled. While several mixes en- 
joy sizeable bypass fractions, the average is 9%. 

 

6. SUMMARY 
This work makes the important observation that LRU and 

its approximations lose meaning in exclusive LLCs and pro- 
poses a number of design choices for selective bypassing and 
insertion age assignment for such designs in a three-level 
cache hierarchy. Our LLC bypass and age assignment deci- 
sions are based on two properties of a block when it is con- 
sidered for allocation in the LLC. The first one is the number 
of trips (trip count) made by the block between the L2 cache 
and the LLC from the time  it is brought into the hierarchy 
till it is evicted from the LLC. The second property is the 
number of L2 cache hits (use count) experienced by a block 
during its residency in the L2 cache. Our best proposal is a 
combination of bypass and age insertion schemes based on 
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