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ABSTRACT 

Probabilistic models for random numbers developed in time or space are stochastic processes. 

The evolution is driven by some relationship of dependency between random quantities at 

different times or places. Random walks, Markov processes, ramming processes, processes of 

renewal, martingales and Brownian motion are the main types of stochastic process. 

Mathematical financing, queuing processes, computer algorithm analysis, economic time series, 

image analysis , social networks and biomedical modeling are important areas for the 

implementation of the application. In operational research applications, stochastic process 

models are extensively used. The theory of probability is intended to provide a mathematical 

framework for the description, modeling, analysis and resolution of random phenomena and 

complex systems. Although it originally studied gambling issues, it is likely that applications in 

financial, computer, engineering, statistical and biological fields have been successful. The 

"probabilistic method" is an important means for proving existence theorems in discrete 

mathematics and is essential for analyzing statistical procedures in the fields of mathematics. 
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INTRODUCTION 

Probability and the stochastic processes using applications provide a clear, easy-to - understand 

approach to probability and stochastic processes, which gives readers a solid basis for their 

careers. In particular with an emphasis on applications in the areas of engineering, applied 

sciences, enterprise and finance, statistics, mathematics and research into operations, the 

exemplary exhibits in the real world show the random nature of the phenomena and the use of 

probabilistic techniques to model them accurately. 

Probability theory, the theory of stochastic processes has been developed and it has been shown 

that practical problems can be applied successfully and empirical phenomena described. 

However, the theory is new and it is still necessary to discover the most appropriate 

mathematical techniques. It is therefore reasonable to hope that when more relevant 

mathematical problems are resolved, the usefulness of the theory will increase. These new 

problems, on the other hand, are also of interest to pure analysis beyond stochastic process 

theory. In the past, the interaction with physical theories has always benefited a great deal from 

pure mathematics, with many parts of the purst mathematics causing physical difficulties. We 

will see now that our theory leads to comprehensive differential equations of the kind never 

before studied: they contain a surprisingly wide variety of familiar and unknown functions as the 

simplest special cases. Another example of a general interest problem that we will touch upon 

shortly is that an empiric phenomenon often can be defined in several different ways , e.g. by a 

scheme of infinitely many ordinary differential equals. The fact is that the problem of the general 

interest we will deal with in short. This seems to indicate links that are still to be investigated. 

As far as practical utility is concerned, it should be noted that it is absolutely not appropriate for 

a mathematical theory to include exact models of the phenomena observed. The constructive role 

of mathematical theories in applications is very often less important than the economy of 

thinking and experimentation, because mathematical arguments eliminate qualitatively 

reasonable working assumptions. Perhaps even more significantly, in the context of observations, 

a constant analysis of observation in the light of the theory and theory can thus become an 

essential guide, not only for better understanding but also for properly formulating scientific 
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problems. Mathematical theory in geology, for example, we are presented with natural processes, 

some of which cover the earth's surface for millions of years. We note that some species are 

experiencing a period of prosperity and continuous growth and only die suddenly and 

unreasonably. Is it really necessary for every new observation to introduce new hypotheses, to 

assume cataclysms that work unilaterally against certain species, or to find other explications? 

The Volterra-Lotka theory of fighting for life indicates that circumstances that are apparent to the 

naïve observer, just like many geologic catastrophes, are bound to occur even under constant 

conditions. Even the simplest mathematical model of a stochastic process, combined with 

observations of age, geographical distribution and sizes, allows us to deduce valuable 

information on the influence on the developments of different factors like selection, mutations, 

and l while it is impossible to give a precise mathematical theory of evolution. This complements 

undecisive qualitative claims with a more persuasive quantitative analysis. 

A stochastic process is called measurable, if X: T × Ω → S is measurable with respect to the 

product σ-algebra B(T) × A. In the case of a real-valued process (S = R), one says X is 

continuous in probability if for any t ∈ R the limit Xt+h → Xt takes place in probability for h → 

0. If the sample function Xt(ω) is a continuous function of t for almost all ω, then Xt is called a 

continuous stochastic process. If the sample function is a right continuous function in t for almost 

all ω ∈ Ω, Xt is called a right continuous stochastic process. Two stochastic process Xt and Yt 

satisfying P[Xt − Yt = 0] = 1 for all t ∈ T are called modifications of each other or 

indistinguishable. This means that for almost all ω ∈ Ω, the sample functions coincide Xt(ω) = 

Yt(ω). 

Let (Ω, A,P) be a probability space and let T ⊂ R be time. A collection of random variables Xt, t 

∈ T with values in R is called a stochastic process. If Xt takes values in S = R d , it is called a 

vector-valued stochastic process but one often abbreviates this by the name stochastic process 

too. If the time T can be a discrete subset of R, then Xt is called a discrete time stochastic 

process. If time is an interval, R + or R, it is called a stochastic process with continuous time. For 

any fixed ω ∈ Ω, one can regard Xt(ω) as a function of t. It is called a sample function of the 

stochastic process. In the case of a vector-valued process, it is a sample path, a curve in R d. 

The simplest examples  
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(1) The Poisson process.-Physicists, who sometimes term it "random events," often term it the 

Poisson distribution following Bateman, know this well. Here we take this example as a starting 

point for numerous generalizations and emphasize that the all-important distribution of Poisson 

is part of its privileges, rather than merely an approximation of binomial distribution. 

Denote the likelihood of n events in a time interval of length t by Pn(t). We would like the P.(t + 

dt) to be compared. In one way, n 1 occurs at the interval (0, t + dt): either in n events (0, t) and 

in n events (t, t + dt) or in n + (0, t) or in one event (t, t + dt); or in n 1 event in (0, t) or in (t, t + 

dt) in n + dt. Writing down the corresponding probabilities we find 

 

 

Rearranging these equations and passing to the limit we find easily that our probabilities satisfy 

the system of differential equations 

 

The initial conditions are obviously 

 

Fortunately, in this case, the differential equations are of a recursive character and can be solved 

successively. The required solution is given by the familiar Poisson distribution 
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It should be remembered that the relevant distribution of Poisson (4) is much broader than on the 

surface. In such cases, the t parameter is t for volume, area or length instead of time, and 

therefore describes many phenomena that play in space, rather than in a time. In this way, we can 

see that many of our assumptions, which resulted in differential equations ( 2), include the 

distribution of stars in space, material defects, raisins of a cake and misprints in a book. In these 

cases we will use the 'operative time' parameter t. We will see that many stochastic procedures 

are not necessarily perforated in time, but can be operative in any way, such as penetration depth, 

strength or so on. 

 

Naturally, the initial conditions are the same as before. Systems (6) are also present in literature, 

and several writers have independently provided the explicit solution.If we suppose that no two 

among the vi are equal, this solution can be written in the form 

 

 

In the mathematical theory of evolution that we alluded to in the introduction, Yule has used this 

kind of method (in an indirect manner). The population is made up of the species within a genus 

or of the specific animal or plant genera. It is due to mutations that each species or genus has a 
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(constant) chance to cast a new form or genus at any time. This theory is used to analyze 

relationships between the generic period, the number of species composing, its geographic 

distribution, etc. 

PROBABILITY THEORY 

Probability theory is the main element of modern mathematics with the relationships between 

algebra, topology, analysis, geometry or dynamic structures in other mathematical fields. Theory 

begins with adding more structure to a set, as with all basic mathematical structures. In the same 

way as introduce algebraic operations, topology, or time evolution on a set, probability theory 

introduces a theoretical measure structure to which "count" is generalized in finite sets: in order 

to quantify a subset 's probability A as a consequence of each, one chooses a sub-set class A that 

one can expect to do. This leads to a −algebra A. This leads to This is a sequence of subsets of 

bars in which several operations such as unions, replacements or cross-sections may be carried 

out finely or counted. The A elements are referred to as events. When point ± denotes a 

"experiment" in "laboratory" a "case" A to A is a subset of "je," for which a probability P[A] to 

[0 , 1] can be assigned. If for instance P[A] = 1/3, the event is 1/3 probable. If P[A] = 1, it is 

almost certain that the event takes place. P must satisfy simple properties such as the union A = 

B of two disjointed events A, the probability measure B satisfies P[A − B] = P[A] + P[B] or the 

probability P[Ac] = 1 − P[A] of the addition Ac of an event A Chance. There are already some 

fascinating mathematics with a space of probability alone (A, A, P), for example, the 

combination complexity of calculating the likelihood of events to get "royal flush" in poker. If Â 

t is a subset of a euchlidean space like a plane, then we have problems with integration in 

calculus, P[A]= R A f(x, y) dxdy for a suitable none-negative function f. The probability space is 

simply part of the Euclidean space in many applications and the μ-algebre is the smallest space 

containing all open sets. The Borel μ-algebra is named. The Borel Ś-algebra on the real line is an 

important example. 

Due to the space of a probability (fixed, A, P), random variables X can be defined. A random 

variable is a function X from a perspective to the actual line R which can be calculated such that 

the opposite in a measurable Boron set B in A is calculated. The definition is that if altern is an 

experiment, then X(alternatively) calculates a quantity found in the experiment. Measurability is 

technically consistent with continuity of the function f from the topological space (demons, o) to 
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the topological space (r, o). If f −1(U) − O for all open sets U − U is continuous, a function is 

constant. In the theory of probability, functions with capital letters like X , Y, are sometimes 

denoted If X−1 (B) − A for all Borels sets B − B − the random variable X can be measured.  or 

Borel  -algebra any continuous function can be evaluated. Like in calculus, where continuity most 

of the time is not to be worried, in theory of probability also, measuring problems often don t 

have to be sweated about. In addition, notions such as   algebras or measurability by 

mathematicians can be accused of driving ordinary people away from their realms. That's not the 

condition. With these constructions, severe problems are avoided. Mathematics is eternal: in 

thousands of years a once established outcome will be true. A theory that would prove both a 

theorem and its rejection is valuable: theoretically it would be possible to prove any other, true or 

false, results. So not only are these notions introduced to keep the theory "clean," but they are 

indispensable for the theory's "survival." We give some examples of "paradoxes" to show that a 

careful theory needs to be constructed. Returns to the theory of random variables: due to their 

fact that they are simply functions, one can add and multiply them by describing them 

(X+Y)(function) 

=X(alternative)+Y(alternative)(Alternative))or(XY)(alternative)=X(alternative)Y(alternative). 

The algebra L forms random variables. If it exists, E[X] denotes expectations of a random 

variable X. This is an actual number that shows the "mean" or "average" of observation X. It's 

the value that one would expect the experiment to calculate. If X = 1B is the random variable 

which holds 1 if iv is in case B and 0 if iv is not in case B, then X is only supposed to have B. 

The random constant variable X(dir) = an is predicted E[X] = a. All of these fundamental 

definitions and the linearity criterion of E[aX+bY] = aE [X] + bE[Y], describe the expectation of 

all random L variables: firstly, the expectation for finite sums called elementary random 

variables Pn i=1 ai1bi specifies, with general measurable functions approximating, the 

expectation. Extending the L-1 expectation of the whole algebra to a subset is part of the 

integration theory. While the calculus shows that one can live on the actual line with an 

integrated Riemann which defines the integral by the Riemann sums b a f(x) Dx = 1 n P I / n: 

The second is more important and the theory of probability is a major incentive to use it. It 

makes statements such as that the likelihood of the set of real numbers with normal decimal 

expansion is 0. The possibility of A is generally anticipated in X(x) = f(x) = 1A(x). The integral 

R 1 0 f(x) dx is not defined in calculus, since Riemann can provide 1 or 0 depending on how the 
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Riemann approximation is made. Probability theory enables the integration of Lebesgue by 

defining Rb a f(x) dx as a 1 n Pn i=1 f(xi) limit for n ~ , when xi is randomly randomly 

distributed in the same interval [a, b]. This definition of the Lebesgues Integral by Monte Carlo 

is based on the law of large numbers as the Riemann Integral, the limit 1 n P xj = j / n 

alternatives[a, b] f(xj) for n x lifes. This is the Riemann Integral. 

SOME APPLICATIONS OF PROBABILITY THEORY  

Probability theory is a central topic in mathematics. In other areas such as computer science, 

ergodic theory, dynamic system, cryptology, game theory, analysis, partial difference equation, 

physics, economics, statistical mechanics and also number theory. We give you some problems 

and topics that can be treated by probabilistic methods as a motivation. 

1) Random walks:Suppose you're going through a cloth. You pick a random path from each 

vertex. How likely are you to return to your point of departure? The theorem of Polya states that 

a random walker almost certainly arbitrarily returns the origin in two dimensions while the 

walker with probability 1 returns only a few times and escapes forever in 3 dimensions. 

 

2) Percolation problems (model of a porous medium, statistical mechanics and critical 

phenomena). The probability p is associated to each bond of the rectangular mesh in the plane, 

and 1 – p is disconnected. If there is a trail from x to y, two lattice points x , y in the lattice are in 

the same cluster. One says that "percolation takes place" if there is a positive chance of an 

endless cluster. The critical probability pc, the lowest of all ps, for which percolation is present, 

is one question. The problem can be extended to situations where the probabilities of switching 
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are not mutually exclusive. Some random variables are important near critical probability pc, 

including the size of the largest cluster. 

 

A variant of bond percolation is site percolation where the nodes of the lattice are switched on 

with probability p. 

 

Generalized percolation problems are obtained, when the independence of the individual nodes is 

relaxed. A class of such dependent percolation problems can be obtained by choosing two 

irrational numbers α, β like α = √ 2 − 1 and β = √ 3 − 1 and switching the node (n, m) on if (nα + 

mβ) mod 1 ∈ [0, p). The probability of switching a node on is again p, but the random 

variablesare no more independent. 
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3) Random Schr¨odinger operators. (Quantum mechanics, functional analysis, disordered 

systems, solid state physics) Consider the linear map Lu(n) = P |m−n|=1 u(n) + V (n)u(n) on the 

space of sequences u = (. . . , u−2, u−1, u0, u1, u2, . . .). We assume that V (n) takes random 

values in {0, 1}. The function V is called the potential. The problem is to determine the spectrum 

or spectral type of the infinite matrix L on the Hilbert space l 2 of all sequences u with finite ||u||2 

2 = P∞ n=−∞ u 2 n. The operator L is the Hamiltonian of an electron in a one-dimensional 

disordered crystal. The spectral properties of L have a relation with the conductivity properties of 

the crystal. Of special interest is the situation, where the values V (n) are all independent random 

variables. It turns out that if V (n) are IID random variables with a continuous distribution, there 

are many eigenvalues for the infinite dimensional matrix L - at least with probability 1. This 

phenomenon is called localization. 

 

4) Classical dynamical systems (celestial mechanics, fluid dynamics, mechanics, population 

models) Studies of dynamic deterministic systems such as the logistic map x 7 to 4x (1 − x) on [0 
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, 1] interval or the 3 celestial mechanical body problem have shown that such systems or sub-

assemblies can act as a random mechanism. Many effects can be described through ergodic 

theory, which can be seen as a probability theory brother. Several findings in the theory of 

probability generalizing ergodic theory to more general configuration. An example is the ergodic 

theorem of Birkhoff that generalizes the law of large numbers. 

 

Given a dynamical system given by a map T or a flow Tt on a subset Ω of some Euclidean space, 

one obtains for every invariant probability measure P a probability space (Ω, A,P). An observed 

quantity like a coordinate of an individual particle is a random variable X and defines a 

stochastic process Xn(ω) = X(T nω).  or many dynamical systems including also some 3 body 

problems, there are invariant measures and observables X for which Xn are IID random 

variables. Probability theory is therefore intrinsically relevant also in classical dynamical 

systems. 

5) Cryptology. (Computer science, coding theory, data encryption) The coding theory concerns 

the coding mathematics or the nature of error correction codes. There are important applications 

in both aspects of coding theory. A good code can repair data loss due to poor channels and 

encrypt information. In many respects, the coding theory is based on discrete mathematics, the 

theory of the number, the algebra and algebraic geometry. We illustrate this with a public key 
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encryption algorithm, the safety of which is based upon the fact that it isn't easy to fill a large 

integer N = pq into its primary p factors. The N can be public, but only the individual with 

factors p knows q can read the message. Suppose we want to split the code and find p and q 

factors. 

The simplest way is to test and error for the factors. But if N has 50 digits, it is already not 

practical. To find the p factor, we would need to look for 1025 numbers. This is 100 million 

times a second over 15 billion years. That corresponds 100 million times per second. More 

information is being given and one of them should now be illustrated: assume that we want to 

find N = 11111111111111111111111111111111111111111111111111111. This method is the 

following: start by integrating the T map (x) = x 2 + c mod N on {0 , 1.,,,,, N − 1}. If x0 = an is 

assumed, x1 = T (a), x2 = T(a) is assumed. How many numbers do we need to generate in order 

to be random, before two of them are one of the prime factors p? The response to the birthday 

paradox is surprisingly small: in a group of 23 students, two are over 1/2 years old; the chance 

for the case that we have no match is 1(363/365)• •(343/365)= 0.492703. •(343/365) . the 

probability is 1 − 0.492703 = 0.507292 for a birthday match. This exceeds 1/2. If we apply this 

way of thinking to the sequence of numbers xi generated by PRGT, we expect a 1/2 chance of 

finding a matching modulo p in oscillations. Since p is the same as that of the module p, then we 

must try N1/4 to obtain a factor: if xn and xmare the same p module, then the p factor p is 

produced. A first factor of p = 35121409 can be found in the above example of a 46-digit number 

N. This factor is found in the Pollard algorithm in Ã lp = 5926 steps with probability of 1/2. This 

is an estimate of the magnitude only. If you start with a = 17 and get a = 3, you get x27720 = 

x13860 at the above N. It is very quickly found. When we actually choose random numbers, this 

probabilistic claim will have a detailed probabilistic calculation. Obviously, these numbers are 

generated in a deterministic way by the algorithm and not really random. A pseudo random 

number generator is called the generator. It generates random numbers in the sense that various 

statistical tests can not differentiate between them and true random numbers. In addition, many 

random numbers generators integrated into computation and programming systems are pseudo-

random numbers generators. 

6) Numerical methods. (Integration, Monte Carlo experiments, algorithms) In applied 

situations, it is often very difficult to find integrals directly. This happens for example in 
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statistical mechanics or quantum electrodynamics, where one wants to find integrals in spaces 

with a large number of dimensions. One can nevertheless compute numerical values using Monte 

Carlo Methods with a manageable amount of effort. Limit theorems assure that these numerical 

values are reasonable. Let us illustrate this with a very simple but famous example, the Buffon 

needle problem. 

CONCLUSION 

Stochastic processes are generally treated in the mathematical literature formally and in general, 

not clearly indicating the practical meaning and applicableness. On the contrary, practical 

problems leading to stochastic processes are usually dealt with using special methods and under 

different disguise, thus making no apparent connection to the general theory. So the most simple 

and intuitive examples of sthetic processes discussed in the literature are to be explained. It 

seems advisable. They do not need new mathematical instruments since they all lead to systems 

of ordinary differential equations that are very simple, although infinite. We will then move on to 

general theories, but the most general type of stochastic processes such as occur in time-series 

analyses will not be taken into account in this paper. Instead, we shall limit considerations in the 

same way that the current state determines the system 's future evolution in classical mechanisms 

to what are now generally known as Markov processes , i.e. to processes where all future 

relations between probability are fully established by the current state. In addition, the so-called 

discontinuous type of Markov processes where changes occur in jumps will focus our attention: 

the system will stay intact for a while and subsequently suddenly change into a new State. These 

processes have found important and extensive applications in automatic telephone theory and in 

insurance risk theory.Theory of Probability," the theory of stochastic processes has been 

developed and it has been shown that it can successfully be applied to practical problems and 

used to describe empirical phenomena. However, the theory is new and the most appropriate 

mathematical techniques have yet to be discovered. It is therefore reasonable to expect that the 

usefulness of the theory will increase when more pertinent mathematical problems are solved. 

On the other hand, these new problems are of interest also in pure analysis beyond the theory of 

stochastic processes. 
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