

 Dogo Rangsang Research Journal UGC Care Group I Journal

 ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 916 Copyright @ 2021 Authors

OpenStackCloudTuningforHighPerformanceComputing

1
TARINI PRASAD PATNAIK, Gandhi Institute of Excellent Technocrats, Bhubaneswar, India

2
SIBASIS RATH, Indus College of Engineering, Bhubaneswar, Odisha, India

Abstract—High-Performance computing (HPC) is scarcely

attempted in clouds because of slow and inefficient Inter-VM

communication on the same server as well as huge latency

between remote units. This was changed by introduction of

ivshmem, a PCI device–based shared memory between VMs on

the same server, but unfortunately, this mechanism became

broken with Linux update few years ago. We have restored this

shared memory system and made, for the first time, full cloud

integration using latest versions of OpenStack, Linux, QEMU,

libvirt and MPICH. Also, the analyses of different factors

influencing both TCP/IP and ivshmem communication is

presented along with tuning techniques that could significantly

increase performance. Finally, we have created ivshmem

communication channel that can replace standard Neutron

TCP/IP network, resulting three to six times performance

improvement.

Keywords-

OpenStack;cloudcomputing;highperformancecomputing;cloudtu

ning

I. INTRODUCTION

Nowadays, Cloud Computing is the dominant general-
purposecomputing-
paradigm,andOpenStack[1]isthemostpopularopen-
sourcecloudoperatingsystemforprivateclouds. Unfortunately,
High-Performance-Computing (HPC)in a cloud was not
possible in the past, because of the hugeoverhead for inter-
VM communication on the same serverand between servers
as well, as it was shown for example by[2], [3]. However,
with the advent of a remake of ivshmem[4],asharedmemory
betweenVMs on
thesameserverbecamepossibleagain,thusmakingHPCinprinci
plefeasibleforan OpenStackcloud.

In this paper, a set of OpenStack tuning measures
arediscussed that augment the possibilities users have for
HPCin OpenStack, provided that MPICH [5] is engaged.
For thatpurpose, we investigated the case that each MPICH
processisallocatedtooneVMandmeasuredtheinter-
VMcommunicationonthesameserverbyusingthecallsMPI_PU
Tfordata-exchangeandMPI_WIN_LOCKfordata-
synchronization. Both calls were wrapped by us aroundthe
original MPICH calls of the same name in order to
beabletoruntheivshmemremakeinOpenStack.

Wewillshowinthefollowingvariousperformancetuning
methods for HPC in OpenStack via ivshmem, as wellas for
the classical inter-VM communication via TCP/IP thatis
based on Neutron‘s [6] Open vSwitch [7] architecture.
Byourmeasures,inter-VMbandwidth andlatencycouldbe
improved by a factor of up to six, from worst case to

bestcase,asourperformancemeasurementshaveshown.
Therestofthepaperisorganizedasfollows: inchapter2,the

state of the art in inter-VM communication in OpenStackis
given. Chapter 3 presents a tuning for the classical
TCP/IPcommunicationthatisbasedonlevel-
3cachingandacustomvirtio[8]networkbridge.Chapter4explain
stuningmeasures for ivshmem based on proper NUMA
allocationand vCPU pinning. In this chapter, also the best
TCP/IPmethodiscomparedtothebestivshmemmethoddemonst
rating a superior improvement factor for the
latter.Thepaperendswithaconclusionandreferencelist.

II. STATEOFTHEARTININTER-

VMCOMMUNICATIONINOPENSTACK

As any cloud, OpenStack is a distributed system, even
ifthe cloud is physically located in the same rack or in
thesame computing center where TCP/IP would not be
needed,because L2 switching would be sufficient. By
studying
[7],wewereabletodrawablockdiagramoftheresultingsoftware
overhead (Fig. 1) for the case that two MPICHprocesses are
executed by two VMs on the same server.According to Fig.
1, any data frame has to go two timesthrough the following
stages: TCP/IP stack, device driver,virtual network
interface, qbr Linux Bridge, Open
vSwitch(OVS)IntegrationBridge,OVSVLANBridge,physica
lEthernet Interface, physical Ethernet Switch. Although
OVSis part of OpenStack‘s Neutron network service and
certainportconfigurationscouldreducenumberofintermediatei
nterfaces, it still produces significant overhead.
Togetherwith the VM communication overhead, the
consequence isanunacceptablelowHPCperformance.

III. TUNINGTHECLASICALTCP/IPINTER-

VMCOMMUNICATION

For TCP/IP tuning and the subsequent chapters, we
usedOpenStack Juno, Ubuntu 16.04 as guest OS, CentOS
7.1 ashostOS,QEMU2.9.50,libvirt2.0,MPICH3.2andvirtio
1.1.1 as software environment. Additionally, we sent
datafrom one MPI process to the other, while varying its
sizefrom 2

2
 to 2

20
 bytes. The transmission was accomplished

byone-sided MPI_PUT via the standard MPICH Nemesis-
sockchannel. However, because of the fact that there is
normallynosharedmemorybetweendifferentVMs,evenonthes
ameserver,MPICHemulatesthisfunctionalitybyTCP/IPcomm
unication, sending data packets back and forth
thatcarrysharedvariables.

 Dogo Rangsang Research Journal UGC Care Group I Journal

 ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 917 Copyright @ 2021 Authors

Figure 1.Software overhead in OpenStack for inter-VM communication.1,2,3 =Ethernet Data Frames, 4=VLAN-tagged Ethernet Frames, OVS =

OpenvSwitch.

A. Level-3Caching

Now, the influence on OVS of applied level-3 caching
isdiscussedincomparisontolevel-2cachingonly.Asreference,
we used the elapsed time for transferring data forthe case of
no cloud (VMs only) for both, OVS with level-3caching and
without. The results are shown in the
orange,greyandyellowcurvesofFig.2and Fig.3.

back.Engaginglevel-3cachingfurtherimprovesperformance
(yellow curves). Similarly, replacing the
serverbyadesktopPC(lightbluecurves)showedalsogoodperfor
mance, but disadvantage was limited scalability andcloud
incompatibility. Finally, the only measure that
madesignificant difference was replacement of Neutron‘s
OVS byvirtio-net.

Figure2.ElapsedtimesforTCP/IP-basedinter-VMcommunication.

Thetwoorangecurvesdepicttheelapsedtimeandbandwidth
for inter-VM data exchange without cloud. In thiscase, each
data packet must go to the first IP router of theserver where
it is reflected back thus forming a loop. As onecan see, if
OpenStack is engaged with OVS (grey curves),performance
is much better than without cloud. The reasonfor that is that
each packet must only travel to the first
switchoftheserver,asshowninFig.1,andnottothefirstIProuter.E
itherattheswitchorattherouter,packetsarereflected

Figure3.BandwidthforTCP/IP-basedinter-VMcommunication.

B. Virtio-Net

The dark blue curves in Fig. 2 and Fig. 3 show the
effectofvirtioinsteadofOVS.Thisreplacementispossiblebecaus
etheKVMhypervisorofOpenStackhastwointerfaces: the first
is used by the various QEMUs [9] itcooperates with. The
second API is virtio that provides
for“paravirtualization”.ThisisamoreefficientIOvirtualization
method than the so-called full software emulation made
byOpenStackbymeansofKVM/QEMU.BesidesbeinganAPI,

61440

30720

15360

7680

3840

1920

960

480

240

120

60

InterVM-TCPElapsedtime

virtio (3-lev. cache

desktop)defaultntw.(2-

lev.cacheserver)OVS(2-

lev.cacheserver)

OVS(3-lev.cacheserver)

virtio(3-lev.cacheserver)

[bytes]

InterVM -TCPBandwidth

1024,00

256,00

64,00

16,00

4,00

1,00

0,25

0,06

0,02

0,00

virtio(3-lev. cache desktop)

defaultntw. (2-lev. cache

server)OVS(2-lev.cacheserver)

OVS (3-lev. cache

server)virtio(3-

lev.cacheserver)

[bytes]

[μ
s]

4

3
2

25
6

10
24

40
96

16
38

4

32
76

8

65
53

6

1
31

0
7

2

2
62

1
4

4

5
24

2
8

8

10
48

57
6

[M
B

/s
]

4

3
2

2
5

6

1
0

2
4

4
0

9
6

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

 Dogo Rangsang Research Journal UGC Care Group I Journal

 ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 918 Copyright @ 2021 Authors

virtio is also a library of paravirtualized device drivers
forthe guest OS. Virtio-net is the paravirtualized device-
driverfor a virtual Ethernet card (vNIC). Internet-based
inter-VMcommunication can profit from virtio-net if a
Berkeley sendcall results in calling virtio-net. This driver is
aware that it isexecuted in a VM, and it is therefore actively
cooperatingwith its QEMU. With virtio-net, KVM does not
need tointercept guest-OS device-driver accesses to
emulated
PCdevices,becausetheyarenotperformed.Instead,theparamete
rs for virtio calls are directly forward to QEMU.Technically,
the Berkeley send call is not mapped onto avNIC in guest
OS, but via QEMU onto a virtio-net
sendqueue(“virtqueue“)inhostOS.Virtqueuesaremuchsimpler
and thus faster than vNICs, because they are only
buffers.The rest in virtio-net happensas described in section
A.Please note also that the paravirtualized guest-OS device-
driver is called front-end driver, while the modified host-
OSEthernet-driver is termed back-end driver. The original
host-OS back-end driver cannot be used in virtio-net
because itsinputisaLinuxdata-
structurecalledsk_buf,whilethefront-enddriveroutputsso-
calledvirtqueueentries.Both,thefront-end and the modified
back-end driver, are contained inthe virtio library. The
resulting block diagram is shown inFig. 4, where only the
first half of the communication
isdisplayedbecauseitissymmetric.

Figure4.Virtio-netinter-VMcommunicationarchitecture.

The first disadvantage of virtio is that TCP/IP is
stillengaged. The second is that the virtqueue entries have to
behandled by two QEMUs each, one for the source, the
otherfor the target VM. Finally, for every data frame sent by
thereal Ethernet card, each QEMU has to make a system call
toKVM,whichisatime-
consumingprocedure,becauseitrequires a full process context
switch, with all MMU
pagetableentriesreloaded.Becauseofthat,westrivedforabetteri
nter-VMcommunicationmethod.

IV. IVSHMEM

Ivshmem is a virtual PCI device in a guest OS which
isemulatedby KVM/QEMU. Itestablishes
aLinux/POSIXshared memory (SHM) between the VM and
its host OS.Ivshmemthusenableszero-copyVM-to-
Hostcommunication and vice versa, which is very efficient
withrespect to bandwidth and latency, because no internal
databufferexists.Ivshmemcanalsobeusedforinter-VM

communication with the host OS SHM as intermediate
step.Ivshmem is implemented by mapping its virtual PCI
devicememory to the host OS SHM. This is possible,
because thememory is emulated by QEMU as a data
structure inside ofitself, and because multiple QEMUs can
communicate witheachotherinhostOS.

Figure5.Elapsedtimesforivshmem-basedinter-VMcommunication

Figure6.Bandwidthforivshmem-basedinter-VMcommunication.

Ivshmem was supported for a few years by libvirt
andQEMUasavirtualPCIdevicethatallowedforsharedmemory
(SHM) between guests and host. A
synchronizationmechanismcalledShared-Memory-
Server(SMS)wascreated,whichbecamepartofQEMUasitsivsh
mem-
server.ThisservercouldsendinterruptstoVMslocatedonthesam
ecompute node, thus allowing unblocking of an application
ina target VM, which was waiting for data from an
applicationin a source VM. Mutual blocking and unblocking
was usedfor SHM access synchronization without
consuming
CPUcycles(nospinlock),whichisindispensableforHPC.Howe
ver, this valuable feature could only be implemented
ifbothapplicationswereimplementedastheuserpartsofLinux
user-IO device-drivers (uio). Additionally, it was thetask of
the user to write, by means of code examples of both,the
kernel and user part of the uio driver and to integrate
hisapplication into this driver. This was a not applicable
forHPC with MPI, because MPI processes are typically
notdevice drivers. The reason for ivshmem being limited to
uiodevice drivers was that the one and only possible
spinlock-free synchronization between VMs in Linux is
possible
bymeansofablockingreadintheuserpartofuio.Assoonas

2.048

1.024

512

IvshmemElapsedtime
ivshmem(2-lev.cache,def.ntw.,no-numa,no-

pin)ivshmem(3-lev.cache,virtio,diff.-numa,no-

pin)ivshmem(3-lev.cache,virtio,same-numa,no-

pin)ivshmem(3-lev.cache,virtio,same-numa,pin)
256

128

64

32

16

8

[bytes]

IvshmemBandwidth
2.048,00

512,00

128,00

32,00

8,00

2,00

0,50

0,13

0,03

ivshmem(2-lev. cache,def.ntw., no-numa, no-pin)

ivshmem(3-lev. cache, virtio, diff.-numa, no-

pin)ivshmem(3-lev. cache,virtio, same-numa, no-

pin)ivshmem(3-lev. cache,virtio,same-numa, pin)

[bytes]

[M
B

/s
]

[μ
s]

4

4

3
2

3

2

2
5

6

2
5

6

1
0

2
4

1

0
2

4

4
0

9
6

4

0
9

6

1
6

3
8

4

1
6

3
8

4

3
2

7
6

8

3
2

7
6

8

6
5

5
3

6

6
5

5
3

6

1
3

1
0

7
2

1

3
1

0
7

2

2
6

2
1

4
4

2

6
2

1
4

4

5
2

4
2

8
8

5

2
4

2
8

8

1
0

4
8

5
7

6

1
0

4
8

5
7

6

 Dogo Rangsang Research Journal UGC Care Group I Journal

 ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 919 Copyright @ 2021 Authors

an interrupt arrives at a VM, this user part is called as
aninterrupt service routine and the blocking read at the
targetVMisunblocked.Unfortunately,withnewerLinuxversio
ns,unblockingdidnotworkanymore,withtheconsequencethati
vshmemwasnearlyuselessbecauseofmissingSHM-
accesssynchronization. Our contribution was to patch codes
forboth, the kernel and the user part of uio device drivers
forivshmemandtofindproperversionandconfigurationmatches
for Linux, QEMU and libvirt so that
everythingworksagain.WehavealsocreatedanewSHMcommu
nicationandsynchronizationchannelinsideofMPICH. In
particular, we achieved ivshmem to run for thefirst time in a
cloud with OpenStack, resulting in a three tosix times
performance improvement compared to
TCP/IP(Fig.7andFig.8).

TheisolatedivshmemperformanceresultsaredepictedinFig
. 5 and Fig. 6. The blue curves show that
implementingdefaultoremulatedTCP/IPnetwork,asrequireme
ntforinitial MPI synchronization, has still very poor
performance,but far better than non-SHM solution, shown in
Fig. 2 andFig.3. Performanceimprovesfurtherif
thesametuningmeasuresare engaged as before, i.e. level-3
caching andvirtio instead of OVS. The effect is shown in the
orangecurves.AdditionalgainsarepossiblebyproperNUMAall
ocationandCPUpinning.

A. PropperNUMAAlocation,no-CPUPinning

In the gray curves of Fig. 5 and Fig. 6, it becomes
visiblethat manually allocating the communicating VMs into
thesame non-uniform memory-access (NUMA) region
yields infurther significant improvements. In such a uniform
memoryaccess region, all VMs have the same access latency
to thephysicalshared memory in hostOS. On the
otherhand,allocating the MPI VMs to different NUMA
regions leads tofrequent cache misses, and data access times
are not equalanymoreaswell.

B. vCPUPinning

If cache misses occur together with a rescheduling of
thevCPU, that executes a VM, from one physical
processingunit (i.e. core) to another, the result is a non-
monotonouslyincreasingperformanceforincreasedmessagesiz
e.

Figure 7.Elapsed times for TCP and ivshmem-based inter-

VMcommunication

Figure 8.Bandwidth for TCP and ivshmem-based inter-

VMcommunication.

This is noticeable in the gray curve of Fig. 5 for
sizesfrom 4B to 1KB. Therefore, each VCPU from a VM
wasmanually bound by us to a specific physical processing
unitwhichisknownas CPUpinning.

The utmost performance boost is achievable if
ivshmemis used together with level-3 caching, virtio, proper
NUMAallocation and CPU pinning. This is demonstrated by
theyellow curves in Fig. 5 and Fig. 6. In this case,
bandwidthreaches2GB/sforamessagesizeof1MB,whichistwic
easmuchasforthebestTCP/IPcase.Forsmallermessagesizes,th
edifferenceisevenbigger.Theresultswereachievedwithoutusin
gSR-IOV[10]ashardwareacceleratorforcommunication.

Finally,directcomparisonofstandardTCP/IPcloud(OVS)p
erformancewithourivshmemintegrationisdepictedinFig.7and
Fig.8,forElapsedtimeandBandwidth respectively. We have
deliberately used same-NUMA region for measurements,
since NUMA allocation
isdonerandomlybyOpenStackschedulerandwitheachinstance
creation could engage different memory region.
Forthesmallersizemessages,whensynchronizationisdominati
ngcommunication,performancedifferenceisfactorofsixinfavo
rofivshmem. Withfurtherincreaseofmessageblock size, data
flow becomes main contributor to overallcommunication
time and the difference drops to factor ofthree, for the
biggest messages. This is remarkable
result,consideringthatNUMAtuningwasnotapplied,duetorand
omnatureofOpenStackscheduler.

V. CONCLUSION

High-Performance-Computinginacloudwasnotpossible in
the past, because of the huge overhead generatedduringinter-
VMcommunication onthesameserverandconsequently
between remote units. This was changed withthe advent of a
remake of ivshmem, which is a physicalshared memory
between VMs on the same host server. Asone of the main
results, we made it possible for the first timeto use the
ivshmem remake in an OpenStack-based privatecloud.
Additionally, we introduced several tuning
methods,suchasproperNUMAallocationandCPUpinningandt
herefore, adapted ivshmem to perform even better. Also,
wegaveeffectivemeasuresforTCP/IP-basedemulationof

Elapsedtime
2048

1024

512

256

128

64

32

16

8

[bytes]

TCP(3-lev.cache,OWS,same-numa,no-pin)

ivshmem(3-lev.cache,virtio,same-numa,pin)

Bandwidth
4096
2048
1024

512
256
128

64
32
16

8
4
2
1

0,5
0,25

TCP(3-lev.cache,OWS,same-numa,no-pin)

ivshmem(3-lev.cache,virtio,same-numa,pin)

[bytes]

[μ
s]

4

3
2

2
5

6

1
0

2
4

4
0

9
6

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

[M
B

/s
]

4

32

25
6

10
24

40
96

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

 Dogo Rangsang Research Journal UGC Care Group I Journal

 ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 920 Copyright @ 2021 Authors

physicalsharedmemory,whicharelevel-3cachingandvirtio
instead of Neutron‘s Open vSwitch. All methods
wereevaluated and compared with each other by
measurements,showingthatthebestivshmemscenarioisatleastt
hreetimesasfastasthebestTCP/IPcase.Allmeasurementswere
madewith our wrapper versions of MPICH‘s MPI_PUT for
data-
exchangeandMPI_WIN_LOCKforsharedmemorysynchroniz
ation.

REFERENCES

[1] Opensourcesoftwareforcreatingprivateandpublicclouds,https://www.o
penstack.org/

[2] R. Ledyayev, H. Richter, High Performance Computing in a
CloudUsingOpenStack,TheFifthInternationalConferenceonCloudCom
puting, GRIDs, and Virtualization, CLOUD COMPUTING
2014,http://www.iaria.org/conferences2014/CLOUDCOMPUTING14
.html,Venice, Italy,May25-29,2014.

[3] H.Richter,AbouttheSuitability ofCloudsinHigh-
PerformanceComputing,Proc.SixthInternationalConferenceonComput
erScienceandInformationTechnology(CCSIT2016),JournalComputer
Science and Information Technology (CC&IT), Volume
6,Number1,January2016,pp.23-
33,VolumeEditors:JanZizka,Dhinaharan Nagamalai,
 ISBN:978-1-921987-45-8,DOI:10.5121/csit.2016.60103,

http://airccj.org/CSCP/vol6/csit64803.pdf,AIRCCPublishingCooperat
ion,Zurich, Switzerland, January02-03,2016.

[4] P. Ivanovic, H. Richter, Performance Analysis of ivshmem for High-
Performance Computing in Virtual Machines, Proc. 2nd
InternationalConference on Virtualization Application and
Technology (ICVAT2017), Shenzhen,China, Nov.17-19,2017.

[5] A. Amer, P. Balaji, W. Bland, W. Gropp, R. Latham, H. Lu,
MPICHUser’sGuide,Version3.2,MathematicsandComputerScienceDi
vision-ArgonneNationalLaboratory, Nov.11,2015

[6] Introduction to OpenStack Networking
(neutron),https://docs.openstack.org/liberty/networking-guide/intro-
os-networking.html

[7] Open vSwitch in
OpenStack,https://docs.openstack.org/liberty/networking-
guide/scenario-classic-ovs.html

[8] Virtual I/O Device (VIRTIO) Version 1.0. Committee
SpecificationDraft01/PublicReviewDraft01,http://docs.oasis-
open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-
csprd01.pdf,Dec.03,2013.

[9] S.Weil,QEMUversion2.10.93UserDocumentation,https://qemu.weilne
tz.de/doc/qemu-doc.html

[10] P.Kutch,B.Johnson,SR-IOVforNVFSolutions-
PracticalConsiderationsandThoughts,rev.1.0,NetworkingDivision,http
s://www.intel.com/content/dam/www/public/us/en/documents/technol
ogy-briefs/sr-iov-nfv-tech-brief.pdf,Feb. 23,2017

http://www.openstack.org/
http://www.openstack.org/
http://www.iaria.org/conferences2014/CLOUDCOMPUTING14.html
http://www.iaria.org/conferences2014/CLOUDCOMPUTING14.html
http://airccj.org/CSCP/vol6/csit64803.pdf
http://docs.oasis-/
http://docs.oasis-/
http://www.intel.com/content/dam/www/public/us/en/documents/tec

