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Abstract—High-Performance computing (HPC) is scarcely 

attempted in clouds because of slow and inefficient Inter-VM 

communication on the same server as well as huge latency 

between remote units. This was changed by introduction of 

ivshmem, a PCI device–based shared memory between VMs on 

the same server, but unfortunately, this mechanism became 

broken with Linux update few years ago. We have restored this 

shared memory system and made, for the first time, full cloud 

integration using latest versions of OpenStack, Linux, QEMU, 

libvirt and MPICH. Also, the analyses of different factors 

influencing both TCP/IP and ivshmem communication is 

presented along with tuning techniques that could significantly 

increase performance. Finally, we have created ivshmem 

communication channel that can replace standard Neutron 

TCP/IP network, resulting three to six times performance 

improvement. 
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I. INTRODUCTION 

Nowadays, Cloud Computing is the dominant general-
purposecomputing-
paradigm,andOpenStack[1]isthemostpopularopen-
sourcecloudoperatingsystemforprivateclouds. Unfortunately, 
High-Performance-Computing (HPC)in a cloud was not 
possible in the past, because of the hugeoverhead for inter-
VM communication on the same serverand between servers 
as well, as it was shown for example by[2], [3]. However, 
with the advent of a remake of ivshmem[4],asharedmemory 
betweenVMs on 
thesameserverbecamepossibleagain,thusmakingHPCinprinci
plefeasibleforan OpenStackcloud. 

In this paper, a set of OpenStack tuning measures 
arediscussed that augment the possibilities users have for 
HPCin OpenStack, provided that MPICH [5] is engaged. 
For thatpurpose, we investigated the case that each MPICH 
processisallocatedtooneVMandmeasuredtheinter-
VMcommunicationonthesameserverbyusingthecallsMPI_PU
Tfordata-exchangeandMPI_WIN_LOCKfordata-
synchronization. Both calls were wrapped by us aroundthe 
original MPICH calls of the same name in order to 
beabletoruntheivshmemremakeinOpenStack. 

Wewillshowinthefollowingvariousperformancetuning 
methods for HPC in OpenStack via ivshmem, as wellas for 
the classical inter-VM communication via TCP/IP thatis 
based on Neutron‘s [6] Open vSwitch [7] architecture. 
Byourmeasures,inter-VMbandwidth  andlatencycouldbe 
improved by a factor of up to six, from worst case to 

bestcase,asourperformancemeasurementshaveshown. 
Therestofthepaperisorganizedasfollows: inchapter2,the 

state of the art in inter-VM communication in OpenStackis 
given. Chapter 3 presents a tuning for the classical 
TCP/IPcommunicationthatisbasedonlevel-
3cachingandacustomvirtio[8]networkbridge.Chapter4explain
stuningmeasures for ivshmem based on proper NUMA 
allocationand vCPU pinning. In this chapter, also the best 
TCP/IPmethodiscomparedtothebestivshmemmethoddemonst
rating a superior improvement factor for the 
latter.Thepaperendswithaconclusionandreferencelist. 

II. STATEOFTHEARTININTER-

VMCOMMUNICATIONINOPENSTACK 

As any cloud, OpenStack is a distributed system, even 
ifthe cloud is physically located in the same rack or in 
thesame computing center where TCP/IP would not be 
needed,because L2 switching would be sufficient. By 
studying 
[7],wewereabletodrawablockdiagramoftheresultingsoftware 
overhead (Fig. 1) for the case that two MPICHprocesses are 
executed by two VMs on the same server.According to Fig. 
1, any data frame has to go two timesthrough the following 
stages: TCP/IP stack, device driver,virtual network 
interface, qbr Linux Bridge, Open 
vSwitch(OVS)IntegrationBridge,OVSVLANBridge,physica
lEthernet Interface, physical Ethernet Switch. Although 
OVSis part of OpenStack‘s Neutron network service and 
certainportconfigurationscouldreducenumberofintermediatei
nterfaces, it still produces significant overhead. 
Togetherwith the VM communication overhead, the 
consequence isanunacceptablelowHPCperformance. 

III. TUNINGTHECLASICALTCP/IPINTER-

VMCOMMUNICATION 

For TCP/IP tuning and the subsequent chapters, we 
usedOpenStack Juno, Ubuntu 16.04 as guest OS, CentOS 
7.1 ashostOS,QEMU2.9.50,libvirt2.0,MPICH3.2andvirtio 
1.1.1 as software environment. Additionally, we sent 
datafrom one MPI process to the other, while varying its 
sizefrom 2

2
 to 2

20
 bytes. The transmission was accomplished 

byone-sided MPI_PUT via the standard MPICH Nemesis-
sockchannel. However, because of the fact that there is 
normallynosharedmemorybetweendifferentVMs,evenonthes
ameserver,MPICHemulatesthisfunctionalitybyTCP/IPcomm
unication, sending data packets back and forth 
thatcarrysharedvariables. 
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Figure 1.Software overhead in OpenStack for inter-VM communication.1,2,3 =Ethernet Data Frames, 4=VLAN-tagged Ethernet Frames, OVS = 

OpenvSwitch. 
 

 

A. Level-3Caching 

Now, the influence on OVS of applied level-3 caching 
isdiscussedincomparisontolevel-2cachingonly.Asreference, 
we used the elapsed time for transferring data forthe case of 
no cloud (VMs only) for both, OVS with level-3caching and 
without. The results are shown in the 
orange,greyandyellowcurvesofFig.2and Fig.3. 

back.Engaginglevel-3cachingfurtherimprovesperformance 
(yellow curves). Similarly, replacing the 
serverbyadesktopPC(lightbluecurves)showedalsogoodperfor
mance, but disadvantage was limited scalability andcloud 
incompatibility. Finally, the only measure that 
madesignificant difference was replacement of Neutron‘s 
OVS byvirtio-net. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure2.ElapsedtimesforTCP/IP-basedinter-VMcommunication. 

 

Thetwoorangecurvesdepicttheelapsedtimeandbandwidth 
for inter-VM data exchange without cloud. In thiscase, each 
data packet must go to the first IP router of theserver where 
it is reflected back thus forming a loop. As onecan see, if 
OpenStack is engaged with OVS (grey curves),performance 
is much better than without cloud. The reasonfor that is that 
each packet must only travel to the first 
switchoftheserver,asshowninFig.1,andnottothefirstIProuter.E
itherattheswitchorattherouter,packetsarereflected 

Figure3.BandwidthforTCP/IP-basedinter-VMcommunication. 

 

B. Virtio-Net 

The dark blue curves in Fig. 2 and Fig. 3 show the 
effectofvirtioinsteadofOVS.Thisreplacementispossiblebecaus
etheKVMhypervisorofOpenStackhastwointerfaces: the first 
is used by the various QEMUs [9] itcooperates with. The 
second API is virtio that provides 
for“paravirtualization”.ThisisamoreefficientIOvirtualization
method than the so-called full software emulation made 
byOpenStackbymeansofKVM/QEMU.BesidesbeinganAPI, 

61440 

30720 

15360 

7680 

3840 

1920 

960 

480 

240 

120 

60 

InterVM-TCPElapsedtime 

virtio (3-lev. cache 

desktop)defaultntw.(2-

lev.cacheserver)OVS(2-

lev.cacheserver) 

OVS(3-lev.cacheserver) 

virtio(3-lev.cacheserver) 

[bytes] 

InterVM -TCPBandwidth 

1024,00 

256,00 

64,00 

16,00 

4,00 

1,00 

0,25 

0,06 

0,02 

0,00 

virtio(3-lev. cache desktop) 

defaultntw. (2-lev. cache 

server)OVS(2-lev.cacheserver) 

OVS (3-lev. cache 

server)virtio(3-

lev.cacheserver) 

[bytes] 

[μ
s]

 

4 

3
2 

25
6

 

10
24

 

40
96

 

16
38

4
 

32
76

8
 

65
53

6
 

1
31

0
7

2
 

2
62

1
4

4
 

5
24

2
8

8
 

10
48

57
6

 

[M
B

/s
] 

4
 

3
2

 

2
5

6
 

1
0

2
4

 

4
0

9
6

 

1
6

3
8

4
 

3
2

7
6

8
 

6
5

5
3

6
 

1
3

1
0

7
2

 

2
6

2
1

4
4

 

5
2

4
2

8
8

 

1
0

4
8

5
7

6
 



   Dogo Rangsang Research Journal                                                              UGC Care Group I Journal 

    ISSN : 2347-7180                                                                                        Vol-08 Issue-14 No. 04: 2021 

 

Page | 918                                                                                       Copyright @ 2021 Authors  

virtio is also a library of paravirtualized device drivers 
forthe guest OS. Virtio-net is the paravirtualized device-
driverfor a virtual Ethernet card (vNIC). Internet-based 
inter-VMcommunication can profit from virtio-net if a 
Berkeley sendcall results in calling virtio-net. This driver is 
aware that it isexecuted in a VM, and it is therefore actively 
cooperatingwith its QEMU. With virtio-net, KVM does not 
need tointercept guest-OS device-driver accesses to 
emulated 
PCdevices,becausetheyarenotperformed.Instead,theparamete
rs for virtio calls are directly forward to QEMU.Technically, 
the Berkeley send call is not mapped onto avNIC in guest 
OS, but via QEMU onto a virtio-net 
sendqueue(“virtqueue“)inhostOS.Virtqueuesaremuchsimpler
and thus faster than vNICs, because they are only 
buffers.The rest in virtio-net happensas described in section 
A.Please note also that the paravirtualized guest-OS device-
driver is called front-end driver, while the modified host-
OSEthernet-driver is termed back-end driver. The original 
host-OS back-end driver cannot be used in virtio-net 
because itsinputisaLinuxdata-
structurecalledsk_buf,whilethefront-enddriveroutputsso-
calledvirtqueueentries.Both,thefront-end and the modified 
back-end driver, are contained inthe virtio library. The 
resulting block diagram is shown inFig. 4, where only the 
first half of the communication 
isdisplayedbecauseitissymmetric. 

 

Figure4.Virtio-netinter-VMcommunicationarchitecture. 

 

The first disadvantage of virtio is that TCP/IP is 
stillengaged. The second is that the virtqueue entries have to 
behandled by two QEMUs each, one for the source, the 
otherfor the target VM. Finally, for every data frame sent by 
thereal Ethernet card, each QEMU has to make a system call 
toKVM,whichisatime-
consumingprocedure,becauseitrequires a full process context 
switch, with all MMU 
pagetableentriesreloaded.Becauseofthat,westrivedforabetteri
nter-VMcommunicationmethod. 

IV. IVSHMEM 

Ivshmem is a virtual PCI device in a guest OS which 
isemulatedby KVM/QEMU. Itestablishes 
aLinux/POSIXshared memory (SHM) between the VM and 
its host OS.Ivshmemthusenableszero-copyVM-to-
Hostcommunication and vice versa, which is very efficient 
withrespect to bandwidth and latency, because no internal 
databufferexists.Ivshmemcanalsobeusedforinter-VM 

communication with the host OS SHM as intermediate 
step.Ivshmem is implemented by mapping its virtual PCI 
devicememory to the host OS SHM. This is possible, 
because thememory is emulated by QEMU as a data 
structure inside ofitself, and because multiple QEMUs can 
communicate witheachotherinhostOS. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure5.Elapsedtimesforivshmem-basedinter-VMcommunication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure6.Bandwidthforivshmem-basedinter-VMcommunication. 

 

Ivshmem was supported for a few years by libvirt 
andQEMUasavirtualPCIdevicethatallowedforsharedmemory 
(SHM) between guests and host. A 
synchronizationmechanismcalledShared-Memory-
Server(SMS)wascreated,whichbecamepartofQEMUasitsivsh
mem-
server.ThisservercouldsendinterruptstoVMslocatedonthesam
ecompute node, thus allowing unblocking of an application 
ina target VM, which was waiting for data from an 
applicationin a source VM. Mutual blocking and unblocking 
was usedfor SHM access synchronization without 
consuming 
CPUcycles(nospinlock),whichisindispensableforHPC.Howe
ver, this valuable feature could only be implemented 
ifbothapplicationswereimplementedastheuserpartsofLinux 
user-IO device-drivers (uio). Additionally, it was thetask of 
the user to write, by means of code examples of both,the 
kernel and user part of the uio driver and to integrate 
hisapplication into this driver. This was a not applicable 
forHPC with MPI, because MPI processes are typically 
notdevice drivers. The reason for ivshmem being limited to 
uiodevice drivers was that the one and only possible 
spinlock-free synchronization between VMs in Linux is 
possible 
bymeansofablockingreadintheuserpartofuio.Assoonas 
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an interrupt arrives at a VM, this user part is called as 
aninterrupt service routine and the blocking read at the 
targetVMisunblocked.Unfortunately,withnewerLinuxversio
ns,unblockingdidnotworkanymore,withtheconsequencethati
vshmemwasnearlyuselessbecauseofmissingSHM-
accesssynchronization. Our contribution was to patch codes 
forboth, the kernel and the user part of uio device drivers 
forivshmemandtofindproperversionandconfigurationmatches 
for Linux, QEMU and libvirt so that 
everythingworksagain.WehavealsocreatedanewSHMcommu
nicationandsynchronizationchannelinsideofMPICH. In 
particular, we achieved ivshmem to run for thefirst time in a 
cloud with OpenStack, resulting in a three tosix times 
performance improvement compared to 
TCP/IP(Fig.7andFig.8). 

TheisolatedivshmemperformanceresultsaredepictedinFig
. 5 and Fig. 6. The blue curves show that 
implementingdefaultoremulatedTCP/IPnetwork,asrequireme
ntforinitial MPI synchronization, has still very poor 
performance,but far better than non-SHM solution, shown in 
Fig. 2 andFig.3. Performanceimprovesfurtherif 
thesametuningmeasuresare engaged as before, i.e. level-3 
caching andvirtio instead of OVS. The effect is shown in the 
orangecurves.AdditionalgainsarepossiblebyproperNUMAall
ocationandCPUpinning. 

A. PropperNUMAAlocation,no-CPUPinning 

In the gray curves of Fig. 5 and Fig. 6, it becomes 
visiblethat manually allocating the communicating VMs into 
thesame non-uniform memory-access (NUMA) region 
yields infurther significant improvements. In such a uniform 
memoryaccess region, all VMs have the same access latency 
to thephysicalshared memory in hostOS. On the 
otherhand,allocating the MPI VMs to different NUMA 
regions leads tofrequent cache misses, and data access times 
are not equalanymoreaswell. 

B. vCPUPinning 

If cache misses occur together with a rescheduling of 
thevCPU, that executes a VM, from one physical 
processingunit (i.e. core) to another, the result is a non-
monotonouslyincreasingperformanceforincreasedmessagesiz
e. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.Elapsed times for TCP and ivshmem-based inter-

VMcommunication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.Bandwidth for TCP and ivshmem-based inter-

VMcommunication. 

 

This is noticeable in the gray curve of Fig. 5 for 
sizesfrom 4B to 1KB. Therefore, each VCPU from a VM 
wasmanually bound by us to a specific physical processing 
unitwhichisknownas CPUpinning. 

The utmost performance boost is achievable if 
ivshmemis used together with level-3 caching, virtio, proper 
NUMAallocation and CPU pinning. This is demonstrated by 
theyellow curves in Fig. 5 and Fig. 6. In this case, 
bandwidthreaches2GB/sforamessagesizeof1MB,whichistwic
easmuchasforthebestTCP/IPcase.Forsmallermessagesizes,th
edifferenceisevenbigger.Theresultswereachievedwithoutusin
gSR-IOV[10]ashardwareacceleratorforcommunication. 

Finally,directcomparisonofstandardTCP/IPcloud(OVS)p
erformancewithourivshmemintegrationisdepictedinFig.7and
Fig.8,forElapsedtimeandBandwidth respectively. We have 
deliberately used same-NUMA region for measurements, 
since NUMA allocation 
isdonerandomlybyOpenStackschedulerandwitheachinstance 
creation could engage different memory region. 
Forthesmallersizemessages,whensynchronizationisdominati
ngcommunication,performancedifferenceisfactorofsixinfavo
rofivshmem. Withfurtherincreaseofmessageblock size, data 
flow becomes main contributor to overallcommunication 
time and the difference drops to factor ofthree, for the 
biggest messages. This is remarkable 
result,consideringthatNUMAtuningwasnotapplied,duetorand
omnatureofOpenStackscheduler. 

V. CONCLUSION 

High-Performance-Computinginacloudwasnotpossible in 
the past, because of the huge overhead generatedduringinter-
VMcommunication onthesameserverandconsequently 
between remote units. This was changed withthe advent of a 
remake of ivshmem, which is a physicalshared memory 
between VMs on the same host server. Asone of the main 
results, we made it possible for the first timeto use the 
ivshmem remake in an OpenStack-based privatecloud. 
Additionally, we introduced several tuning 
methods,suchasproperNUMAallocationandCPUpinningandt
herefore, adapted ivshmem to perform even better. Also, 
wegaveeffectivemeasuresforTCP/IP-basedemulationof 
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physicalsharedmemory,whicharelevel-3cachingandvirtio 
instead of Neutron‘s Open vSwitch. All methods 
wereevaluated and compared with each other by 
measurements,showingthatthebestivshmemscenarioisatleastt
hreetimesasfastasthebestTCP/IPcase.Allmeasurementswere
madewith our wrapper versions of MPICH‘s MPI_PUT for 
data-
exchangeandMPI_WIN_LOCKforsharedmemorysynchroniz
ation. 
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