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Abstract—Storing biometric templates and/or encryption keys, 

as adopted in traditional biometrics-based authentication 

methods, has raised a matter of serious concern. To address such 

a concern, biometric key generation, which derives encryption 

keys directly from statistical features of biometric data, has 

emerged to be a promising approach. Existing methods of this 

approach, however, are generally unable to appropriately model 

user variations, making them difficult to produce consistent and 

discriminative keys of high entropy for authentication purposes. 

This paper develops a semisupervised clustering scheme, which is 

optimized through a niching memetic algorithm, to effectively 

and simultaneously model both intra- and interuser variations. 

The developed scheme is employed to model the user variations 

on both single features and feature subsets with the purpose of 

recovering a large number of consistent and discriminative 

feature elements for key generation. Moreover, the scheme is 

designed to output a large number of clusters, thus further 

assisting in producing long while consistent and discriminative 

keys. Based on this scheme, a biometric key generation method is 

finally proposed. The performance of the proposed method has 

been evaluated on the biometric modality of handwritten 

signatures and compared with existing methods. The results show 

that our method can deliver consistent and discriminative keys of 

high entropy, outperforming-related methods. 

Index Terms—Biometric authentication, feature evaluation, 

handwritten signature, memetic algorithm, semisupervised 

clustering. 

I. INTRODUCTION 

ELIABLE and secure authentication methods are 

critical for secure systems. Classical authentication 

schemes based on the token (e.g., key) or secret 

information (e.g., password) [45] are unable to meet 

stringent security demands, as they cannot differentiate 

between authorized users and persons who fraudulently 

obtain the token or secret information. Recently, 

biometrics-based authentication [28], [31], [43], [52], which 

can overcome this limitation, has received tremendous 

attention for verifying the identity of a person. In addition, 

biometrics enjoy advantages for being natural, convenient, 

and more importantly improbable to be lost or forgotten, 

making it a potential 

replacement of the token or secret knowledge for identity 

verification. 

Despite its obvious advantages, the traditional 

biometricsbased authentication approach can pose various 

security and privacy issues [29], [55]. In this approach, a 

biometric template, i.e., physiological and/or behavioral 

characteristics, of each user is required to be stored along 

with the encryption key, user name, and access privileges, 

etc., during the enrollment process. Then, during the 

verification process, the stored template is matched against 

the query biometric data provided by the user and the key 

can be released upon a successful matching. By storing 

templates, the systems are usually vulnerable to potential 

security breaches from malicious and spoof attacks. Once 

stored templates are compromised, attackers can fabricate 

physical spoof samples or replay compromised templates 

to the matcher module to gain unauthorized access. Details 

of such efforts can be found in [1], [19], and [58]. 

Moreover, stored biometric templates also raise privacy 

issues, as they can disclose sensitive information about the 

users’ personality and health status [47], which can be 

used to profile them. Additionally, the uniqueness 

characterizing the biometric data and the fact that 

biometrics are permanently associated with the users 

could be exploited to track their activities enrolled in 

different biometric systems. 

To address the above issues, many alternative 

biometricsbased authentication methods have been 

developed in the literature, prominent among which is the 

biometric key generation approach [9], [12]–[14], [17], 

[25], [32]–[35], [37], [40], [46], [61], [62], [65]–[69], [74]. 

Given a set of statistical features extracted from biometric 

samples of a user, existing methods of this approach 

typically construct the feature space by quantizing it into a 

number of intervals. Subsequently, each feature of the user 

is mapped to a short binary string individually according 

to the label of the interval of which the feature value is 

enclosed. Eventually, every individual binary string is 

concatenated to form the encryption key for 

authentication purposes. The advantage of such an 

approach is that the encryption keys can be generated 

dynamically, and neither templates nor keys are required 

to be stored. Generally, for this approach to be successful, 

the main challenges lies in effectively modeling both intra- 

and interuser variations of the features, thereby 

generating consistent keys for the same user and different 

keys for different users. Moreover, from the security 

R 
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perspective, the modeling scheme should be able to 

support the generation of such keys with high entropy. 

However, existing methods of this approach either largely 

ignore interuser variations or have a limited capability to 

model both intra- and interuser variations. As a result, 

they are generally unable to produce consistent and 

discriminative keys. In this paper, we propose a novel 

method to generate encryption keys directly from 

statistical features of biometrics. In our method, a 

semisupervised clustering scheme, which is optimized via a 

niching memetic algorithm (NMA) to derive optimal or 

near-optimal clustering solutions, has been developed to 

effectively and simultaneously model intra- and interuser 

variations. The developed semisupervised clustering 

scheme is employed to model the user variations on both 

single features and feature subsets in order to recover a 

large number of consistent and discriminative feature 

elements for key generation. Moreover, the semisupervised 

clustering scheme is designed such that it outputs a large 

number of clusters, therefore further assisting in long key 

generation. Based on the modeling results, we then select a 

set of consistent and discriminative feature elements 

without overlapping to generate the key for each user. The 

effectiveness of the proposed method has been investigated 

with the application to biometric of handwritten signature, 

which is a physically and universally accepted biometric 

for authentication, and compared with related work. The 

results show that our method can deliver consistent and 

discriminative keys of high entropy and outperform 

related methods. 

The rest of this paper proceeds as follows. In Section II, 

we present the details of the proposed method. Then, a 

review and discussion of previous related work are 

provided in Section III. This is followed by experimental 

studies in Section IV. Section V concludes this paper. 

II. PROPOSED METHOD 

In this section, we present our method to generate 

encryption keys directly from statistical features of 

biometric data. Fig. 1 outlines the process of the proposed 

method. In this method, a semisupervised clustering 

scheme is introduced to effectively and simultaneously 

model intra- and interuser variations. In the following, we 

first provide the details of the semisupervised clustering 

scheme in Section II-A. Then, a NMA for the 

semisupervised clustering is provided to identify optimal 

or near-optimal solutions in Section II-B. Finally, how the 

NMA-based semisupervised clustering is employed to 

quantize the feature space and how the keys are generated 

are described in Sections II-C and II-D, respectively. 

A. Semisupervised Clustering Scheme 

Consider a set of n vector X = {x1,x2,...,xn} to be clustered, 

where xi is a vector of d real-valued measurements 

describing statistical features extracted from each 

biometric sample of each user. The hard clustering [10], as 

we considered here, seeks for a set of clusters C = {C1, C2, 

..., Ck} with the properties: 1)and 3) Ci Cj= ∅, iC=i=j, 1∅, 1≤ ≤ 

i≤≤ k; 2) ki=1 Ci = X; i, j k. Additionally, the 

clusters should reflect the structure of data such that 

objects in the same cluster are similar to each other while 

objects from distinct clusters are different from each 

other. This is 

 

Fig. 1. Process of the proposed key generation method. The key steps are 

shown in dashed box. 

typically achieved by optimizing a specified unsupervised 

criterion [2], [5], which is devised without incorporating 

any label information of the data. By optimizing these 

criteria, data objects from the same user, however, are 

highly possible to be grouped into different clusters. The 

clustering results thus could be ineffective for modeling 

intrauser variations. This renders the unsupervised 

criteria ineffective for the purpose of deriving consistent 

and long keys for each user. On the other hand, the data 

objects can be modeled based solely on their label 

information. In this case, however, the interuser variations 

are unable to be modeled, leading to the difficulty of 

generating discriminative, and long keys for different 

users. Further, by employing solely the label information 

for modeling, the results could be potential exposure of the 

user’s genuine measurements. 
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To effectively and appropriately model both intra- and 

interuser variations, here, we design a semisupervised 

function by incorporating the label information into a 

clustering criterion. The designed function is based on the 

within-cluster and between-cluster scatter matrices, which 

have been popularly used in unsupervised clustering 

criteria [10]. One criterion is the trace(Sw−
1
Sb), in which the 

within-cluster variation Swis calculated as 

 k n 

Sw mj)
T. (1) j=1 

i=1 

Here, Swmeasures the compactness of clusters, i.e., how 

scattered the data objects are from their cluster means, 

where zji= 1 if xi belongs to cluster j, 0 otherwise and mjis 

the mean of cluster j. The between-cluster variation Sb is 

computed as 

k 

Sb m)T 
(2) j=1 

and measures how scattered the cluster means are from 

the sample mean, where njis the total number of objects in 

the cluster j and m is the sample mean. In the criterion of 

trace(Sw−
1
Sb), the between-cluster variation Sb is 

normalized by the within-cluster variation Sw. As a result, 

large values of the criterion correspond to compact and 

well separated clusters. This criterion is invariant under 

any nonsingular linear transformation and can be served 

as an adequate basis for designing our function. 

The trace(Sw−
1
Sb) criterion works in an unsupervised 

fashion. By optimizing this criterion, data objects from the 

same user are highly possible to be grouped into different 

clusters. It has been shown that, by incorporating 

supervised information, the clustering process can produce 

better models and more accurate clustering results [26], 

[75]. The technique of exploring supervised information to 

improve the clustering process is usually termed as 

semisupervised clustering [72]. In the semisupervised 

clustering, the supervised information can be expressed as 

pairwise constraints indicating whether a certain pair of 

data objects should belong to the same (must-link) or 

different (cannot-link) clusters. This knowledge is then 

being incorporated to modify clustering criteria so that 

they include the satisfaction of constraints. Several of such 

criteria have been proposed in the semisupervised 

clustering [22], [76]. However, they are generally 

developed with the purpose to seek one cluster per 

category of the data. Rather than seeking one cluster per 

category, our goal here is to identify the clustering 

solution, which can appropriately model intra- and 

interuser variations. In this sense, we formulate a function 

by taking into account both the trace(Sw−
1
Sb) criterion and 

must-link pairwise constraints to search for clusters such 

that data objects from the same user are grouped in the 

same cluster while the separation among clusters are well 

preserved. 

Specifically, let Mbe a set of must-link pairs where (xi,xj) 

∈ M implies xi and xjshould be in the same cluster and ωijbe 

the penalty cost for violating the constraint in M. We can 

write the function as 

F1 = Norm Norm  

where l is the indicator function, l = 1 if objects xi and xjare 

assigned to different clusters, otherwise l = 0. If we assume 

uniform constraint costs ωij, all constraint violations are 

treated equally. Intuitively, the penalty for violating a 

mustlink constraint between nearby points should be 

higher than that of between distant points. Further, the 

penalty should be higher if two separated must-link points 

are far apart from their corresponding cluster center. To 

reflect this intuition, we define ωijas 

 ωij xj  ×  (4) 

where mi and mjdenote the centers of clusters for which the 

data objects xi and xjare assigned. Note that the values of 

the terms of trace(Sw−
1
Sb) and ijlin the function 

F1 have different order of magnitude. By optimizing this 

function, the result will be dominated by the term with 

large values. In order to closely reflect the equal 

importance of these two terms, they should be expressed in 

units of approximately the same numerical values. In this 

paper, since the function will be optimized via aNMA, 

these two terms will be dynamically normalized during 

evolution of the algorithm. The details of this will be 

described in Section II-B. 

In the function F1, the first term Norm(trace(Sw−
1
Sb)) is 

biased toward increasing number of clusters. The second 

term, on the other hand, tends to decrease the number of 

clusters. These two terms will thus compete with each 

other to form clustering solutions. However, it can be 

found that the solutions delivered by optimizing this 

function usually have a small number of clusters. To assist 

in generating long keys, however, we generally prefer 

solutions with a large number of clusters. For this purpose, 

we add a penalty term of (k −1)/(kmax−k) to F1. The 

resulting function, denoted as F2, becomes 

⎛ 
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F2 = ⎝Norm(trace(Sw−
1
Sb)) − 

Norm 

where k is the number of clusters encoded the solution. 

This penalty term is set to discourage the solutions with 

small number of clusters. By maximizing the function of 

F2, we therefore aim to attain solutions with large number 

of clusters such that data objects from the same user are 

grouped in the same cluster while the separations among 

clusters are well preserved. It should be noted that this 

penalty term is determined empirically and there may be 

another more effective penalty term, which could result in 

even better performance. 

B. NMA-Based Optimization 

As the designed function is discontinuous and 

nonconvex, optimizing the function to identify the optimal 

or near optimal partitioning of a data set with nontrivial 

size is a difficult problem. We further present here a NMA 

to approach a solution to this problem. The general 

procedure of the algorithm is shown in Algorithm 1. 

The NMA can be viewed as an extension of the 

traditional GA (TGA) [11], [20]. Unlike TGA, some kind of 

niching selection and niching replacement operations are 

generally used in the NMA for selecting parent pairs and 

generating new population, respectively. These niching 

operations are employed to preserve the population 

diversity during the search and permit the algorithm to 

investigate many peaks in parallel. As a result, premature 

convergence, which is an intrinsic drawback when 

applying TGA to deal with complex optimization 

problems, can be usually prevented. Further, in the NMA, 

a certain type of local search operation is typically 

incorporated to improve the search efficiency. Compared 

with TGA, NMA can therefore be used to optimize the 

designed function for semisupervised clustering. 

To apply NMA for semisupervised clustering, we first 

need to generate a population of initial solutions. This 

population is then undergoing an NMA-based evolution, 

guided by the designed function for fitness computation. 

The output of the algorithm is the best clustering solution 

in the terminal population. In the following, we first 

describe how the initial solutions are created. This is 

followed by explaining how Algorithm 1 General

 Procedure of the NMA-Based 

Semisupervised Clustering Algorithm 

 

1) Randomly initialize a population of P solutions with 

different numbers of clusters using a real-value-

based representation. 

2) Calculate the fitness value for each solution in the 

initial population according to (5). 

3) Repeat the following sub-steps (1)–(4) until the 

stopping criterion is satisfied. 

a) Select parent pairs utilizing a niching 

selectionoperation. Repeat the procedure until 

P/2 pairs are selected. 

b) Generate offspring by employing a modified 

one-point crossover followed by the Gaussian 

mutation operation. 

c) Compute the fitness for each offspring 

accordingto (5). 

d) Applying a niching replacement operator to 

select an opponent for each offspring from the 

population. If the offspring has better fitness, 

then replace its opponent in the population. 

4) Output the best solution in the terminal population. 

 

the fitness of solutions is calculated using the designed 

function and how the population evolves to identify the 

optimal or near-optimal clustering solution. 

1) Population Initialization: The proposed 

semisupervised data clustering involves determination of 

the proper number of clusters as well as appropriate 

clustering of the data sets. Further, for optimization 

problems in continuous domain, the real-value-based 

representation is generally preferred to encode solutions in 

evolutionary algorithms, as it offers higher precision than 

other alternative representations [44]. We therefore 

employ a real-value-based variable length string 

representation to encode solutions with different number 

of clusters. Specifically, each solution iin the initial 

population is encoded with a vector of ki×dreal numbers, 

where ki denotes the number of clusters and d is the 

dimension of data. The first d values represent the center 

of first cluster, the next d values represent that of second 

cluster, and so forth. The initial values of each solution are 

constructed via randomly assigning real numbers to each 

of the d attributes of ki cluster centers. The values are 

restricted to be in the range of attribute for which they are 

assigned. The initial number of clusterki is set randomly 

within the range of 2 to kmax, and kmaxis the upper bound of 

cluster number in a data set. Here, the kmaxis calculated to 

 
be √n, which is a rule of thumb used in the clustering [51]. 

The number of clusters in the initial population will thus 

range from 2 to kmax. 

2) Fitness Function: The fitness of a solution 

indicates the goodness of result it represents. Here, the 

designed function F2 will be employed for the fitness 

calculation. This function, however, consists of two terms 

(i.e., trace(Sw−
1
Sb) and 
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), which should be normalized to have 

equally importance. Unfortunately, there is no a priori 

information available for such a purpose. In this paper, 

we propose to normalize their values dynamically during 

the NMA evolution, as follows. For each individual 

solution, a fitness vector, which is associated with the 

individual, is introduced to store the values computed 

from each of the two terms. Before calculating the fitness 

of the individual, values of the corresponding terms stored 

in its associated fitness vector are firstly extracted and 

each of them is subsequently normalized according to 

Norm

 

where f
min

(x) and f
max

(x) are minimum and maximum 

values, respectively, of the term recorded so far during 

evolution. Finally, the fitness of an individual can be 

calculated using the normalized values. The calculated 

fitness value will not be permanently associated with the 

individual solutions rather, it will be dynamically 

computed when needed. 

3) NMA-Based Evolution: Based on the above initial 

population, an NMA-based evolution process will then 

attempt to optimize the fitness function F2. At each 

generation, parent pairs are first selected from the existing 

population by employing a variant of multiniching 

crowding (VMNC) technique [21]. In the VMNC, during 

selection, one individual, P1, is selected randomly from the 

population and its mate 

is selected from a group of individuals of size S, picked 

randomly from the population. The individual in S, which 

is most similar toP1, is chosen as its mate P2. These selected 

pairs are subsequently crossed and mutated to generate 

offspring. The crossover operation is set to exchange 

information between each pair of parents. During 

crossover, we consider cluster centers encoded in the 

solution to be indivisible, i.e., crossover points are 

restricted to lie in between two cluster centers. For this 

purpose, we employ a crossover operation, which is 

analogous to the traditional one-point crossover [20], as 

follows. Suppose parent individuals P1 and P2 encode k1 

and k2 cluster centers (k1 ≤ k2), respectively. The position of 

crossover point x1 in P1 is first randomly generated 

between 1 and k1. The position of crossover point x2 in P2 is 

then randomly generated between x1 and k2. After that, the 

data segments between x1 and x2 in P1 and P2 are 

exchanged. The crossover will be applied stochastically on 

each parent pair. After crossover, the Gaussian mutation 

[3], which adds a unit of random Gaussian distributed 

value to the selected attribute, is applied with a low 

probability to the offspring. The value of new attribute is 

clipped in case it falls outside the upper or lower bound of 

that attribute. 

To improve the time efficiency, the k-means algorithm 

[39] is further employed to refine the solution encoded in 

the offspring. Given an initial set of k cluster centers, the 

k-means 

algorithm attempts to minimize the sum of squared error 

(SSE) clustering criterion by iterating between two steps: 

assignment and update. During assignment step, each data 

object is assigned to a cluster whose center is closest to it. 

During update step, the center of each cluster is updated 

by the mean of data points assigned to it. The process of 

the algorithm converges when no further reassignment 

improves the SSE and is known to be very efficient. 

However, the performance of k-means is sensitive to initial 

cluster centers. Rather than applying k-means on the 

offspring until convergence, here, a single iteration of it 

will be used to refine cluster centers 
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features x1 and x2 are processed together. 

encoded in the offspring. This is done by assigning each 

data object to the nearest cluster center encoded in the 

offspring. After that, each cluster center is updated as the 

mean of data objects assigned to it. 

After the k-means algorithm-based local operation, the 

niching replacement procedure of the VMNCis finally 

performed on the offspring. In this replacement, the 

offspring is paired with the most similar individual from a 

group of R solutions, which are randomly selected from 

the population. The offspring subsequently compete with 

its paired opponent to survive based on the fitness. If the 

offspring has better fitness, its paired opponent in the 

population is replaced by the offspring. The above 

evolution process will be repeated to optimize the fitness 

until the fitness of the best solution in the population has 

not improved for g generations. 

4) Parameter Settings: The above NMA-based 

semisupervised clustering algorithm has several 

parameters, which need to be set. These include crossover 

and mutation probabilities, the values of S and R used in 

the VMNC, the population size and the number of g for 

terminating the evolution process. We set the crossover 

and mutation probabilities to be 0.9 and 0.01, respectively. 

Good values for these parameters are from [0.6, 1.0] and 

[0.005, 0.02], respectively. The values of S and R are set to 

be 5 and 10, respectively. Population size equals 50 and the 

number of g in the stopping criterion is set to be 20. A 

larger value of either S, R, gor population size may lead to 

a longer runtime but with no significant improvement in 

performance. These parameters are determined 

experimentally on above data sets based on the average 

fitness value resulted from five trials of the algorithm. No 

attempt has been made to optimize parameter values in an 

absolute sense. It is thus certainly possible that a more 

effective set of parameter values could be found which 

would result in even better performance. However, it 

should also be noted that employing inappropriate 

parameter values, e.g., a too small value of mutation 

probability and/or population size, would degrade the 

overall performance of the algorithm. 

C. Feature Quantization 

Feature quantization starts by taking a few biometric 

samples from each candidate user and calculating their 

feature values. Based on the obtained feature values, i.e., 

training data, we apply the proposed NMA-based 

semisupervised clustering algorithm to partition it into 

clusters. As data objects coming from the same user are 

typically similar with each other, they tend to be assigned 

to the same cluster. This is particularly true when features 

values are consistent and their data are clustered using the 

proposed algorithm, which considers the label information 

of the data. Conversely, data objects grouped into different 

clusters are often coming from different users. Thus, the 

clustering results can be utilized to model both 

intraandinteruser variations. 

Generally, we can quantize the feature space by 

partitioning the data on each single feature. However, it is 

usually difficult to identify enough consistent single 

features to generate long keys. In addition, by quantizing 

each feature in isolation of other features, the algorithm 

may destroy important interactions among the features 

and cause them to perform suboptimally. To cope with 

such situations, we take into account the interdependence 

among features in the quantization process by applying the 

 

Fig. 2.Advantage of applying the clustering on (a) feature subset over (b) single feature, whereby a clear separation among the clusters can be created when 
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proposed algorithm also on feature subsets of the training 

data. By considering feature subsets, clustering solutions 

can usually offer great flexibility in the shape of formed 

clusters, which could better adapt to the object 

distribution within each cluster. This can be particularly 

useful to recover consistent feature subsets from 

inconsistent single features. Fig. 2 depicts an exemplary 

scenario that favors the feature subset quantization over 

the single feature owing to the ability in preserving the 

separation among clusters in a clear-cut manner. Note, we 

consider feature subsets with the dimension up to three in 

this paper. Nevertheless, it is possible that more consistent 

feature subsets could be found by considering feature 

subsets of larger dimensions. 

As a result of the quantization process, we can obtain a 

list of single features and feature subsets (which are 

referred to as feature elements in this paper) as well as 

their corresponding clustering results, represented by the 

centers of clusters. Having obtained such results, we can 

then quantitatively distinguish among the feature elements 

according to their association degrees to the corresponding 

clusters. This is done by, for each feature element of each 

user, calculating its association degree, ad, as ad = davg

 /davg. Here, davg and davgdenote the average distance of the 

user’s data objects and all the data objects, respectively, in 

the corresponding cluster to its center. Such a calculation 

is carried out only when all the user’s data objects are 

assigned to the same cluster on corresponding feature 

element. Otherwise, its association degree is simply set to 

zero. The computed association degree is finally utilized to 

measure the consistency of feature element for that 

particular user. Larger values imply higher consistency. 

D. Feature Selection and Key Generation 

Having acquired the consistency information of feature 

elements, the most consistent feature elements can 

subsequently be selected for each user to generate the key. 

During the selection, a trade-off exists between the 

consistency and length of keys, which can be controlled by 

varying the selection threshold. A higher threshold will 

result in more consistent keys. However, the length of 

generated keys will be decreased correspondingly. 

Conversely, if the threshold is decreased to produce long 

keys, then the consistency of keys will decrease 

accordingly. In principle, the selected feature elements 

should contain no overlapping features, which mean no 

features should be used more than once to generate the key 

for each user. Otherwise, such information could be 

exploited to guess the key. In order to produce long keys 

under this principle, the feature elements with low 

dimensions will be always considered first during the 

feature selection. 

Once the feature elements are selected for each user, we 

can finally generate the key. For each feature element of 

training data, a number of clusters can be generally 

identified and each cluster is indexed with an incremental 

binary value (i.e., key-bits). For example, suppose the ith 

selected feature element and assume there are ten clusters 

identified on this feature element. Then, these ten clusters 

are indexed from 0000 to 1010. For each selected feature, 

when a live sample of the user is available, its value is 

extracted and evaluated against the centers of clusters 

resulted on the corresponding feature element to 

determine its membership and key-bits. Every selected 

feature element is considered in this way and the obtained 

individual key-bits are eventually concatenated to form the 

key for authentication purposes. 

III. PREVIOUS RELATED WORK 

The idea of direct key generation from biometric data 

was probably first raised in [6]. Following this idea, a 

number of methods have been proposed. These methods 

try to generate keys from statistical features of biometric 

data and can be divided into two broad categories: 

userdependent [9], [13], [25], [35], [40], [62], [69] and user-

independent [12], [14], [17], [32]–[34], [37], [46], [61], [65]–

[68], [74] methods. The user-dependent methods (UDMs) 

utilize the user-specific feature distribution to generate the 

keys. For example, Hao and Chan [25] proposed such a 

method. In this method, a genuine interval [μ−rσ,μ+rσ] is 

first determined according to the mean, μ, and standard 

deviation, σ, of the feature distribution for each feature of 

a user, together with a free parameter r. The remaining 

intervals with the same width of 2rσ are constructed from 

the genuine interval outwards. Then, each interval is 

labeled with a binary string. At the time of authentication, 

extracted feature values from the live biometric sample are 

compared with the threshold values determined previously 

to obtain binary strings, which are then concatenated to 

form the key. Similar methods are followed by Changet al. 

[9], Vielhauer [69], Sheng et al. [62], and Makrushinet al. 

[40]. Chen et al. [13] proposed a method in which the 

genuine interval is constructed to accommodate the user-

specific likelihood-ratio in each feature and the remaining 

intervals are created in an equal probable manner. Kumar 

and Zhang [35] employed an entropy-based scheme to 

reduce class impurity/entropy in the intervals by 

recursively splitting every interval until a stopping 

criterion is met. The final intervals will be resulted in such 

a way that the majority samples enclosed within each 

interval would belong to a specific user. By taking care of 

intrauser variations of biometric features, UDMs can offer 

good performance in generating consistent keys for the 

same user. However, they largely ignore interuser 

variations, thus lacking the capability to derive 

discriminative keys for different users. Another critical 

problem of UDMs is the potential exposure of user’s 
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genuine measurements, since constructed intervals serve 

as a clue by which the user’s measurements could be 

located. 

The user-independent methods instead utilize the 

background feature distribution to generate keys. A 

number of such methods have been proposed in the 

literature. Monroseet al. [46], Teoh et al. [65], and 

Verbitskiyet al. [68] employed a scheme that quantizes 

each background feature space into two intervals (each 

interval is labeled with a single bit “0” or “1”) based on a 

prefix threshold. A feature value that falls into an interval 

is mapped to the corresponding 1-bit output label. Tuylset 

al. [67] and Kevenaaret al. [34] introduced a similar 1-bit 

quantization scheme, but instead of prefixing the 

threshold, the mean of background feature distribution is 

used as the threshold for each feature. As a result, both 

intervals contain 0.5 background probability mass. The 

interval that the genuine user is expected to fall into is 

referred to as the genuine interval. Kelkboomet al. [32], 

[33] analytically expressed the genuine and imposter bit 

error probability and subsequently developed a 

framework to estimate the genuine and imposter 

Hamming distance probability mass functions of a 

biometric system. This framework is based on a 1-bit 

equal-probable quantization scheme under the assumption 

that both intrauser and interuser variations are Gaussian 

distributed. The above methods all employ the technique 

to produce a 1-bit output per feature and are generally 

unable to generate long keys. 

While long keys are desired, research attention has then 

shifted to explore techniques, which can derive multibits 

from the feature space. Yip et al. [74] presented a method 

in which the space of each feature is segmented into a 

number ofequalwidth intervals in accordance with the 

quantity of bits required to be extracted from the feature. 

Teoh et al. [66] put forward a method to search for a 

multibits assignment for each feature. Specifically, the 

space of each feature is initially segmented into 2n equal-

width intervals with n denoting the intended number of 

bits to be allocated. Twice the standard deviation of 

estimated probability density function (pdf) is then taken 

as the evaluation measure, determining whether the width 

of constructed interval is sufficiently large to 

accommodate such a pdf. With incremental n, the 

procedure is repeated iteratively until the optimal n is 

found. Chen et al. [14] introduced a scheme to determine 

the number of segmented spaces of each feature by 

optimizing the detection rate. The detection rate refers to 

the maximum user probability mass captured by an 

interval over a single feature space. Similar multibits 

allocation scheme has also been developed in [12], but by 

optimizing a different bit-allocation measure: area under 

the false rejection rate (FRR) curve. Lim et al. [37] 

designed a method using an integrated bit reliability and 

feature signal to noise ratio in performing the multibits 

allocation. In addition, multibits allocation algorithms 

have also been proposed by considering clustering and 

vector quantization techniques. Fairhurst et al. [17] 

devised a framework, in which the traditional k-means 

clustering algorithm is applied to partition the feature 

space into a number of segments. This framework is later 

extended in [61] by proposing a more effective clustering 

method to create segments induced in the features. 

Yamazaki and Komatsu [73], on the other hand, applied 

the vector quantization method for segmenting the space 

of each feature. The user-independent approach is global, 

i.e., every user employs the same quantization setting, and 

thus does not require the user-specific data to be stored. 

Although this approach could prevent undesired leakage 

of the user-specific information, the overall authentication 

performance of existing methods can rarely be 

encouraging. This is mainly due to they usually have 

limited capability to model both intra- and interuser 

variations, and thus are difficult to produce consistent and 

discriminative keys. 

Apart from the above approach, many alternative 

techniques have also emerged to address issues arising for 

template and/or key storage in biometrics-based 

authentication systems. These methods can be loosely 

divided into two categories: biometric key binding and 

feature transformation. The biometric key binding-based 

methods [8], [48], [54], [59], [63] involve binding an 

encryption key to the enrollment biometric which can be 

recovered with a legitimate probe biometric sample. These 

methods provide solutions in that both the key and 

biometric template are inaccessible to attackers, while the 

key can be released with a successful biometric matching. 

However, they require “fuzzy” biometric matching to be 

performed in the encrypted domain, a task that is very 

difficult to implement. 

Firstly, it is difficult to develop a meaningful metric to 

measure the similarity in encrypted representations. 

Further, biometric matchers of this technique usually 

assume the query sample and template are well aligned. 

However, finding the appropriate alignment between the 

query sample and template in the encrypted domain is also 

difficult. The feature transformationbased methods [16], 

[36], [38], [49], [50], [56], [64], on the other hand, employ a 

transformation function to extract a new biometric 

template. Depending on the characteristics of the 

transformation function, the template protection 

mechanism either lets the invertible transformation 

function recover the original biometric template [16], [50], 

[64] or applies a oneway noninvertible hash function to 

conceal the biometric trait [36], [38], [49], [56]. The 

template can be “canceled” by using another function, if it 

is compromised. For the invertible transformation 

function-based methods, a function dependent on some 
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parameters, which can be used as a key, is applied to the 

input biometrics. The security of these methods mostly 

relies on the security of key distribution. The loss or 

disclosure of the key, therefore, results in serious security 

issues [57]. For the noninvertible function-based methods, 

it is computationally hard to retrieve the original data 

from produced templates. However, due to the 

characteristics of biometric features, it is difficult to design 

appropriate transformation functions. For example, in 

[36], noninvertible functions are applied to face images to 

obtain transformed templates, which, however, allow 

human inspection. In [56], polar, Cartesian and functional 

noninvertible transformations are utilized to modify the 

fingerprint minutiae template. However, only a small 

fraction of the resulting data is in practice noninvertible 

[7] and the scheme is vulnerable to a record multiplicity 

attack, where an adversary who acquires two or more 

distinct stored templates is able to recover the original 

information [53]. 

It should also be mentioned that related GAs or MAs 

[4], [27], [42] have been proposed in the literature. 

However, these algorithms are designed either for data 

clustering by optimizing a specified unsupervised criterion 

or semisupervised clustering, which seeks one cluster per 

category of the data. Further, they may have difficulty in 

delivering the optimal or near-optimal solution 

corresponding to the given data set as the mechanism to 

preserve population diversity is generally lacked in these 

algorithms. 

IV. EXPERIMENTATION 

In this section, we evaluate the proposed method and 

compare it with related methods. After describing the data 

sets used in experiments in Section IV-A, we describe the 

performance indexes in Section IV-B. This is followed by 

experimental results with a comparative analysis in 

Section IV-C. 

A. Data Sets 

The biometric modality of handwritten signature has 

been used to evaluate the proposed method. The advantage 

of adopting handwritten signature over other biometric 

modalities is that it is minimally intrusive and has high 

level of user acceptance. The signature, however, also 

exhibits a major disadvantage of that it usually shows high 

intrauser variations [17]. As such, the signature data can 

be regarded to be a near-worst case for which the 

proposed method can be evaluated, and thus gives a useful 

indication of its capability. 

The signature data sets used in experiments were 

collected in a typical practical environment from the 

general public during trials of an automatic signature 

verification system [17]. These signature samples are 

captured using an A4-sized graphics tablet over multiple 

sessions. The overall data set comprises of 7430 signatures 

donated by 359 volunteers. The number of signature 

samples collected from each volunteer at each trial is not 

fixed due to practical reasons. Three subsets, DB1, DB2, 

and DB3 have been selected for our evaluation purpose. 

The DB1 contains 1000 signatures from 100 volunteers 

while the DB2 and DB3 have 2000 and 2500 signatures from 

200 and 250 volunteers, respectively. DB2 is a superset of 

the DB1 while DB3 is superset of the DB2. To ensure 

sufficient training data, the signatures in the subsets are 

from volunteers who contribute at least ten samples and 

the first ten samples are used in the experiments. 

Many statistical features can be derived [18], [23], [24] 

from the obtained signature data. As dynamic features of 

the signature are not directly accessible, here, we extract 

30 of such features comprising of: the overall duration of 

signature, number of strokes, pen-down time, pen-up time, 

average pen velocity and acceleration, time of 

minimum/maximum pen velocity, and acceleration 

occurred in the vertical/horizontal direction, sum of local 

minima and maxima in the vertical/horizontal direction, 

and amount of time moving to the up, down, left, and 

right. Further, features involve the number of times of the 

following events: pen ceases to move horizontally/vertically 

and pen passes the mean vertical center. Additionally, 

seven invariant moments, measuring the number of 

samples, vertical/horizontal divergence, vertical/horizontal 

mass and vertical/horizontal imbalance of the writing [23], 

are considered. As feature subsets are utilized in our 

method, any features that can be derived from the others 

are excluded. For example, given the pen-down and pen-

up time, a feature denoting the ratio of pen-down and pen-

up time is then redundant. All the values of each extracted 

feature are normalized to have the average value of zero 

with standard deviation of one. 

B. Performance Indexes 

The false acceptance rate (FAR) and FRR [71] are the 

most commonly adopted indexes for measuring the 

performance of biometric authentication systems. In this 

paper, false acceptances are instances in which correct 

keys are generated even though presented signatures are 

not from valid users while false rejections refer to 

attempts, which fail to regenerate correct keys despite 

valid users presenting their signatures. Generally, both the 

FAR and FRR depend on the space of generated keys. For 

instance, a long key usually leads to a low FAR but a high 

FRR. Here, we therefore evaluate the FAR and FRR 

against keys with increasing spaces. All FRR and FAR 

values reported in our results were obtained using the 

same experimental procedure. The FRRis computed by 

selecting a set of six samples randomly from each user for 

training and using the remaining four samples for testing. 
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For the FAR, since no signatures from professional 

imitators are available, it is calculated by choosing 20 

signatures randomly from other users and then tested 

against each user. 

In the proposed method, variations of signature samples 

can cause the next closest cluster to become the authentic 

cluster. To deal with such transient errors, it is usually 

necessary to attempt alternative keys, which are close to 

each other. Here, we generate alternative keys by 

employing a strategy to replace a certain key-bits of the 

initial key with the one tagged on the next closest cluster. 

For instance, suppose a key = 101 0102 1013 014 1015 is the 

initial key derived from the five feature elements of a 

user’s signature, one alternative key that the 

authentication program will attempt can then be obtained 

by replacing the key-bits derived on the second feature 

element (i.e., 0102) with the key-bits tagged on the next 

closest cluster (assuming that is 0112) to yield the key of 101 

0112 1013 014 1015. Suppose this strategy is used to correct a 

number oft of such errors, the authentication program will 

therefore attempt 

=
1 
w!/i!(w − i)! keys before returning a rejection decision, 

where w denotes the total number of selected feature 

elements. The value of t that can be taken is determined 

mainly by the time allowed to spend before issuing a 

negative answer. Here, t = 2 and t = 4 are evaluated in our 

method. 

C. Results 

We first assess the performance of proposed method in 

terms of the FRR and FAR. The results are shown in Fig. 

3(a)–(c) for experiments on DB1, DB2, and DB3, 

respectively. Each FRR or FAR is parameterized by the 

number of effective bits eb, computed from the logarithm 

to base 2 of the reciprocal of probability that a person 

obtaining the information of clustering results of the 

selected feature elements can guess all authentic clusters 

correctly. The eb value of a key will be less than or on rare 

occasions equal to the key length as some coding spaces for 

the given bit length may not be used to index the clusters. 

For each value of eb, the selection threshold will be 

gradually reduced for each user until a key with 

approximately eb effective bits is derived. Here, we 

generate keys with effective bits from 10 to 50 in steps of 5 

and the corresponding FRR and FAR performances are 

then plotted. The results on DB1 show that our proposed 

method is capable of generating keys with good 

consistency, discriminatory, and security. Particularly, to 

generate keys of effective bits eb = 35 with t = 2, the 

proposed method achieves the performance of FRR= 

22.0% and FAR = 0%. Experiments with t = 4 show an 

even better performance: to generate keys with the same 

number of effective bits, the FRR reduces to 17.5% while 

FAR remains 0%. Similar results can also be observed 

from experimental results using DB2 and DB3. This may 

provide some initial clues that its performance will not 

significantly degrade when the number of users is 

relatively large. 

Then, experiments are carried out to evaluate the 

significance of semisupervised clustering function, NMA 

search mechanism and employment of feature subsets in 

the proposed method for feature quantization and key 

generation. For this purpose, we compared the proposed 

method (denoted as SSCKey) with its five variants. In the 

first 
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Fig. 3. FRR and FAR performance of the proposed method on (a) DB1, 

(b) DB2, and (c) DB3 plotted against the generated keys with increasing 

number of effective bits. 

and second variants (denoted as SSCKey_1 and 

SSCKey_2), instead of the proposed semisupervised 

clustering function, the Davies–Bouldin (DB) [15] 

clustering criterion and the proposed function F1 [i.e., 

without the penalty term of (k − 1)/(kmax− k)], respectively, 

are used for fitness computation. In the third and fourth 

variants (denoted as SSCKey_3 and SSCKey_4), rather 

than the NMA search mechanism, we employ the 

constraint k-means algorithm [70] and a TGA, 

respectively, for semisupervised clustering. In the fifth 

variant (denoted as SSCKey_5), only the quantization 

solutions of single features are considered for key 

generation. All other settings of the five variants are the 

same as the SSCKey. Before discussing comparative 

results, we first briefly describe the DB clustering 

criterion, constraint k-means algorithm and GA used for 

experiments. The DB criterion is defined as the ratio of 

sum of within-cluster scatter to between-cluster 

separation. Let k be the number of clusters and dijbe the 

distance between cluster Ci and Cj. Then, the DB criterion 

is defined as 

k 

 Sj)  (7)  DB
= 

where Si denotes the scatter of ith cluster and is calculated 

as Si Ci x − mi. Here, mi is the ith cluster center 

and nidenotes the number of objects within cluster Ci. This 

criterion has been popularly used for data clustering and 

the best solution occurs at the optimal value of the 

criterion. The constraint k-means, designed for 

semisupervised clustering, is a modified version of 

traditional k-means algorithm by taking into account 

pairwise constraints. Starting from initial cluster centers, 

each data object is assigned to a cluster with the closest 

center such that it does not violate a constraint, after that 

each center is updated as the center of data objects 

belonging to that particular cluster. This procedure is 

repeated until the algorithm converges. To make 

comparisons more meaningful, the number of clusters, k, 

which has to be fixed in the constraint k-means, is set to 

equal the number of clusters identified by our proposed 

method for experiments on each feature element of the 

training data. The GA used in the experiments employs the 

tournament selection, two-point crossover, and Gaussian 

mutation to perform semisupervised clustering. During 

replacement, the elitist strategy is used to generate new 

populations. Fig. 4(a) and (b) shows the FRR and FAR 

performance of the six algorithms on DB1 and DB2 data 

sets, respectively. They are run to generate keys with 

different number of effective bits by adjusting the feature 

selection threshold and without employing any error 

correction technique. It can be observed from Fig. 4 that 

the SSCKey can generally achieve the best performance 

across different numbers of effective bits of the generated 

keys. For example, to generate keys with effective bits eb = 

30 on DB1, the SSCKey_1, SSCKey_2, SSCKey_3, 

SSCKey_4, and SSCKey_5 give the FRR of 29.6%, 23.6%, 

24.2%, 22.8%, and 34.4%, respectively, while the SSCKey 

achieves the FRR at 21.4%. By examining the clustering 
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results of SSCKey, SSCKey_1, and SSCKey_2, which use 

different criteria for fitness computation, we can find that 

all methods can deliver compact and well-separated 

clusters. However, by using the proposed semisupervised 

criterion, the SSCKeyis able to identify more consistent 

clustering solutions than the SSCKey_1 in terms of objects 

from the same user being grouped into the same cluster. 

For example, on the feature element consisting of the 

average pen velocity and acceleration, objects from the 

same user are grouped into the same cluster for over 82% 

of the users by applying the SSCKey on DB1. By 

comparison, this value drops to about 71% by employing 

the SSCKey_1. Consequently, the semisupervised function 

can be used to produce clustering solutions, 

number of effective bits. 

which can more appropriately model both intra- and 

interuser variations of the features. Moreover, the SSCKey 

is generally able to deliver clustering solutions with a large 

number of clusters, which can adequately support long key 

generation. By contrast, both the SSCKey_1 and 

SSCKey_2 fail to do so and thus have difficulty in 

producing long keys. For example, out of 30 features on 

DB1, the keys with maximum entropy could be generated 

for all users having an average of about 47 and 49 effective 

bits by employing the SSCKey_1 and SSCKey_2, 

respectively, while the SSCKey can deliver such keys with 

around 58 effective bits on average. Looking at the results 

of SSCKey, SSCKey_3 and SSCKey_4, which use different 

semisupervised clustering techniques for feature 

quantization, we can see that the SSCKey_3 and 

SSCKey_4 generally do not perform as well as the 

SSCKey. This is due to the fact that both the constraint k-

means algorithm and the GA are susceptible to sub-

optimal solutions, therefore leading to relatively inferior 

performance in feature quantization for key generation. 

For the SSCKey_5, which generates keys based on 

quantization solutions of single features, it can be observed 

that its FRR performance degrades sharply with 

increasing effective bits of the keys. This is mainly because 

single features generally show high intrauser variations 

with few consistent ones, thus significantly reducing the 

performance of SSCKey_5 in producing consistent keys 

with high entropy. By considering the feature subsets, the 

SSCKey shows that many consistent feature subsets can be 

recovered from the inconsistent single features. This may 

help to understand why the SSCKey can perform better 

than the SSCKey_5 and to justify the importance of 

considering feature subsets for feature quantization and 

key generation. 

Finally, we assess the performance of proposed method 

by comparing it with four previous related methods that 

resemble the algorithms described in [12], [61], [66], and 

[69], respectively. The method presented in [69] is a UDM, 

which generates keys by constructing a user-specific 

quantization setting for each user. This method segments 

the entire boundary of each feature into several intervals 

based on the user’s intravariations. The segmentation is 

implemented as follows. First, the user’s genuine interval 

of each feature is determined. Then, the same interval 

unfolds to both ends of the population generic feature 

boundary. The user’s genuine interval is defined as I = 

[Ilow× (1 − a),Ihigh× (1 + a)], where Ilowand Ihighare the low 

and high boundary, respectively, of feature values. This 

interval can be adjusted by varying the parameter a, and a 

large value will reduce the FRR but increase the FAR. The 

second method proposed by Teoh et al. [66] is a user-

independent method (denoted as UIM_1), which has been 

described previously in Section III. In this method, the 

generated keys are used to construct cancellable 

biometrics. Technically, all the keys generated via the 

biometric key generation approach can be used to create 

cancelable biometrics. Here, we address the consistency, 

discriminatory, and entropy of generated keys, which is 

 

Fig. 4. FRR and FAR performance of the proposed method and its five variants on (a) DB1 and (b) DB2 plotted against the generated keys with 

increasing 
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crucial to create cancellable biometrics. The third method 

presented in [12] is also a user-independent method 

(denoted as UIM_2). Given the bit-error probability, this 

method allocates bits dynamically to every feature in a 

way that the analytical area under the FRR curve for 

hamming distance evaluation is minimized. Since a 

straightforward brute force search of all possible bit 

assignments may incur an extremely high computational 

complexity, the authors employed a dynamic 

programming algorithm to search for the optimal bit 

assignment. The fourth method proposed in [61] (denoted 

as FCKey) employs a fuzzy clustering technique, which is 

optimized by a GA, for feature quantization and key 

generation. These five methods are evaluated using the 

data set DB1. The UDMis implemented using a relatively 

large value of a = 1 to achieve a low FRR. Again, all the 

methods are implemented to deliver keys with different 

numbers of effective bits by varying the feature selection 

threshold. In principle, error correction techniques, such 

as the Shamir’s [60] secret sharing scheme, can be 

conjoined with any of the five methods to improve their 

performance. To make a fair comparison, here, we 

conduct the experiments without incorporating any error 

correction technique in any of these methods. Fig. 5 shows 

the results. 

Fig. 5 shows, when used to generate long keys, our 

proposed method is capable of producing the keys with 

significantly higher consistency than the four previously 

developed methods. For instance, to generate keys with 

effective bits 

 

Fig. 5. FRR and FAR performance of five methods on DB1 plotted 

against the keys with increasing number of effective bits. 

of 40, the FRR of UDM, UIM_1, UIM_2, and FCKey turns 

out to be 59.1%, 65.9.6%, 62.5%, and 46.3%, respectively. 

By contrast, our method has a much lower FRR at 36.1%. 

The poorer performance of the UIM_1 and UIM_2 is 

mainly attributed to the fact that they rely on the 

quantization solutions of single features, which usually 

show high intravariations, as well as their limited 

capability to model intrauser variations of the features. By 

taking care of the intrauser variations of the features, the 

UDM can generally deliver more consist keys than the 

UIM_1 and UIM_2. However, the quantization scheme of 

the UDM relies also on single features, which greatly 

degrades their FRR performance in deriving long keys. By 

modeling intra- and interuser variations using an 

unsupervised fuzzy clustering technique, the FCKey can 

achieve even better results than the UDM. However, it has 

limited capability to simultaneously model both intra- and 

interuser variations. When used to generate short keys, the 

results show that the proposed method can deliver the keys 

with comparable consistency but more discriminatively 

than the four methods compared. For instance, to deliver 

keys with ten effective bits, the UDM, UIM_1, UIM_2, and 

FCKey carry with the FAR of 13.5%, 9.7%, 10.8%, and 

7.6%, respectively, while our method gives 5.4%. The 

performance of the UDM is not surprising since its 

quantization scheme does not consider interuser variations 

of the features. For the UIM_1, UIM_2, and FCKey, 

though they perform better than the UDM, their 

performances are still worse than our proposed method. 

Clearly, based on above experiments, our proposed 

method is the best alternative and can be used to generate 

consistent and discriminate keys of high entropy. 

V. CONCLUSION 

This paper presents a semisupervised clustering-based 

method to directly extract encryption keys from statistical 

features of biometric data for authentication purposes. In 

our method, we develop a semisupervised clustering 

scheme, which is optimized through a NMA to effectively 

and simultaneously model intra- and interuser variations. 

The developed scheme is employed to model the user 

variations on both single features and feature subsets to 

recover a large number of consistent and discriminative 

feature elements for key generation. Furthermore, to assist 

in generating long keys, the semisupervised clustering is 

designed to output a large number of clusters. Such a 

method eliminates the need of storage of biometric 

templates as well as encryption keys, and can offer secure 

biometric authentication. The developed method has been 

evaluated on the biometric modality of signature data, 

which can be considered as the representative of a near-

worst case scenario for which the method can be tested. 

The results indicate that it can be used to generate the keys 

with good consistency, discriminatory, and entropy, 

outperforming-related methods. 

There are several directions in which this paper can be 

extended further. Firstly, the generated keys can be used 

together with the technique such as password “salting” 

[41] by padding with other information (e.g., pass phase, 
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user name, etc.) to make them even harder to decode. 

Further, as a general method, the proposed method is 

applicable to other biometrics, including voice, fingerprint, 

face, etc. Therefore, statistical features derived from 

multiple biometric modalities could be utilized to generate 

more secure keys. Finally, while we have demonstrated the 

effectiveness of our proposed method for key generation, 

the method is sufficiently flexible to be applied for 

biometric discretization. In this regard, we believe the 

proposed method can bring significant benefits to the 

biometric systems with fast matching requirements or 

constrained storage capability by converting biometric 

features into a binary string, which we plan to investigate 

in future. 
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