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In precision agriculture, 3D vision systems are becoming increasingly important. By applying different optical 3D vision 

techniques, the acquired 3D data can provide information regarding the most important phenotype features in every 

agricultural scenario. However, most of these 3D vision systems are expensive, except some of the triangulation techniques. In 

this study, we focus on estimating accurate shapes using shape from focus (SFF), which is a triangulation technique. Typically, 

the SFF system incurs significant errors from images, including noise. As a solution to this problem, a simple low-pass filter 

such as the Gaussian filter has generally been used in most studies. However, when a low filter is applied, the noise is depressed 

but the signals are also blurred, which results in inaccuracies regarding the depth map. In this study, the noise is depressed 

independently without losing the original signals, and the edge components, which play important roles in finding a focused 

surface, are enhanced using the independent component analysis (ICA). The edge signals are amplified with a simple basis 

vector correction in the IC vector space. The experiments are implemented with simulated objects and real objects. The 

experimental results demonstrate that the obtained accuracy is comparable to that of existing methods. 

 

 

1. Introduction 

Precision agriculture requires sensing methodologies that 

provide information about individual crops and animals. 
During the last decade, 3D vision has become a key technol- 

ogy in precision agriculture for their extended capabilities 

compared to 2D. As 3D sensors are becoming smaller and 
smarter, the number of studies and applications related to 

agricultural 3D vision systems is increasing rapidly [1]. The 
3D image generation techniques are mainly classified into 

three categories according to their principal measurement, 

namely, triangulation, time of flight, and interferometry. 
However, most of these 3D vision systems are of high cost 

owing to the expensive lasers or complicated scanning mirror 

systems involved, and hence, they are limited in their appli- 
cation, except some of triangulation techniques [2–4]. In 

the literature, many of the studies are aimed at improving 

the performance of triangulation methods in agricultural 
applications [4–7]. 

The cost can be reduced by applying passive optical 

methods. Shape from focus (SFF) system, a passive optical 

method that uses the image focus, is less expensive than other 
3D solutions because of the simplicity of the system configu- 

ration and provides high accuracy. The expensive optical ele- 

ments are not needed, except only one CCD camera. The 
purpose of SFF is to estimate the shape of objects by finding 

the exact focused position of each pixel from the scene. In the 

system, an image sequence of the scene is obtained from a 
fixed point of view, changing the focus consecutively with a 

predefined step. Then, SFF infers the 3D shape of the object 

from the image sequence. Many of the SFF studies have 
sought to improve the 3D shape in multiple ways. The 

research on SFF techniques is mainly divided into three cat- 
egories: focus measure (FM), approximation, and optimisa- 

tion techniques. FM is defined as the local sharpness 

measure of each pixel on the image. The initial depth map 
is obtained after applying the FM to the image to find the 

maximum response on every pixel from the image. The 
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sum of the modified Laplacian, Tenenbaum (TEN), and gray Z 

level variance are generally used in 3D shape recovery [8, 9]. 

After FM is applied, approximation techniques refine the ini- 
tial depth map. Various focus curve fitting methods with pla- 

nar and curved approximation for searching the exact 

focused image surface have been developed for better accu- 
racy and speed. Different optimisation techniques have been 

applied, such as machine learning, and the hardware has 
been improved to correspond to the specific industrial field 

requirements and achieve better efficiency. Various algo- 

rithms have been used, such as neural network (SFF.NN), 
dynamic programming (SFF.DP), fuzzy logic (SFF.FL), and 

principal component analysis (SFF.PCA) [8–10]. Y 
Compared to other imaging systems, SFF has some 

inherent errors due to translation, magnification, and its dis- X 

crete number of frames. CCD noise is the main cause of error 
in the SFF system. Therefore, preprocessing to reduce noise is 

an essential part of most SFF algorithms. Convolving the 

original image with a Gaussian filter is the typical way to 
reduce the noise effect [11]. However, this method is not 

effective with a severely noisy dataset because important sig- 

nals are also averaged. Thus, the noise effect still remains, 
which results in failure to find the accurate shape of objects. 

2. Materials and Methods 

The independent component analysis (ICA) is a useful 
tool for the separation of a set of signals from the original 

signal. The ICA decorrelates the mixed signal y assuming 

that the signal is composed of an independent signal vec- 
tor s and a mixing matrix A. It can be expressed by the 

following equation: 

 

y = As: ð1Þ 

This equation can also be expressed as follows, with 
the assumption of a square matrix of A: 

 

s = Wy: ð2Þ 

The goal of the ICA algorithm is to find the separation 
matrix W. 

 Preprocessing 

(1) Vector population: the input image Iðxi, yj, zkÞ, 

composed of Z frames, is converted by the vector 

v i, j, k for each pixel, where i = 0, 1, 2, 3⋯,X, j = 0, 

1, 2, 3⋯,Y, and k = 0, 1, 2, 3⋯,Z, in each of the 
X × Y dimensions. The vector population is defined 
by Equation (3) 

FigurE 1: Vector population in the Cartesian coordinate. 

 

 

(2) Zero mean and whitening: v i, j, k is normalised 
considering the first- and second-order statistics. 

The equations are as follows: 

 

v = v − v̄ , 

v′ = Mv = D−ð1/2ÞE
T
v: 

ð4Þ
 

Here, ̄v is the mean of v and v′ is the covariance matrix, D 
is the eigenvalue matrix, and E is the orthogonal eigenvector. 

 FastICA. To divide the independent components from 

the original vector, the separation matrix W is calculated. 

In this study, a fixed-point FastICA is used for its generality. 
W is induced by minimisation of mutual information. The 

mutual information is defined using negentropy, which is 

the index of non-Gaussianity. The negentropy J y is defined 
by the following equation: 

 

JðyÞ = HðyGaussÞ − HðyÞ: ð5Þ 

Here, H y is the entropy for y, and yGauss is a Gaussian 

with unit variance. The minimisation of mutual informa- 
tion is equal to a maximisation of the negentropy. Here, 
the FastICA algorithm yields the solution as the following 
equation [12]: 

W
+
 = E

   
xg

 
W

T
x
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− E
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W∗ =   
W+   

: 

kW
+
k  
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Here, vði, j, kÞ consists of seven neighbouring pixels. 

Figure 1 shows vði, j, kÞ in the Cartesian coordinate. 

Here, g is the first derivative of a nonquadratic nonlin- 

ear function, and E means the averaging over all column 
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FigurE 2: Transition stages of the proposed process. 

3.2. Quantitative Analysis. For the quantitative analysis of 
the proposed algorithm, the root mean square error (RMSE) 

and correlation are calculated for each algorithm. The RMSE 
is an indicator of the amount of error in the images. It is 

denoted as 

 
 

vectors of matrix x. The calculation of W∗ is repeated 

until convergence. 
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 Denoising. Assuming that the original signal is 
contami- nated by white Gaussian noise, the shrinkage 
function is used to find the noise components. Here, the 
probability distribu- tion of the function is assumed as 

Laplacian [13]. The shrink- age function f ðsÞ is followed 
by 

 

where X and Y are the number of pixels in the horizontal 
and vertical directions in the image, respectively, f x, y is 

the reference image, and g x, y   is the resulting image of 
the algorithm. Correlation is the similarity of the two 

images. It is denoted as 

f ðsÞ = 
1  

1  
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 denotes the covariance of the Gaussian noise and 
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the noise level of the image. 

 Edge Enhancement. Typically, the focus is on the surface of 

objects, that is, the edge components in the images. Thus, 
enhancing the edge component is one of the strategies to 

improve the depth map. From the independent signal s, the 

edge components are enhanced by eliminating the compo- 
nents that maximise the mutual information. The compo- 

nent involves common information such as the average 

images between two consecutive frames. Here, the compo- 
nents are removed by simply replacing the value of the basis 

vector of W to zero. 

 Transition to Principal Components. Finally, the signal is 

changed to principal components from the independent 

components. After the transition, the final depth map is esti- 
mated using the first principal component, which has maxi- 

mal covariance. Figure 2 shows the transition stages of the 
proposed method. The final depth map D i, j is calculated 

by the following equation: 
 

Dði, jÞ = max ðabsð f k1ÞÞ: ð8Þ 

Here, f k1 is the first principal component of the input 

signal. 

3. Results and Discussion 

 Experimental Setup. For the experiments, a simulated 
cone, which was created by a virtual program, is used. The 

simulated cone consists of 97 frames sized 360 × 360. 
Figure 3 shows the real objects used for the experiments, 

which are a real cone object composed of 30 frames sized 
200 × 200, a TFT-LCD cell composed of 60 frames sized 

300 × 300, and the Lincoln head on a US penny composed 

of 60 frames sized 300 × 300. Figure 4 shows the simulated 
cone with 30 and 60 frames. It has a runtime of only 1 min 

with dual core Intel i3-2100 processors running at 3.1 GHz 

and 8 GB RAM in MATLAB. 

ð10Þ 

where F and G are the reference image and the resulting 

image  of  the  algorithm,  respectively,  and   F̄  and  Ḡ  are 
their means. 

In the case of experiments for synthetic object, it was pos- 
sible to calculate RMSE and correlation as their true depth 
maps are known. For evaluating the performance of the 
proposed method, we experimented with three different 
Gaussian noise situations by changing the variance. The first 

situation is noise free, i.e., σ2
 = 0, the second is σ2

 = 0:05, and 
the third is σ2

=0.1. Figure 5 shows the simulated cone with 
additive Gaussian noise. 

The traditional SFF, which simply uses a Gaussian filter, 
the SFF.PCA, and the proposed method were applied to 
remove these noise effects, recover the 3D shape, and com- 
pare it with respect to the above two matrices. Table 1 pre- 
sents the robustness of the proposed algorithm compared 
with that of the others. In the table, it is clear that our 
approach significantly improved the results in comparison 
with the other methods. In a severe noise situation, when 

σ2
 = 0:1, the RMSE is improved by 30% and 38% compared 

to the traditional SFF and SFF.PCA, and the correlation is 
improved by 99% and 139% compared to the traditional 
SFF and SFF.PCA, respectively. 

 Qualitative Analysis. Figure 6 shows the restored 
3D shapes of the simulated cone. The first row is the 
traditional SFF, the second is SFF.PCA, and the third 
one is the proposed method. The first column is the 

noise-free sit- uation, the second column is σ2
 = 0:05, 

and the third one is 
σ2

 = 0:1. In all the cases, it is shown that the results of the 
proposed algorithm have a smoother surface compared to 
that of others. Figure 7 shows the restored 3D shapes of the 
real objects with noise variance of 0.05. The first column is 

the traditional SFF, the second is SFF.PCA, and the third 
one is the proposed method. In all the cases, the proposed 

method excels in comparison with the others. It is shown that 

x=0 y=0 

PCs 

Eʹ 
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(a) (b) 

FigurE 3: Real objects. (a) Real cone object and TFT-LCD cell. (b) Lincoln head on a US penny. 

 

 
 

(a) (b) 

FigurE 4: The simulated cone. (a) 30 frames, (b) 60 frames. 

 

 
 

(a) (b) 

  
(c) (d) 

FigurE 5: The simulated cone with additive Gaussian noise σ2 = 0:05 (a, b) and σ2 = 0:1 (c, d), with 30 frames (a, c) and 60 frames (b, d). 
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TABlE 1: Results of RMSE and correlation. 
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FigurE 6: Restored 3D shape of the simulated cone. The variances are 0 (a, d, g), 0.05 (b, e, h), and 0.1 (c, f, i). Traditional method (a–c), 

SFF.PCA (d–f), and proposed method (g–i). 
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FigurE 7: Restored 3D shape of real objects with noise variance 0.05. Real cone object (a–c), TFT-LCD cell (d–f), and Lincoln head on US 

(g–i). Traditional method (a, d, g), SFF.PCA (b, e, h), and the proposed method (c, f, i). 

 

 

the results of the proposed algorithm have a smoother sur- 

face compared to that of the others. 

 

4. Conclusions 

For application in precision agriculture, a low-cost SFF sys- 
tem to recover accurate 3D information is developed. The 

conventional SFF system is weak for noise. In this study, a 

novel technique to improve the shape accuracy, which 
employs the ICA to reduce noise and enhance the edge com- 

ponents, has been proposed. First, the raw image passed 
through vector population and normalisation. Next, with 

the proposed approach, the signal was decomposed to inde- 

pendent components based on the fixed-point FastICA, and 
the noise components of the signal were reduced by the 

shrinkage function. Then, the edge components of the signal 
were enhanced by removing the common component from 

the basis vector. Finally, the depth map was restored using 

the first principal component of the signal. The experiments 
were conducted on a simulated cone object and three real 

objects, using three different noise situations, thus ensuring 
the robustness of our algorithm. The experimental results 

proved that the proposed method improves the accuracy 

compared with the previous SFF. 
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