
 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 1057 Copyright @ 2021 Authors

MATLAB Simulation of Scheming FPGA-Controlled

Power Electronics and Drives

1B PATNAIK,

Gandhi Institute of Excellent Technocrats, Bhubaneswar, India
2TUSAR KANTI DASH,

Rayagada Institute of Technology and Management, Rayagada, Odisha, India

Abstract-We present a simple and rapid prototyping

technique for Field Programmable Gate Array (FPGAs)-based

digital controllers for power electronics and motor drives using

MATLAB's Simulink and HDL Coder design software. The

MATLAB/Simulink models are optimized and converted to

target independent, specific and traceable Very High Speed

Integrated Circuit Hardware Description Language (VHDL)

code for FPGA programming. An example implementation of the

space vector pulse width modulation (SVPWM) technique is

presented, illustrating the design of a generic 3-phase voltage

source inverter (VSI). Simulation and co-simulation, system level

design, and verification for rapid prototyping of FPGA-based

digital controllers will assist power electronics engineers and

researchers to develop and prototypes in a relatively short time

by eliminating tedious and time-consuming manual coding. This

enables increased productivity and facilitates the development of

power electronic controllers with more complex control

algorithms.

Index Terms-FPGA, rapid prototyping, model based design,

digital control, power electronics and drives, SVPWM.

I. INTRODUCTION

The design of modern power electronic circuits and

systems requires knowledge from multiple discipline areas,

including digital control, to develop innovative and custom­

designed products and solutions in a short period of time [I].

MATLAB & Simulink enable an alternative way to

automatically generate readable and portable IEEE standards­

compliant HDL (i.e. IEEE 1076 compliant VHDL code and

IEEE 1364-2001 compliant Verilog code) from MATLAB,

Simulink and Stateflow models for a variety of FPGAs. Fig. 1

shows the various ways to generate HDL from MATLAB &

Simulink.

Manual coding is tedious, time consuming and error prone.

On the other hand, automatic code generation lets designers to

make changes in the system level model, and produce an

updated HDL implementation in minutes by regenerating the

HDL code. Fig. 2 (from [2]) illustrates the comparison of

model-based design using HDL coder and manual coding.

Model-based design reduces the total project development time

by 33% as compared to manual coding

. In addition, MATLAB model-based design facilitates

creation of FPGA-based prototypes and automates HDL

code verification by co­ simulating it with simulink and

optimizes the model to meet speed area power

objectives for the FPGA.

The MATLAB environment provides two model-based

tools for rapid system development: i) Xilinx System

Generator and ii) HDL Coder. Either of these approaches

provide an effective FPGA design flow when used

independently. However, (as pointed out in [3]) "some projects

benefit from a mixture of approaches - a workflow that

combines the native Simulink workflow, device-independent or

device-specific code, and code readability offered by Simulink

HDL coder, with the Xilinx FPGA-specific features and

optimizations offered by Xilinx System Generator." [3]

 Model-based design in MATLAB & Simulink

environment for FPGA prototyping is very flexible and

makes implementation of control algorithms in FPGA for

power electronics and motor drives a lot faster with no need of

special attention to internal connections in the device

prototype. The prototype is used to verify various

modulation strategies, control functions, and power flow

regulation algorithms for various tailor made power electronic

design and motor control applications in minimum time. Thus,

by using an FPGA-based controller, the designer is able to build

a fully dedicated digital system that is perfectly adapted to the

control algorithm being implemented.

 Moreover, FPGA technology is now considered very

useful by an increasing number of designers in myriad fields of

application due to short implementation time, confidentiality of

the algorithm and architecture, capable to meet many

constraints for space applications, and it can be adapted to any

change in design by dynamic reconfiguration [4]. Some of the

benefits of using FPGA for controlling of electrical systems

compared to counterpart DSPs and microcontrollers are made

clear in the same paper.

 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 1058 Copyright @ 2021 Authors

Vdc

Tn fact, FPGA-based digital controllers have been

implemented with success in many different applications,

such as power converters (e.g. PWM control of DC-DC

converters) [5-6], point of load converter [7], pulse width-

modulated (PWM) inverters [8-9], resonant inverters [10],

power-factor correction [II], interleaved converters [12],

multilevel converters [13], multilevel and matrix converters

[14], fuzzy logic control of power converters and electrical

drives (e.g. induction machine drives) [15-16], synchronous

machine drives [17], neural network control of induction

motors [16], and switched reluctance motor drives [18].

However, FPGA prototyping and design remains a mystery

to many novice power electronics designers who do not have a

basic knowledge of VHDL or Verilog coding. In the same

context, even manual coding experts find it difficult to meet the

short implementation times, due to the time required for

debugging, modification of the control algorithms, and

reimplementation and testing of the prototype. Model-based

design on other hand has many advantages compared to

manual coding and is easy even for novice designers using

MATLAB and Simulink as an integral part of modern power

electronic and control system design. Tn brief, using the model­

based design, system architects and designers can spend more

time on fme tuning the algorithms; modify models, hardware &

software co-simulation for verifications, and experimentation

and less time on learning and writing HDL code.

This paper aims to fill the gap between power electronics

designers and FPGA-based controller implementation through

system level model-based design where resource optimization

has been included. Automatic generation of HDL Code is

described briefly in Section II. SVPWM is implemented in

Simulink using the HDL Coder toolbox and blocksets to

demonstrate and design a 3-<1> VST. Details of the design are

presented step-by-step and finally the code is verified using co­

simulation and full hardware implementation.

TT. CODE CONVERSION: MATLAB ISIMlJLINK TO VHDL

CODE

HDL describes electronics circuits in terms of the circuit's

operation, design, and tests to verify its operation by means of

simulation. At the first step of code conversion process, the

new design ideas and algorithms are represented in terms of

mathematical models and are tested in MATLAB/Simulink

floating point data types. However, implementation of control

algorithms in FPGAs and ASICs require fixed-point data type

conversion to reduce hardware resources. This conversion

process often introduces quantization errors. As a consequence,

a signal scaling and word-length optimization becomes a

Fig. 3. Method to generate HDL Code from MATLAB and Simulink, with

code verification.

difficult aspect of implementing an algorithm on an FPGA.

The real HDL code generation process starts by modeling the

algorithm in MATLAB Simulink using a HDL Coder library of

more than 200 blocks (MATLAB keeps on updating and

adding new blocksets) or Stateflow. The components and

blockset supported in HDL Coder can be found by typing

hdllib in the command window. Fig. 3 shows the code

conversion and verification process in MATLAB Simulink

HDL Coder.

Once the Simulink model is created, HDL Workflow

Advisor guides in a step-by-step process to generate code from

the model. Moreover it helps to check various other parameters

and setting that is required for optimal code generation and

verification.

Ill. IMPLEMENTATION OF MODEL BASED DESIGN

The implementation of HDL Coder in power electronics

and drives is demonstrated by implementing a SVPWM

modulation technique in a 3-<1> VSI for generic applications.

SVPWM refers to a special way of determining the switching

sequence of the upper three power transistors of a 3-<1> VST. It

generates less harmonic in the output voltages and or currents

in the windings of the motor load, possibility to optimize for

lower switching losses, provides more efficient use of DC

supply voltage as compared to direct sinusoidal modulation

technique (voltage utilization of SVPWM is 2/..J3 times the

sine wave) and compatible with the digital controller [19]. The

circuit model of typical SVPWM modulated 3-<1> VST is shown

in Fig. 4. Switches SI to S6 are six power switches controlled

by switching variables SWI, SW2, SW3, SW4, SW5, SW6

that shapes the 3-<1> output voltage.

Fig. 4. SVPWM controlled VSI

MATLAB, Simulink, Stateflow, Algorithms and System Design

(with Fixed·Point Quantization Analysis)

Simulink HDL Coder

Built System Model in Simulink

2) Analyse and Optimise the System Design

(Speed, Power, Area)
3) Elaborate Design for FPGA/ASIC
4) Generate HOL from Simulink Model
5) Verify HDL (Cosimulation/Hardware-in-the-Loop)

HDL (VHDl/Verilos)

FPGA ASIC

 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 1059 Copyright @ 2021 Authors

tan -, J

'3 -13/2
-1/2 [V1

ufix24 En24

T1 T1

T1,T2,T0I2

En24

,

Scope1

1

boolean
SW1

SW2

t,=If-ls : t,=IOns

�:�

Fig. 5. Final SVPWM model in Matlab Simulink using HDL Coder

to automatically generate HDL Code for FPGA prototype.

ufix24 En24

TO/2

To

ufix24 En24

boolean

boolean

SW3

SW4

SW5

SW6

Free-Running

The upper and lower switch of same leg is complement to

each other to avoid shoot-through, which damages the

switches. A dead-time is nonnally generated to avoid gating
overlap when nearly coincident transitions take place at the

[Vq] =

2 [I
0

-1/2
- -13/2] �:

(2)

upper and lower switch of same leg. This can be achieved

either by implementing dead-time during FPGA programming,

or using a MOSFET driver with inbuilt dead-time. Nowadays,

MOSFET drivers come with inbuilt dead-time and fault

shutdown capability [20], so it reduces the programming

complexity and resource requirements of FPGA

implementations.

In SVPWM the reference voltage is mapped into switching

space vector diagram and the duty cycles of the switches are

calculated based on the mapping. There are six active states

(VI, V2, V3, V4, V5 and V6) and two zero states (VO and V7)

which combined in a various ways to generate the output

voltage. Fig. 6 shows the basic switching vector and sector of SVPWM techniques. Fig. 5 shows the final MATLAB

abc-dq transformation is modelled in Matlab/Simulink as

shown in Fig. 7. The bloksets are HDL Coder compliant with

fixed point output. The word length for each block is shown in

the signal path. sfix12_En4 means the data is signed 12 bit

word length with 4 bit fraction length and ufixlO_En8 means

the data is unsigned 10 bit word length with 8 bit fraction
length. The operators, constants and blocks support different

data types and representation of data is transparent to designers

in each signal path. Details on how to convert floating to fixed

point will be discussed in Section TV.

B. Determine �4 and Angle (0.)

For small switching time period Ts, can be considered

approximately constant and can be expressed as

Simulink multirate model of SVPWM algorithm that

automatically generates the HDL code for the FPGA prototype.

and, angle

= d2 + V
q
2)

a
= Vdq (3)

(4)

is 1flS, and IOns after the rate transition block, for a master

clock speed of 100MHz. The switching frequency of the
inverter is determined by:

Fig. 8 shows the implementation
V

of above mathematical

expression in fixed point simulink blocks. Ready to use
Cartesian2Polar block in Simulink is not supported by HDL

f = Master Clock Speed

2"

(I)

Coder, so the above equation to calculate instantaneous atan
Where, n-m-bit free counter. For example, if n=12, function is implemented in floating point s-function

J;=100xIQ6/2
12=24.4lkHz. The details of the each blockset is

MATLAB code and then converted to fixed point.
sfix12

described in the following sub-sections.

A. Transformation of abc-dq Reference Frame

The voltage equations in the abc reference frame is
transformed to the dq reference frame that consists of the

horizontal (d) and vertical (q) axes. The relation between these

two reference frames is

q

U1

sfix12

U2

U3

sfix12

sin(4pi/3)

Vd

Product5

C1

Vq

V4(01l) .•d

Fig. 7. Inside abc2dq transformation block.

The sampling rate of the model before the rate transition block

 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 1060 Copyright @ 2021 Authors

I()

()

1 - J:

(-2/3,0)
V5(001)/3,-1/V3

V6(101) (1/3,-1/V3)

C. Determine Switching Time Duration (Tib Tn To)

The instantaneous time duration of switching vector
(T",Tn+1,To) for six switches are calculated in terms of a

reference voltage (Vrer), angle (a) , switching time period (Tz),

input voltage (Vdc) and sector (n). For the volt-second balance
in sector-I, from Fig. 6,

SO,
TL

-> -> ->

Tl = T,V, + T,V,

Tz =1; +T2 +To

(5)(6)

(7)

Solving §5, §6 and §7 we get,
v'3T/ I

sm
.

(-ff -a)

(8)

Fig. 10. Determination of sector (n) 7;

Vdc 3

And v'3T/ Iv,.,! I
sm

.
eal

 (9) Sector I: 0° Sas 600 Sector II: 600 Sa S 120° Sector III : 120° � as 1800

= T,

vd,.

Hence, switching time duration in any sector n

fJ�lv"1 I . ff n-I fJ�lv"1 .

" v�. 3 v�.

T --v"31�lv�f I. n-J --fJIV�f I . n-J . n-J

(10)

(11)

53 i

i i

vo V7 V7 vo vo V2; V7 V7 VO VO !V3!V4 V7 i V7 vo

n+! = sln(a--;r)=
3

v'k

-cosaSlll-JT+smaCOS-ff
3 3

TO/2 12:Tl:TO/2 TO/2;T2 n:To/2 T2:TO/2 TO/linin TO/2

Sector v: 2400 � a � 3000 Sector VI : 3000 � a � 3600

And '0, = Tl - + T,al) (12)
T, T, T, T, T,

51 i

Where,
T

_�,fs-+ switching frequency of the VST 53 S3

V7 vo ;vs V6: V7 V7 vs; vo
55

VO
i

Vl V6 V7 i V7
i

VO
Fig. 9 shows the implementation of above mathematical TO/2 TliT2iTO/2 TO/2iTl T2:TO/2 :

i ;
 TO/2

expression for Tn,Tn+],To in fixed point Simulink blocks.

D. Determine the Sector (n)

It is necessary to determine the location of the reference

voltage (which is rotating at co = to exactly generate the

instantaneous duty cycle of each switch and switching

sequence. The sector determination is implemented with

compare to constant logic as shown in Fig. 10.

E. Determine the Switching Time of Each Power Switch

The switching pattern, sequence and time period of high

side switch is determined based on the location i.e. angle (a)
and magnitude of reference voltage (Vref) as shown in Fig. 11.
The switching pattern and time is implemented for high side

switch TA as shown in Fig. 12. Similar implementation is for

TB and TC.

Fig. 9. Determination of switching time duration (Tn,Tn+"Tll)

l TO/2 TO/2:T2:Tl

Fig. 11. Space Vector PWM switching patterns and corresponding switching

time at each sector.

IV. FPGA PROGRAMMING

A. Floating Point to Fixed Point Conversion

Fixed point algorithm is implemented in FPGA for power,

perfonnance and cost reasons. However, conversion from

floating point to fixed-point is very challenging and time­

consuming, typically demanding 25 to 50 % of the total design

and implementation time. In a fixed point domain a pair (w, F)
is considered for each of the parameter in algorithms, where W

)

v"

 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 1061 Copyright @ 2021 Authors

is word length and F is fraction length of the parameters. Large
Wand F result in better performance and lower Bit Error Rate

(BER) but design consume large resources in FPGA or
implementation requires expensive FPGA. On the other hand,

smaller Wand F result in large BER whereas smaller footprint.

Optimization of wordlength to achieve best performance is

an interactive process with the user in a MATLAB fixed point

advisor which guides through the steps of converting floating

point to fixed point algorithm. It also verifies the generated

fixed-point code by comparing the floating and fixed point

result. Multiple iterations by adjusting the word length

settings, individually modifYing the data types as desired or

accepting the 'proposedfixed-point types' as recommended by

fixed-point advisor are required to meet the desired accuracy

(low BER) and optimum fixed point design. Fig. 13 shows the

control signal of SVPWM generated by both floating and
fixed point design and the corresponding error. The peak
conversion error is ±1.5%. This error should be kept minimal
to utilise the full modulation range or the DC link voltage.

B. Code Conversion (from *. mdllslx and *. mfiles to VHDL)

The HDL Workflow Advisor in HDL Coder automatically

converts MATLAB code (*. m files), Simulink (*. mdllslx

files) from floating-point to fixed-point and generates

synthesizable VHDL and Verilog code. MATLAB generates

thousands of lines of VHDL codes in separate files for each

blocksets. The generated code can be traced bidirectional

to/from MATLAB and Simulink model. The HDL Workflow

Advisor also highlights critical path timing in Simulink to help

identifY speed bottlenecks and improve the performance of the

design.

C. Verification

1) HDL co-simulation: The HDL Coder generates VHDL

and Verilog test benches using HDL co-simulation wizard that

automatically connects to the HDL simulator e.g. Cadence

Incisive, Mentor Graphics ModelSim and Questa for rapid

verification of generated HDL code. Fig. 14 shows the co­

simulation scenario using Mentor Graphics ModelSim

(student version).

This co-simulation streamlines the verification process and

helps to fix the error before hardware implementation. Fig. 15

shows the co-simulation results of SVPWM MATLAB and

Simulink model with ModelSim RTL-Ievel models. The model

was simulated for 3ms and it was found that the two results are

exactly same.

Fig. 13. SVPWM control signals generated for one cycle (50Hz) by

a) Floating-Point Design; b) Fixed-Point Design and c) corresponding

conversion % Error.

0) Time [ms] b)

Vc

Vy

Vb

Fig. 14. Co-simulation scenario using ModelSim

�

�

o 0.5 1

Tim1e.5[ms]
2 2.5 3

0.00000 ms 0.5 ms
• III IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII

1 ms 1.5 ms 2 ms 2.S ms 3 ms

b)

Fig. 15. Co-simulation results of SVPWM a) MATLAB Simulink model with

b) Mentor Graphics ModelSim

2) FPGA in-the-loop (FIL) co-simulation: FIL test the

design in real hardware for the generated HDL code. It

generates a Simulink FIL block as shown in Fig. 16 that

represents the HDL code. The programming file is loaded onto

an FPGA with JTAG connection. TX/RX of data from Simulink

to FPGA is via gigabit Ethernet crossover cable that co-

simulate and verifies the design in real time environment. It

helps to detect, isolate, identify and resolve bugs in the early

stages of design process.
SVPWM M�

S\lPWM_SimulinkMm

vy !l,;
FIL

vb

ce_out

sw1

s'tO.

sw3

sw4

sw5

sw6

SVPWMJIL SCq:€2

Fig. 16. FPGA in-the-loop co-simulation

 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 1062 Copyright @ 2021 Authors

�.

PreVu 0

a)

Ch4 5.00 V

Lower switch gate signal
M 4.00)JS A ell1 I-10.OmV

u-+" ...194.84QJls

28 sep 2012

17:31:26

R-i

16Jan 2013

13:33:09

D. VHDL to bitstream and FPGA programming

The generated HDL code is bit-true, cycle-accurate and

synthesizable HDL code which is free from bugs. HDL Coder

offers integration with Xilinx ISE design suite that makes it

easy to implement algorithm in MATLAB and Simulink to

target Xilinx FPGAs. Xilinx ISE compiles and generates the

bitstream file which is then loaded into the FPGA using JTAG

via the USB connection by iMPACT or Digilent Adept

software. Table 1 shows the Xilinx ISE13.4 compilation report

of resources utilization for SVPWM implementation in

Spartan-6 XC6SLX45.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The FPGA based approach to the automatic generation of

VHDL code for digital controlled power electronics and drives

using MATLAB Simulink is verified by implementing

SVPWM modulated VSI in a Xilinx Spartan-6 platform.

The six driving pulses from FPGA are connected to signal

amplification and isolation circuit via 8 pin PMOD connector.

The power ground and logic ground are completely isolated

from one another using HCPL2531 optoisolator. It protects

FPGA from circulating ground current and high voltage spikes

(15kV/flS). Fig. 17(a) shows the FPGA generated SVPWM

control pulses for the high side switches.

Six SPW47N60C3 Cool MOS power MOSFET with best

R1JS(on) are used for better efficiency design. The TTL level

SVPWM signal from FPGA is amplified to meet the gate
drive voltage requirement of the switch (±20V) by driver IC
IR2130 from International Rectifier. It is a three phase high
voltage bridge driver IC with three independent high and low

side referenced output channels and has protection against

fault [20]. The IR2130 also provides dead-time control to

avoid any shoot-through to protect the switches. A dead-time

(Td) of 2fls is introduced between high and low side switch as

shown in Fig. 17(b). Too short dead time (Td<lflS) causes

shoot-through current that reduces system efficiency; too long

a dead time (Td>3flS) increases THD, negatively impacting the

power quality.

The three phase line-to-line voltage of the VSI before filter

is shown in Fig. 18(a) and Fig. 18(b) shows the filtered output

voltage of the inverter. Small filter inductor (1.5mH) and

capacitor (1.5flF) is required to filter out the switching

harmonics. The THD of output voltage is only 3.8% and Crest

Factor is 1.52, well below the IEEE allowable limits for grid

connected inverter design or for motor drives application. The

standby power loss is only 0.25% of rated power of the

inverter (lkW).
Table I: Device utilization summary of Spartan-6 XC6SLX45

(Xilinx ISE13.4 estimated values)

Logic Utilization Used Available Utilization

Number of Slice Registers 1521 54576 2%

Number of Slice LUTs 6117 27288 22%

Number of fully used LUT-FF pairs 1460 6178 23%

Number of bonded lOBs 10 218 4%

Number of BUFG/BUFGCTRLs I 16 6%

Number of DSP48Als 21 58 36%

Number used as Memory 3 6408 1%

)

Fig. 17. SVPWM gating pulse from Spartan-6 FPGA for high side switch

(Chl--SWI. Ch2--SW3. Ch3--SW5. Ch4--SW6)

b)

Fig. 18. Three phase voltage out from the VSI without loading

a) before filter. b) after filter (Measured with high voltage differential probe

GE8115 with attenuation of 1000:1. Chl-7VRy• Ch2-7VyB• Ch3-7VBR)

Chl Freq
50.12 Hz

49.96 Hz
Ch2 Freq

0..",. , 9.7600ms
16Jan 2013

14:10:23

12.52kHz

Ch 1 Freq

12.S1kHZ

Ch2 Freq

i1�� 800. OOOI'S 14:33:41
13sep 2012

 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04: 2021

Page | 1063 Copyright @ 2021 Authors

Fig. 19. Three phase voltage (300V/div) and current (2A/div) with 3300

resistive load in each phase (delta connected).

The control circuit demonstrated in this paper is an open­

loop system. Complex feedback control system of power

electronics and electric drives can be easily implemented

using similar Matlab model based design as described in this

paper. For example, power flow control, grid synchronization,

variable speed drive (VSD), DC link voltage control etc.;

however, it requires AID or DIA converters for proper data

interface to FPGA and various peripheral sensors (e.g. voltage

(V), current (I) or angular speed (m) etc.).

Fig. 19 shows the performance of the inverter during

loading condition. The inverter is loaded with a delta

connected resistive load of 300[2 in each phase. The load

voltage and current shows a good performance of the inverter

under loading conditions as well
VI. CONCLlISIONS

We have described a method to facilitate the development

and implementation of FPGA-based digital controllers in

power electronic converters and drives. The method is faster

and provides a greater degree of confidence than traditional

manual HDL coding. To illustrate the method a laboratory

prototype of a 1kW FPGA-controlled Voltage Source Inverter

(YSI) was described in detail in which the fixed-point control

algorithm was automatically generated from Simulink models

using the MATLAB HDL Coder, and verified before

implementation on a Xilinx Spartan-6 XC6SLX45 board.

Experimental characterization of the resulting YSI converter

resulted in 3.8% total hannonic distortion and line-to-line

crest factor of 1.52, well within the allowable range of IEEE

standards. The very close agreement between experiment and

simulation shows the efficacy of the method. The method is

expected to be particularly useful for prototype development

of other power electronic converters and electric drives with

more complicated interfacing and control algorithms.

REFERENCES

[I] Concettina Buccella and Carlo Cecati, "Digital control of power converters -A

survey", IEEE Trans. Industrial Informatics, vol. 8, no. 3, pp. 437-447,

August 2012.

[2] Stephan Van Beek and Sudhir Sharma, MathWorks, "Four Best Practices for

Prototyping MATLAB and Simulink Algorithms on FPGAs",

Verification Horizons, pp. 49-53, August 2011.

[3] Kiran Kintali and Yongfeng Gu, Model-based design with Simulink,

HDL Coder, and Xilinx system generator for DSP," Mathworks White

Paper 92077VOO, 2012.

[4] Eric Monmasson, Marcian N. Cirstea, "FPGA design methodology for

industrial control systems - A review", IEEE Trans. Industrial

Electronics, vol. 54, no. 4, pp. 1824-1842, August 2007.

[5] Miro Milanovic, Mi�ja Truntic and Primoz Slibar, "FPGA

implementation of digital controller for DC-DC buck converter",

Proceedings, Fifth IEEE International Workshop on System-on-Chip for

Real Time Applications, pp. 439-443, Banff, 20-24 July, 2005.

[6] Eftichios Koutroulis, Apostolos Dollas, Kostas Kalaitzakis, "High­

frequency pulse width modulation implementation using FPGA and

CPLD ICs", J. Systems Architecture, vol. 52, pp. 332-344, June 2006.

[7] Lars T. Jakobsen and M. A. E. Anderson, "Digitally controlled point of

load converter with very fast transient response", Digest, 12th European

Conference on Power Electronics and Applications, pp. 1-10, Aalborg,

2-5 September, 2007.

[8] Diego Puyal, Luis A. Barragan, Jesus Acero, Jose M. Burdio and

Ignacio Millan, "An FPGA-based digital modulator for full-or half:

bridge inverter control", IEEE Trans. Power Electronics, vol. 21, no. 5,

pp. 1479-1483, September 2006.

[9] Ying-Yu Tzou and Hau-Jean Hsu, "FPGA realization of space-vector

PWM control IC for three-phase PWM inverters", IEEE Trans. Power

Electronics, vol. 12, no. 6, pp. 953-963, November 1997.

[10] J. Tian, G. Berger, T. Reimann, M. Scherf, J. Petzoldt, "Design and

implementation of a FPGA-based controller for resonant inverters",

IEEE Trans. Power Electronics, vol. 12, pp. 953-963, November 1997.

[11] Angel de Castro, Pablo Zumel, Oscar Garcia, T. Riesgo and 1. Uceda,

"Concurrent and simple digital control of an AC/DC converter with

power factor correction based on FPGA", IEEE Trans. Power

Electronics, vol. 18, no. I, pp. 334-343, January 2003.

[12] Oscar Garcia, Pablo Zumel Angel de Castro and Jose A. Cobos,

"Automotive DC-DC bidirectional converter made with many

interleaved buck stages", IEEE Trans. Power Electronics, vol. 21, no. 3,

pp. 578-586, May 2006.

[13] Oscar Lopez, Jacobo Alvarez, Jesus Doval-Gandoy, Francisco D.

Freijedo, Andres Nogueiras, Alfonso Logo and Carlos M. Penalver,

"Comparison of the FPGA implementation of two multilevel space

vector PWM algorithms", IEEE Trans. Industrial Electronics, vol. 55,

no. 4, pp. 1537-1547, April 2008.

[14] R. Erikson, S. Angkititrakul and K. Almazeedi, "A new family of

multilevel matrix converters for wind power applications: Final report",

NREL Report NRELlSR-500-40051, December 2006.

[15] Marcian N. Cirstea and Andrei Dinu, "A VHDL holistic modeling

approach and FPGA implementation of a digital sensorless induction

motor control scheme", IEEE Trans. Industrial Electronics, vol. 54, no.

4, pp. 1853-1864, August 2007.

[16] Da Zhang and Hui Li, "A stochastic-based FPGA controller for an

induction motor drives with integrated neural network algorithms",

IEEE Trans. Industrial Electronics, vol. 55, pp. 551-561, Feb. 2008.

[17] Mohamed Wissem Naouar, Ahmad Ammar Naassani, Eric Monmasson

and IIhem Slama-Belkhodja, "FPGA-based predictive current controller

for synchronous machine speed drive", IEEE Transactions on Power

Electronics, vol. 23, no. 4, pp. 2115-2126, July 2008.

[18] Frede Blaabjerg, Philip C. Kjaer, Peter Omand Rasmussen and Calum

Cossar, "Improved digital current control methods in switched

reluctance motor drives", IEEE Transactions on Power Electronics, vol.

14, no. 3, pp. 563-572, May 1999.

[19] Richard Zhang, "High performance power converter systems for

nonlinear and unbalanced load/source", PhD Thesis, Virginia

Polytechnic Institute and State University, 17th Sept. 1998.

[20] International Rectifier, Data Sheet No. 60019 Rev. P, "IR21301IR2132 3-

phase bridge driver", http://www.irfcom/product-

info/datasheetsldatalir213O.pdf

1l]!i2l�!Hl!rn!m1ID) Scoing. Lne Filter- Tire -----:--:--
[I][(l!l[I][I][(JiI[I1l[[!i AVG • Freq Filter-

-- Integ: Reset

�r. �:m ��
'IQ«)(»W.

16 -6.000 A
15 -'.000 �

14 -6.000 A

l.t.date 23784 (50r1sec) FFF 2013/03/14 18:49:57

