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Abstract-We present a simple and rapid prototyping 

technique for Field Programmable Gate Array (FPGAs)-based 

digital controllers for power electronics and motor drives using 

MATLAB's Simulink and HDL Coder design software. The 

MATLAB/Simulink models are optimized and converted  to 

target independent, specific and traceable Very High Speed 

Integrated Circuit Hardware Description  Language  (VHDL) 

code for FPGA programming. An example implementation of the 

space vector pulse width modulation (SVPWM) technique is 

presented, illustrating the design of a generic 3-phase voltage 

source inverter (VSI). Simulation and co-simulation, system level 

design, and verification for rapid prototyping of FPGA-based 

digital controllers will assist power electronics engineers and 

researchers to develop and prototypes in  a relatively short time 

by eliminating tedious and time-consuming manual coding. This 

enables increased productivity and facilitates the development of 

power electronic controllers with more complex control 

algorithms. 

 
Index Terms-FPGA, rapid prototyping, model based design, 

digital control, power electronics and drives, SVPWM. 

 
I. INTRODUCTION 

The design of modern power electronic circuits and 

systems requires knowledge from multiple discipline areas, 

including digital control, to develop innovative and custom­ 

designed products and solutions in a short period of time [I]. 

MATLAB & Simulink enable an alternative way to 

automatically generate readable and portable IEEE standards­ 

compliant HDL (i.e. IEEE 1076 compliant VHDL code and 

IEEE 1364-2001 compliant Verilog code) from MATLAB, 

Simulink and Stateflow models for a variety of FPGAs. Fig. 1 

shows the various ways to generate HDL from MATLAB & 

Simulink. 

Manual coding is tedious, time consuming and error prone. 

On the other hand, automatic code generation lets designers to 

make changes in the system level model, and produce an 

updated HDL implementation in minutes by regenerating the 

HDL code. Fig. 2 (from [2]) illustrates the comparison of 

model-based design using HDL coder and manual coding. 

Model-based design reduces the total project development time 

by 33% as compared to manual coding 

 

 

 

 

. In addition, MATLAB model-based design facilitates 

creation of FPGA-based prototypes and automates HDL 

code verification by co­ simulating it with simulink and 

optimizes the model to meet speed area power  

objectives for the FPGA. 

 

The MATLAB environment provides two model-based 

tools for rapid system development: i) Xilinx System 

Generator and ii) HDL Coder. Either of these approaches 

provide an effective FPGA design flow when used 

independently. However, (as pointed out in [3]) "some projects 

benefit from a mixture of approaches - a workflow that 

combines the native Simulink workflow, device-independent or 

device-specific code, and code readability offered by Simulink 

HDL coder, with the Xilinx FPGA-specific features and 

optimizations offered by Xilinx System Generator." [3] 

        Model-based design in MATLAB & Simulink 

environment for FPGA prototyping is very flexible and 

makes implementation of control algorithms in FPGA for 

power electronics and motor drives a lot faster with no need of 

special attention to internal connections in the device 

prototype. The prototype is used to verify various 

modulation strategies, control functions, and power flow 

regulation algorithms for various tailor made power electronic 

design and motor control applications in minimum time. Thus, 

by using an FPGA-based controller, the designer is able to build 

a fully dedicated digital system that is perfectly adapted to the 

control algorithm being implemented.  

            Moreover, FPGA technology is now considered very 

useful by an increasing number of designers in myriad fields of 

application due to short implementation time, confidentiality of 

the algorithm and architecture, capable to meet many 

constraints for space applications, and it can be adapted to any 

change in design by dynamic reconfiguration [4]. Some of the 

benefits of using FPGA for controlling of electrical systems 

compared to counterpart DSPs and microcontrollers are made 

clear in the same paper. 
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Tn fact, FPGA-based digital controllers have been 

implemented with success in many different applications, 

such as power converters (e.g. PWM control of DC-DC 

converters) [5-6], point of load converter [7], pulse width-

modulated (PWM) inverters [8-9], resonant inverters [10], 

power-factor correction [II], interleaved converters [12], 

multilevel converters [13], multilevel and matrix converters 

[14], fuzzy logic control of power converters and electrical 

drives (e.g. induction machine drives) [15-16], synchronous 

machine drives [17], neural network control of induction 

motors [16], and switched reluctance motor drives [18]. 

However, FPGA prototyping and design remains a mystery 

to many novice power electronics designers who do not have a 

basic knowledge of VHDL or Verilog coding. In the same 

context, even manual coding experts find it difficult to meet the 

short implementation times, due to the time required for 

debugging, modification of the control algorithms, and 

reimplementation and testing of the prototype. Model-based 

design on other hand has many advantages compared to 

manual coding and is easy even for novice designers using 

MATLAB and Simulink as an integral part of modern power 

electronic and control system design. Tn brief, using the model­ 

based design, system architects and designers can spend more 

time on fme tuning the algorithms; modify models, hardware & 

software co-simulation for verifications, and experimentation 

and less time on learning and writing HDL code. 

This paper aims to fill the gap between power electronics 

designers and FPGA-based controller implementation through 

system level model-based design where resource optimization 

has been included. Automatic generation of HDL Code is 

described briefly in Section II. SVPWM is implemented in 

Simulink using the HDL Coder toolbox and blocksets to 

demonstrate  and  design  a  3-<1>  VST.  Details  of  the  design  are 

presented step-by-step and finally the code is verified using co­ 

simulation and full hardware implementation. 
 

TT. CODE CONVERSION: MATLAB ISIMlJLINK TO VHDL 

CODE 

HDL describes electronics circuits in terms of the circuit's 

operation, design, and tests to verify its operation by means of 

simulation. At the first step of code conversion process, the 

new design ideas and algorithms are represented in terms of 

mathematical models and are tested in MATLAB/Simulink 

floating point data types. However, implementation of control 

algorithms in FPGAs and ASICs require fixed-point data type 

conversion to reduce hardware resources. This conversion 

process often introduces quantization errors.  As a consequence, 

a signal scaling and word-length optimization becomes a 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 3. Method to generate HDL Code from MATLAB and Simulink, with 

code verification. 

difficult aspect of implementing an algorithm on an FPGA. 

The real HDL code generation process starts by modeling the 

algorithm in MATLAB Simulink using a HDL Coder library of 

more than 200 blocks (MATLAB keeps on updating and 

adding new blocksets) or Stateflow. The components and 

blockset supported in HDL Coder can be found by typing 

hdllib in the command window. Fig. 3 shows the code 

conversion and verification process in MATLAB  Simulink 

HDL Coder. 

Once the Simulink model is created,  HDL  Workflow 

Advisor guides in a step-by-step process to generate code from 

the model. Moreover it helps to check various other parameters 

and setting that is required for optimal code generation and 

verification. 
 

Ill. IMPLEMENTATION OF MODEL BASED DESIGN 

The implementation of HDL Coder in power electronics 

and drives is demonstrated by implementing a SVPWM 

modulation  technique  in  a  3-<1>  VSI  for  generic  applications. 

SVPWM refers to a special way of determining the switching 

sequence  of  the  upper  three  power  transistors  of  a  3-<1>  VST.  It 

generates less harmonic in the output voltages and or currents 

in the windings of the motor load, possibility to optimize for 

lower switching losses, provides more efficient use of DC 

supply voltage as compared to direct sinusoidal modulation 

technique (voltage utilization of SVPWM is 2/..J3 times the 

sine wave) and compatible with the digital controller [19]. The 

circuit model of typical SVPWM modulated  3-<1>  VST is shown 

in Fig. 4.  Switches SI to S6 are six power switches controlled 

by  switching  variables  SWI,  SW2,  SW3,  SW4,  SW5,  SW6 

that shapes the 3-<1> output voltage. 
 

Fig. 4. SVPWM controlled VSI 

MATLAB, Simulink, Stateflow, Algorithms and System Design 

(with Fixed·Point Quantization Analysis) 

 
Simulink HDL Coder 

 

 
 

Built System Model in Simulink 

2) Analyse and Optimise the System Design 

(Speed, Power, Area) 
3) Elaborate Design for FPGA/ASIC 
4) Generate HOL from Simulink Model 
5) Verify HDL (Cosimulation/Hardware-in-the-Loop) 

 
HDL (VHDl/Verilos) 

FPGA ASIC 
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Fig. 5. Final SVPWM model in Matlab Simulink using HDL Coder 

to automatically generate HDL Code for FPGA prototype. 
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The upper and lower switch of same leg is complement to 

each other to avoid shoot-through, which damages the 

switches. A dead-time is nonnally generated to avoid gating 
overlap  when  nearly  coincident  transitions  take  place  at  the 
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0 

-1/2 
- -13/2 ] �: 

 
(2) 

upper and lower switch of same  leg.  This  can  be  achieved 

either by implementing  dead-time during  FPGA  programming, 

or using a MOSFET driver with inbuilt dead-time. Nowadays, 

MOSFET drivers come with inbuilt  dead-time  and  fault 

shutdown capability [20], so it reduces the programming 

complexity and resource requirements  of  FPGA 

implementations. 

In SVPWM the reference voltage is mapped into switching 

space vector diagram and the duty cycles of the switches are 

calculated based on the mapping. There are six active states 

(VI, V2, V3, V4, V5 and V6) and two zero states (VO and V7) 

which combined in a various ways to generate the output 

voltage. Fig. 6 shows the basic switching vector and sector of SVPWM  techniques.   Fig.   5   shows   the   final   MATLAB 

abc-dq transformation is modelled in Matlab/Simulink as 

shown in Fig. 7. The bloksets are HDL Coder compliant with 

fixed point output. The word length for each block is shown in 

the signal path. sfix12_En4 means the data is signed 12 bit 

word length with 4 bit fraction length and ufixlO_En8 means 

the data is unsigned 10 bit word length with 8 bit fraction 
length. The operators, constants and blocks support different 

data types and representation of data is transparent to designers 

in each signal path. Details on how to convert floating to fixed 

point will be discussed in Section TV. 

B. Determine �4 and Angle (0.) 

For small switching time period Ts, can be considered 

approximately constant and can be expressed as 

Simulink    multirate  model     of    SVPWM     algorithm     that 

automatically generates the HDL code for the FPGA prototype. 
 

 

 
 

and, angle 

= d2   +  V
q
2  ) 

a 
= Vdq (3) 

(4) 

is 1flS, and IOns after the rate transition  block, for a master 

clock speed of 100MHz. The switching frequency of the 
inverter is determined by: 

Fig.  8  shows  the  implementation
V 

of  above  mathematical 

expression  in  fixed  point  simulink  blocks.   Ready  to  use 
Cartesian2Polar block in Simulink is not supported by HDL 

f = Master Clock Speed 

2" 

(I) 
 

Coder, so the above equation to calculate instantaneous atan 
Where,   n-m-bit   free   counter.    For   example,   if    n=12, function is    implemented in floating     point    s-function 

J;=100xIQ6/2
12=24.4lkHz. The details of the each blockset is 

MATLAB code and then converted to fixed point. 
sfix12 

described in the following sub-sections. 

A. Transformation of abc-dq Reference Frame 

The voltage equations in the abc reference  frame  is 
transformed to the dq reference frame that consists of the 

horizontal (d) and vertical (q) axes. The relation between these 

two reference frames is 
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Fig. 7. Inside abc2dq transformation block. 

The sampling rate of the model before the rate transition block 
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C. Determine Switching Time Duration (Tib Tn To) 

The instantaneous time duration of switching vector 
(T",Tn+1,To) for six switches are calculated in terms of a 

reference  voltage  (Vrer),  angle  (a) ,  switching time  period  (Tz), 

input voltage (Vdc) and sector (n). For the  volt-second balance 
in sector-I, from Fig. 6, 
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Solving §5, §6 and §7 we get, 
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Fig. 9  shows  the  implementation  of  above  mathematical TO/2 TliT2iTO/2    TO/2iTl T2:TO/2 : 
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expression for Tn,Tn+],To in fixed point Simulink blocks. 

D. Determine the Sector (n) 

It is necessary to determine the location of the reference 

voltage (which is rotating at co = to exactly generate the 

instantaneous duty cycle of each switch and switching 

sequence. The sector determination is implemented with 

compare to constant logic as shown in Fig. 10. 

E. Determine the Switching Time of Each Power Switch 

The switching pattern, sequence and time period of high 

side  switch  is  determined  based  on  the  location  i.e.  angle  (a) 
and magnitude of reference voltage (Vref) as shown in Fig. 11. 
The switching pattern and time is implemented for high side 

switch TA as shown in Fig. 12. Similar implementation is for 

TB and TC. 

 
 
 
 
 
 
 
 

 
Fig. 9. Determination of switching time duration (Tn,Tn+"Tll) 

l TO/2   TO/2:T2:Tl 

 
Fig. 11. Space Vector PWM switching patterns and corresponding switching 

time at each sector. 

 
 

 
IV. FPGA PROGRAMMING 

A. Floating Point to Fixed Point Conversion 

Fixed point algorithm is implemented in FPGA for power, 

perfonnance and cost reasons. However, conversion from 

floating  point  to  fixed-point  is  very  challenging  and  time­ 

consuming, typically demanding 25 to 50 % of the total design 

and implementation time.  In a fixed point domain a pair (w,  F) 
is considered for each of the parameter in algorithms, where W 

) 

 

v" 
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is word length and F is fraction length of the parameters. Large 
Wand F result in better performance and lower Bit Error Rate 

(BER) but design consume large resources in FPGA or 
implementation requires expensive FPGA. On the other hand, 

smaller Wand F result in large BER whereas smaller footprint. 

Optimization of wordlength to achieve best performance is 

an interactive process with the user in a MATLAB fixed point 

advisor which guides through the steps of converting floating 

point to fixed point algorithm. It also verifies the generated 

fixed-point code by comparing the floating and fixed point 

result. Multiple iterations by adjusting the word length 

settings, individually modifYing the data types as desired or 

accepting the 'proposedfixed-point types' as recommended by 

fixed-point advisor are required to meet the desired accuracy 

(low BER) and optimum fixed point design. Fig. 13 shows the 

control signal of SVPWM generated by  both  floating  and 
fixed point design and the corresponding error. The peak 
conversion error is ±1.5%.  This error should be kept minimal 
to utilise the full modulation range or the DC link voltage. 

B. Code Conversion (from *. mdllslx and *. mfiles to VHDL) 

The HDL Workflow Advisor in HDL Coder automatically 

converts MATLAB code (*. m files),  Simulink  (*. mdllslx 

files) from floating-point to fixed-point and generates 

synthesizable VHDL and Verilog code. MATLAB generates 

thousands of lines of VHDL codes in separate files for each 

blocksets. The generated code can be traced bidirectional 

to/from MATLAB and Simulink model. The HDL Workflow 

Advisor also highlights critical path timing in Simulink to help 

identifY speed bottlenecks and improve the performance of the 

design. 

C. Verification 

1) HDL co-simulation: The HDL Coder generates  VHDL 

and Verilog test benches using HDL co-simulation wizard that 

automatically connects to the HDL simulator e.g. Cadence 

Incisive, Mentor Graphics ModelSim and Questa for rapid 

verification of generated HDL code. Fig. 14 shows the co­ 

simulation scenario using Mentor Graphics ModelSim 

(student version). 

This co-simulation streamlines the verification process and 

helps to fix the error before hardware implementation. Fig. 15 

shows the co-simulation results of SVPWM MATLAB and 

Simulink model with ModelSim RTL-Ievel models. The model 

was simulated for 3ms and it was found that the two results are 

exactly same. 

 
 
 

 

 

Fig. 13. SVPWM control signals generated for one cycle (50Hz) by 

a) Floating-Point Design; b) Fixed-Point Design and c) corresponding 

conversion % Error.  
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Fig. 14. Co-simulation scenario using ModelSim 
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Fig. 15. Co-simulation results of SVPWM a) MATLAB Simulink model with 

b) Mentor Graphics ModelSim 

 

2) FPGA in-the-loop (FIL) co-simulation: FIL test the 

design in real hardware for the generated HDL code. It 

generates a Simulink FIL block as shown in Fig. 16 that 

represents the HDL code. The programming file is loaded onto 

an FPGA with JTAG connection. TX/RX of  data  from Simulink 

to FPGA is via gigabit Ethernet crossover cable that co-

simulate and verifies the design in real time environment. It 

helps to detect, isolate, identify and resolve bugs in the early 

stages of design process. 
SVPWM M� 

S\lPWM_SimulinkMm 

vy !l,; 
FIL 

vb 

ce_out 

sw1 

s'tO. 

sw3 
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Fig. 16. FPGA in-the-loop co-simulation 
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D. VHDL to bitstream and FPGA programming 

The generated HDL code is bit-true, cycle-accurate and 

synthesizable HDL code which is free from bugs. HDL Coder 

offers integration with Xilinx ISE design suite that makes it 

easy to implement algorithm in MATLAB and Simulink to 

target Xilinx FPGAs. Xilinx ISE compiles and generates the 

bitstream file which is then loaded into the FPGA using JTAG 

via the USB connection by iMPACT or Digilent Adept 

software. Table 1 shows the Xilinx ISE13.4 compilation report 

of resources utilization for SVPWM implementation in 

Spartan-6 XC6SLX45. 

 
V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The FPGA based approach to the automatic generation of 

VHDL code for digital controlled power electronics and drives 

using MATLAB Simulink is verified  by  implementing 

SVPWM modulated VSI in a Xilinx Spartan-6 platform. 

The six driving pulses from FPGA are connected to signal 

amplification and isolation circuit via 8 pin PMOD connector. 

The power ground and logic ground are completely isolated 

from one another using HCPL2531 optoisolator. It protects 

FPGA from circulating ground current and high voltage spikes 

(15kV/flS). Fig. 17(a) shows the FPGA generated SVPWM 

control pulses for the high side switches. 

Six SPW47N60C3 Cool MOS power MOSFET with best 

R1JS(on) are used for better efficiency design. The TTL level 

SVPWM signal from FPGA is  amplified  to  meet  the  gate 
drive voltage requirement of the switch (±20V) by driver IC 
IR2130 from International Rectifier. It is a three phase high 
voltage bridge driver IC with three independent high and low 

side referenced output channels and has protection against 

fault [20]. The IR2130 also provides dead-time  control  to 

avoid any shoot-through to protect the switches. A dead-time 

(Td) of 2fls is introduced between high and low side switch as 

shown in Fig. 17(b). Too short dead time (Td<lflS) causes 

shoot-through current that reduces system efficiency; too long 

a dead time (Td>3flS) increases THD, negatively impacting the 

power quality. 

The three phase line-to-line voltage of the VSI before filter 

is shown in Fig. 18(a) and Fig. 18(b) shows the filtered output 

voltage of the inverter. Small filter inductor (1.5mH) and 

capacitor (1.5flF) is required to filter out the switching 

harmonics. The THD of output voltage is only 3.8% and Crest 

Factor is 1.52, well below the IEEE allowable limits for grid 

connected inverter design or for motor drives application. The 

standby power loss is only 0.25% of rated power of the 

inverter (lkW). 
Table I: Device utilization summary of Spartan-6 XC6SLX45 

(Xilinx ISE13.4 estimated values) 

 

Logic Utilization Used Available Utilization 

Number of Slice Registers 1521 54576 2% 

Number of Slice LUTs 6117 27288 22% 

Number of fully used LUT-FF pairs 1460 6178 23% 

Number of bonded lOBs 10 218 4% 

Number of BUFG/BUFGCTRLs I 16 6% 

Number of DSP48Als 21 58 36% 

Number used as Memory 3 6408 1% 

 
 
 
 
 
 
 
 

) 

Fig. 17. SVPWM gating pulse from Spartan-6 FPGA for high side switch 

(Chl--SWI. Ch2--SW3. Ch3--SW5. Ch4--SW6) 

 

 

 
b) 

Fig. 18. Three phase voltage out from the VSI without loading 

a) before filter. b) after filter (Measured with high voltage differential probe 

GE8115 with  attenuation of  1000:1.  Chl-7VRy•  Ch2-7VyB•  Ch3-7VBR) 
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Fig. 19. Three phase voltage (300V/div) and current (2A/div) with 3300 

resistive load in each phase (delta connected). 

 

The control circuit demonstrated in this paper is an open­ 

loop system. Complex feedback control system of power 

electronics and electric drives can be easily  implemented 

using similar Matlab model based design as described in this 

paper. For example, power flow control, grid synchronization, 

variable speed drive (VSD), DC link voltage control etc.; 

however, it requires AID or DIA converters for proper data 

interface to FPGA and various peripheral sensors (e.g. voltage 

(V), current (I) or angular speed (m) etc.). 

Fig. 19 shows the performance  of  the  inverter  during 

loading condition. The inverter  is  loaded  with  a  delta 

connected resistive load of 300[2 in each phase.  The  load 

voltage and current shows a good performance of the inverter 

under loading conditions as well 
VI. CONCLlISIONS 

We have described a method to facilitate the development 

and implementation of FPGA-based digital controllers in 

power electronic converters and drives. The method is faster 

and provides a greater degree of confidence than traditional 

manual HDL coding. To illustrate the method a laboratory 

prototype of a 1kW FPGA-controlled Voltage Source Inverter 

(YSI) was described in detail in which the fixed-point control 

algorithm was automatically generated from Simulink models 

using the MATLAB HDL Coder, and verified before 

implementation on a Xilinx Spartan-6 XC6SLX45 board. 

Experimental characterization of the resulting YSI converter 

resulted in 3.8% total hannonic distortion and line-to-line 

crest factor of 1.52, well within the allowable range of IEEE 

standards. The very close agreement between experiment and 

simulation shows the efficacy of the method. The method is  

expected to be particularly useful for prototype development 

of other power electronic converters and electric drives with 

more complicated interfacing and control algorithms. 
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