
 

View publication stats 

 

Dogo Rangsang Research Journal                                                  UGC Care Group I Journal 

ISSN : 2347-7180                                                                              Vol-08 Issue-14 No. 04: 2021 

Page | 1241                                                                                       Copyright @ 2021 Authors 

 

3D particle tracking velocimetry for the determination of temporally 

resolved particle trajectories within laser powder bed fusion of metals 

 
1
MANABHANJAN SAHOO, Gandhi Institute of Excellent Technocrats, Bhubaneswar, India 

2
RASMIRANJAN BHOI, APEX Institute of Technology & Management, Bhubaneswar, Odisha, India 

 
 

 

 

 

 

Abstract 

 

Within this work, we present a system for the measurement of the three-dimensional (3D) trajectories of 
spatters and entrained particles during laser powder bed fusion (L-PBF) of metals. It is comprised of two 
ultrahigh-speed cameras and a reconstruction task specific processing reconstruction algorithm. The 
system enables an automated determination of 3D measures from the trajectories of a large number of 
tracked particles. Ambiguity evolving from an underdetermined geometrical situation induced by a two-
camera setup is resolved within the tracking using a priori knowledge of L-PBF of metals. All 
processing steps were optimized to run on a graphics processing unit to allow the processing of large 
amounts of data within an appropriate time frame. The overall approach was validated by a comparison of 
the measurement results to synthetic images with a known 3D ground truth. 
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1. Introduction 
 

Laser powder bed fusion (L-PBF) of metals distinguishes 
itself from conventional manufacturing processes by various 

aspects. Most importantly, it is characterized by a high degree 

of freedom of design and allows flexible manufacturing 

without cost-intensive tooling [1]. This makes the technology 

an important enabler for the production of highly optimized 
parts for applications pushing the envelope (e.g. harsh 
environments [2] and weight reduction [3]). 

 

 

 

 

 

However, the production of defect-free and highly 
dense parts out of arbitrary metals today requires 
extensive parameter studies and process knowledge. 
Nevertheless, it has been shown that a more general 
process under- standing can reduce the complexity of 
parameter determi- nation [4]. 

However, within this approach, process dynamics are 

disregarded, even though they do have a large impact on the 

process result. These are mainly impacted by evaporation 
processes within the interaction zone (IZ) [5, 6]. 

The evaporation effects within the IZ induce a shear flow 

in the surrounding atmosphere, applying a drag force to 

particles around the IZ. This leads to a local redistribution of 

the powder particles forming a denudation zone [5]. The 

evaporation direction and the speed of the vapor jet itself 
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depend on the material, the process parameters, the inert gas, 

and the ambient pressure [7]. 

Particles entrained into the laser beam can be melted be 

molten, leading to the formation of spatters [6], or the 

inclusion in the melt pool, contributing to material 

buildup [5]. 

Both small and large spatters can cause process defects 

leading to a reduction in the quality of a part. However, large 

spatters cannot be fully melted by the laser beam in sub- 

sequent layers, leading to the formation of fusion defects 

within the processed layer [8]. These may result in voids 

which have a substantial negative impact on the mechanical 

properties of the part [9]. In contrast, depending on the mat- 

erial, small spatters can lead to defects caused by oxida- 

tion [10]. 

In addition, the stability of the spatter behavior correlates 

with the smoothness of the track morphology [11]. This is in 

accordance with the observation that the spatter character- 

istics highly coincide with the behavior of the plume and 

qualify, therefore, as an indicator of evaporation in the 

IZ [12]. 

The current process knowledge suggests a correlation 

between the process result and the spatter behavior. To 

investigate this effect, insight into and quantification of the 

spatter properties is crucial. However, velocity measurements 

presented in the published literature only investigate the 

velocity within the projection plane of the observing camera, 

resulting in a projection error [12, 13]. In addition, the 

approaches are not applicable to large datasets. 

These limitations can be overcome by the use of auto- 
mated three-dimensional (3D) particle tracking velocimetry 
(3D PTV). 3D PTV is a Lagrangian measurement method that 
uses observations of single particles within a fluid to gain 3D 

velocity information with high spatial resolution [14]. It is 

based on the detection, matching, and tracking of individual 

particles within an imaged scene. Velocity information on the 

fluid flow field is made accessible by determining the 3D 

trajectories of tracer particles [15]. 

A 3D PTV system is comprised of four main parts: the 

illumination system, image recording devices, tracer particles, 

and image evaluation methods. The image evaluation consists 

of particle detection, correspondence analysis, 3D recon- 

struction, and a tracking algorithm. The tracking can be 

conducted in two dimensions or three [14]. 3D PTV is used in 

a variety of applications to non-intrusively identify flow fields 

of fluids. 

The objective of this work is to introduce a method for 

gaining insight into the particle behavior within L-PBF based 

on 3D PTV. We present an experimental setup that allows 

spatial and temporal highly resolved process observation via a 

calibrated setup of two ultrahigh-speed cameras under rea- 

listic process conditions. We describe a specialized 3D PTV 

method, which makes 3D particle trajectories within L-PBF 

accessible. We show that ambiguity within the data of single 

time steps can be resolved by the incorporation of a priori 

process knowledge. 

Our tracking method delivers the measured positions for 

each individual particle. This information makes characteristic 

3D measures (e.g. the velocity, direction, and time of ejection) 
accessible. Furthermore, statistical measures over whole 
experiments can reveal trends within the data, which can pro- 

vide a more general process understanding. 

 
 

2. Experimental setup 

 
For the experiments presented in this paper, 316L stainless 
steel (1.4404) was used as the powder and base material. The 
powder particle size was between 20 and 53 μm. It was 
spread with a scraper on a sandblasted specimen. In order to 

achieve reproducible layer heights, distance gauges were 

used. The layer height was set to 70 μm for all experiments 

and confirmed by laser scanning microscope measurements. 

The specimen was placed inside a test chamber that was 
flooded with argon (Ar) inert gas. The chamber was attached 
to an axes system, which allowed a precise movement of the 

entire chamber through the focus of a stationary laser beam. 

Moving the whole chamber relative to the laser beam and 

moving the beam relative to the work piece, as commonly 

done in L-PBF are equivalent and only differ in the reference 

coordinate system of the observer. A difference, which occurs 

regarding the process, is that the incidence angle is constant 

within our setup, whereas it changes depending on the posi- 

tion within the scan field for an industrial L-PBF machine. In 

the case of statistical measures, it is actually more desirable to 

investigate the influence in a set of experiments with a con- 

stant angle of incidence each, as is possible with the proposed 

setup. 

A two-axis stage system was used. The coordinate sys- 
tem used within this paper was chosen relative to the camera 
setup, where the x–y plane describes the image plane and z is 
the depth along the observation axis. A fast stage can accel- 
erate the whole setup up to usual scan speeds (Aerotech 
act115Dl-1000, vfeed, max = 5 m s

-1
) along the x axis. A slower 

but more precise stage (PI M-605.2DD) was used for the 
realization of a defined hatch distance along the z axis. 

The beam source used within the experiments was a 

Trumpf TruDisk 6001 Yb:YAG laser with a wavelength of 

1030 nm and maximal output power of 6 kW. The end of the 

100 μm fiber is projected by custom optics with an image 

ratio of 1:1 and a focal length of 200 mm, resulting in a 

100 μm top hat spot on the specimen. A cross-section of the 

process chamber used is shown in figure 1. 

The IZ was observed through two viewing windows. In 

order to adequately illuminate the particles above the IZ 

without illuminating resting particles within the powder bed, 

the process was illuminated using a flat angle. The optical 

axes of the two ultrahigh-speed cameras intersected within the 

process chamber, as shown in figure 2. Only trajectories of 
particles within the field of view (FOV) of both cameras can 
be reconstructed. Therefore, the measurement volume is 

formed by the intersection of the FOVs. 

Two Phantom v1210 ultrahigh-speed cameras were used 
to observe the process at a frame rate of 60 kfps (@ 512 × 
256 px). The angle between the two camera axes was 30°, and 
both were inclined by 10° relative to the specimen plane. 
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Figure 1. Cross-section within the x–z plane of the process chamber 
used for the experiments. 

 
 

Figure 2. Experimental setup with two ultrahigh-speed cameras and 
a process chamber for the investigation of spatter trajectories. 

 
 

The observed FOV is 20 mm × 10 mm (compare figure 
3), which results in a pixel equivalent of roughly 40 μm. 
Particles present within L-PBF can be smaller than 

this. Nevertheless, these particles are imaged on one pixel and 

are detectable under the premise that particle information 

within the image is higher than the image noise. 

For illumination, a Cavilux HF illumination system was 

used. However, it was only used in every second frame 

causing an alternating illumination. This allowed the acqui- 

sition of both, illuminated and non-illuminated images from 

the same experiment with an effective frame rate of 30 kfps. 

This enables the classification of particles into hot and cold, 

since hot particles are also visible in non-illuminated images 

due to their emission of thermal radiation [16]. 

Ideally, the illumination is chosen to be in plane with the 

specimen, in order to reach particles above the specimen but 

not the powder layer itself. However, with the current setup, 

due to a high numerical aperture of our illumination optics, 

parts of the illumination light still reached the powder bed. 

Exemplary consecutive images with and without illumination 

from an experiment are shown in figure 3. One can see that 

some particles are visible in both images, identifying them as 

being hot particles, whereas a majority of the particles is only 

Figure 3. Exemplary consecutive raw images without (a) and with 
illumination (b) (PLaser = 275 W, v = 850 mm s-1). 

 

Figure 4. Flow scheme of the 3D PTV algorithm developed for 
L-PBF. 

 
present in figure 3(b), classifying them as cold particles. 
Particles visible at the lower section of figure 3(b) are to avoid 
reflections from the powder bed. 

 
 

3. Methodology-3D particle tracking velocimetry 

 
In the following section, we present the algorithm which has 
been developed to calculate 3D spatter trajectories from ste- 
reoscopic images (e.g. figure 3) of the L-PBF. The flow 
scheme of our algorithm is displayed in figure 4. A similar 

approach was proposed in [15] for the tracking of particles in 

images generated by a three- or four-camera system. 

However, with a two-camera system and a high particle 

density, ambiguity occurs during the correspondence analysis, 

as two or more particle images can provide a potential match 

[17]. Several approaches are described in the literature to 

avoid or reduce ambiguity. One can use an additional camera 

in order to gain additional information for the correspondence 

analysis [17]. Alternatively, an increased frame rate leads to 

decreased particle movement within a time step, which 

reduces the complexity of the correspondence analysis within 

two consecutive measurements [14]. In addition, features of 

the particles can be used for their distinction [15]. 

Neither of the proposed approaches is applicable to our 

setup, due to the unavailability of another ultrahigh-speed 

camera, their limited frame rate, and the similarity of particles 

to be tracked. Therefore, in our case the algorithm is not only 

meant to reliably track the particles but also resolve ambiguity 

caused by the limited number of cameras. 

The experimental setup used for the imaging was 

described in section 2. The pre-processing includes unpacking 
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tr(H )  tr(H )2 - 4 · det(H ) 

H x, y  = ⎢ ⎥ 

of the packed data of the ultrahigh-speed cameras and noise 

reduction and low-pass filtering by means of a Gaussian filter, 

described in section 3.1. After this, the particle positions 

within the images are detected. By incorporating the infor- 

mation gained within the calibration of the camera system, a 

projection into 3D space of potential detected particles is 

possible. Within this step, ambiguity arises which is resolved 

in a following tracking step. After the tracking, the informa- 

tion gained about the particles is processed to acquire the 
desired measure (e.g. average particle velocity, number of 
particles, etc). The algorithm is described in detail in the 
following sections. 

 
 Pre-processing and detection of particles 

In the first step, the particle positions need to be derived from 
the raw images (e.g. figure 3). The particle detector described 
in the following has been designed in accordance to the 
particle characteristics derived from the process observations 
distinguishing the particles from the background. Particles 

can be described as being spherical or close to spherical. In 

addition, particles can have a highly varying brightness, 

depending on the size, temperature, and reflectance, in the 

case of an illuminated scene. Furthermore, the effective par- 

 

 
 

Figure 5. Detected particle coordinates ((a) 31 particles, (b) 223 
particles) within exemplary raw images without (a) and with 

(b) illumination (PLaser = 275 W, v = 850 mm s-1). 

 

Figure 6. Exemplary calibration image pair of the left and right 
cameras with the detected checkerboard key points and CAD 
drawing of the calibration system. 

 
image region to a round particle of size σ. By applying a 
threshold bthresh to the resulting image according to (3.6), each 
pixel is classified as being part of a particle or background 
(3.7). 

ticle size is, in all cases, in the range of several pixels. 

In the first step, the image noise and high frequency 

information within the raw image Iraw is suppressed by the 

IEv = l1l2 (l1 + l2 )
2
 

IEv,Bin (x, y) = ⎨
⎧true; if IEv (x, y) > bthresh.

 

(3.6) 

(3.7) 

convolution of Iraw with the 2D Gaussian-distribution G. The 
standard deviation σ can be estimated by the expected particle 
diameter in pixels. The filtered image, I, can then be written 
as shown in equation (3.1), with s and t being the coordinate 
relative to x and y: 

⎩ false; else 

From IEv,Bin, each centroid of the formed regions is cal- 

culated. The result is a list of the detected particle coordinates 

from the left and right cameras. Figure 5 shows the result of 
the detector applied to the raw images shown in figure 3. 1 -s2 +t 2 

 
 I = Iraw * G with G = 

2ps 2 
· e 2s2 . (3.1) Within figure 5(b), a larger number of particles was 

detected compared to figure 5(a). A large number of detected 

In the next step, the second derivative, in the form of the 
Hessian matrix, is calculated for each position (x, y) within 
the image. It describes the change of the slope in grayscale 
values in the pixel’s neighborhood. 

particles seems to have rested within the powder bed. 
Nevertheless, the number of particles expected to be above 
the IZ is higher in figure 5(b), as expected. 

⎡Ixx (x, y) 
( ) 

⎣Ixy (x, y) 

Ixy (x, y)⎤ 

Iyy (x, y)⎦ 
(3.2) 

 Calibration 

A photogrammetric approach is used for the calibration of the 

with I = 
¶2I 

. 
nm

 ¶n · ¶m 

(3.3) 
camera system. This means that the calibration is performed 

with a target of known geometry. We use a ceramic check- 

erboard pattern. The checkerboard pattern is moved by a self- 

The local eigenvalues of the Hessian resemble the max- 
imum and minimum of the second derivative at (x, y). Those 
can be calculated from H as follows: 

built calibration system and continuously monitored by the 

ultrahigh-speed camera. This results in very good coverage of 

the measurement volume with calibration points. The 

checkerboard with the detected pattern and the calibration 

l 1 = 
2 2 

. (3.4) system are shown in figure 6. The calibration was performed 

with the MATLAB
®
 2018b built-in stereo calibration app, 

In the case of quasi-round particles, the second derivative 

needs to be uniform in all directions. In the present case of 

bright particles, the eigenvalues are negative [18]. 

which is based on the methods described in [19, 20]. With this 

method, an overall mean error of 0.15 pixels could be realized 

for our setup. The error describes the average deviation which 
occurs if a known checkerboard point is projected from one 

l1 » l2  l1 < 0  l2 < 0. (3.5) image into the other, using the calibration result. 

In addition, the calibration provides the intrinsic para- 

The eigenvalues are used in an evaluation function 

delivering IEv, whose value increases with the similarity of the 

meters of each camera, which allows the compensation of 

image distortions caused by the lens or misalignment of the 
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∣ 
 

x a m 

image sensor to the optical axis. In addition to that, it delivers 
the extrinsic parameters, linking the cameras’ coordinate 
systems to the world’s coordinate system. The transformation 
of one coordinate system into the world coordinates can be 

fully described by a rotation matrix, R, a translation vector, t, 
and a scaling vector, s. By these, the two cameras’ coordinate 
systems can be associated with each other, which is needed 
for the determination of 3D information, described in 

upcoming sections [19]. 

 
 Matching of particles 

The particle detector delivers the points detected in the scene 
imaged by the two cameras. Particles within the measurement 
volume (see figure 2) are imaged on both cameras. The two 
projections of the individual particle within the camera ima- 
ges are matched. 

The calibration results can be expressed in form of the 

fundamental matrix Ffund. It allows to validate a matching set 
of projections, consisting of a point within the left (x, y) and 
the right image (x′, y′) in form of the condition [21]: 

 

 

Figure 7. Epipolar lines within the left (a) and right (b) image 
calculated from the detected particles (PLaser = 275 W, v = 850 
mm s-1). 

 
In accordance with the description used for the particle 

detection, the particles resemble each other; therefore, no 

features can be used to differentiate them, as stated in [21]. 

Due to this, it is not possible to identify false pairs at this step 

within the algorithm. The use of additional cameras would 

allow the identification of the crossover points of the epipolar 

lines, reducing the search along a line to a single point [17]. 

However, we show, in the following sections, that the 

ghost particles can be separated from the real particles by a 

tracking algorithm, which incorporates a priori knowledge of 

the real particle movement. 

⎡
⎢

x¢⎤
⎥

T ⎡x⎤ 
 

3D coordinate determination 
⎢y¢⎥  

Ffund 
⎢

y
⎥ 

= 0. (3.8) 

⎣ 1 ⎦ ⎣1⎦ From the matches, we derive 3D information by means of 

triangulation. For this purpose, the detected points of both 
The set of points within the image plane P’ of the right 

camera matching to a point u in the right image plane P, 
forms the epipolar line lu [21] and vice versa. 

cameras are first projected into one common plane, equivalent 

to the case where the optical axes of both cameras are parallel 
to each other. 

l   = 
⎧
⎨u¢ = (x¢, y¢)T   Î ¢∣ 

⎡u¢⎤
T 

F ⎡u⎤ 
=  

⎫
⎬ (3.9) This coordinate transform is expressed in the homo- 

u 
⎩ 

P ⎢⎣ 1 ⎥⎦ fund ⎣1⎦ 
0
⎭

. graphy  matrices  Hhom  and  Hh¢om,  which  incorporate  the  cali- 

bration results. The projection of a detection, u, to the 

The given formula, however, is only valid for an ideal 

calibration and measurement, without any error. By also 

including candidates within a specific distance to the epipolar 
line, the errors can be accounted for. The distance threshold 

position, u
*
, in the common plane is expressed as: 

Hhom = [R∣t] (3.12) 

should be chosen within the order of the mean calibration su*=Hhom u. (3.13) 

error. The distance d between the epipolar line lu and the point 

u can be analytically calculated by: 
∣( 

 
- ) ´  

 
∣ 

 
 

From the disparity, d, of the projected point coordinates 

of both projections, the z coordinate can be calculated by 

means of triangulation: 

d = 
u a m 

m ∣ 

(3.10) 
d = ∣u*-u*¢∣ (3.14) 

with lu:  
 
= 

 
+ t ·  . (3.11) 

 

This approach reduces the search area from the whole 

image to a narrow line. If multiple particles are lying on the 

z = 
b · f 

.
 

d 
(3.15) 

same epipolar line the matching is not unique but ambiguous, 
since there are multiple possible matches that fit the condition. 
In figure 7, the epipolar lines are drawn into the image shown 
in figure 5(a) and the corresponding image of the second 
camera. 

Due to the uncertainty, the number of possible matches is 

higher than the actual number of particles, leading to the 

detection of particles that are not actually present. We refer to 

those detections as ghost particles. Within the non-illuminated 
observations (e.g. figure 7), the number of possible matches 
was 25% higher than the number of particles detected within 
the single images. For the illuminated scenes, roughly 90%– 
95% are false detections. 

The baseline, b, and focal length, f are available from the 

camera calibration. 

This step delivers the 3D coordinates Pn (x, y, z, tk) of 
each matched pair of particles at each given time step, tk. 

However, the earlier mentioned ghost particles are still pre- 

sent within the data. 

Figure 9 shows the projection of the particles shown in 
the images in figure 5 into 3D space. One can see that the 

number of projected particles within the illuminated case 

(figure 8(b)) was much larger than in the non-illuminated case 

(figure 8(a)). This is caused by the large number of ghost 
particles. In addition to that, the detections within the powder 

bed were also reconstructed. 
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Figure 8. Projection of an exemplary particle from 3D (purple) to the 
detection position (green) on the image plane (P, P¢) and the 
common plane (P*,P*¢). 

II. Since all driving forces for the generation of spatters 

and particle movement originate from the IZ, the 

particle movement, from a macroscopic observation, 

may be expected to be directed away from the IZ. 

III. Individual particles have to be detected in multiple 
frames since there is no ‘particle sink’ which makes 
them disappear. 

IV. The particles follow a quasi-linear movement over 

several frames. 

V. It has to be expected that the particles cannot be 

detected in every frame. 

 
3.6. Tracking of particles—Kalman filtering 

The a priori knowledge of the particle movement is incor- 

porated in the form of a Kalman filter, first described in [22]. 
It allows the tracking of particles by means of a motion model 

(see IV). The Kalman filter is used to estimate the current 

state, xk (e.g. velocity, position) of an object based on pre- 
vious measurements of the state xk−1. The transition is 

expected to be described by the state transition matrix, F, and 

the process noise, vk. Consequently, the filter can be applied if 

the state model follows the equation: 

xk = Fxk-1 + vk. 
(3.16) 

The available measurement can be related to the current state 

with the measurement matrix, H. 

zk = Hxk + vk. 
(3.17) 

Since the process noise cannot be determined, the particle 

state, xˆk is estimated at the current point in time, tk, with 

 

 

 

 

 

 

 

 

 

 
Figure 9. Reconstruction results ((a) 55 particles, (b) 4351 particles) 

consideration of the previous measurement and inaccuracies, 

all of which causing deviation to the real state, xk. With the 

previous estimated state at time, tk−1, the prediction of the 

particle state, x̂k ∣ k-1, within the current time step, tk is possible 
considering the state-transition matrix, F. The transition 
matrix F is specified by the applied motion model, which is, 

in our case, a movement with constant velocity. It is important 

to note that the motion model is only an approximation of the 

real motion. This means that particles not exactly following 

the motion model can also be tracked and described by: 

of the exemplary time step shown in figure 5 without (a) and with (b) 
illumination (purple) and the 3D position of the interaction zone 

x̂k ∣ k-1 = Fx̂k-1 ∣ k-1. (3.18) 

(PLaser = 275 W , v = 850 mm s-1). 

 

 Tracking of particles—a priori knowledge 

The covariance, Pk, of the prediction with respect to the 
expected measurement noise (measurement noise covariance 
R) and the expected accuracy of the motion model (process 
noise covariance Q) can be calculated as follows: 

In order to distinguish ghost particles from the real particles, 

a priori knowledge of the process and the particles is incor- 
Pk ∣ k-1 = FPk-1F

T  + Q 
(3.19) 

porated into the tracking routine. 

I. The expected particle speeds can be taken from the 

literature. Ly et al reported spatter speeds, measured at 

the process level, between 6 and 20 m s
−1

 [13]. For 

large ejecta, expected to cause defects within the build 

process, speeds of 1–3m s
−1

 were reported [6, 12]. 

The prediction delivers a state estimate, including the 
position of the particle at the time step, tk, and a measure for 

the expected accuracy of the estimation. If a measured particle 

can be found close to the estimated position at tk, the particle 
state  x̂k ∣ k  can  be  updated  with  respect  to  the  information 
gained by the measured values of the particle Zk at tk. The 
Kalman gain Kk can be interpreted as the sensitivity of the 
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Figure 10. Flow chart of the tracking algorithm. 

 
update to the new measurement. 

Kk  = Pk ∣ k-1H T (HPk ∣ k-1H T  + R)-1
 

 

 

(3.20) 

x̂k ∣ k = x̂k ∣ k-1 + Kk (zk - Hx̂k ∣ k-1) (3.21) 

Pk = (I - Kk H )Pk ∣ k-1. (3.22) 

With this recursive approach, the precision of the particle 

state increases over time; and the predictions of the filter 

become more accurate. 

 
 Tracking of particles 

From II, we can derive that the density of detected particles 

decreases with distance to the IZ. As discussed in section 3.3, 

it is obvious that the number of particles close to the epipolar 

line rises and more ghost particles appear with increased 

particle density. According to III, the routine needs to detect 

the particles until they leave the observation volume. 

We consider the scene to play backwards, meaning that 

particles are flying towards the IZ. This means that their first 

occurrence is not within the IZ but close to the boundaries of 

the observation volume. There, the particle density is rela- 

tively low, which is the result of II. With decreasing distance 

to the IZ, the particle density rises. However, due to simul- 

taneously increasing the number of included measurements 

over multiple time steps, the predictions of the Kalman filter 

become more accurate and it is less prone to misdetections. 

The flow chart of the resulting algorithm is shown in 
figure 10. It is applied to the 3D particle detections (purple) 
from section 3.4. 

First, the tracks are initialized. In our case, all combi- 

nations of particle detections over three consecutive time 

steps are identified as fulfilling I, II, and IV, forming multiple 

triplets of points. For this case only, particles with a certain 

distance to the IZ are considered, as their first occurrence is 

close to the boundaries of the observation volume. The data of 

each triplet is used to initialize a Kalman filter with state x1. 

An initial estimation for the covariance, P1, is done according 

to the user-driven parameterization of the algorithm. 

Since we track backwards, the position in the previous 

frame is predicted for every track. Matching particles are 

appended, and the tracks are updated. 

The seeding of new tracks is done for every time step. 

However, only particles which were not found to be part of 

previously initialized tracks are used for the seeding of new 

tracks. 

 
 
 
Figure 11. Exemplary 3D plot of all detected particle positions 
within the experiment shown in figures 3(a), 5(a), 7, and 9(a) 
(each particle track is colored individually) (PLaser = 275 W, v = 
850 mm s-1). 

 

 
The tracking is continued until no more valid particle 

positions can be measured for a given track over multiple time 

steps. Only tracks of a certain length are considered to be real 

tracks due to III, other tracks are disregarded as misdetections. 

Particles which were not appended to a track are con- 

sidered to be ghost particles. 

At the end of the tracking procedure, we distinguish 

ghost particles from real particles due to their appearance 

within a valid track. Figure 11 shows an exemplary tracking 

result in which the IZ represents the origin of the reference 

coordinate system. 

 
 

 Speeding up processing steps by means of GPU 

processing 

In order to analyze trends within the process behavior over a 

large parameter set, it is crucial to be able to process the raw 

data within an acceptable amount of time. 

Therefore, all processing steps were optimized to run on 
the graphics processing unit (GPU) or in parallel tasks on the 
CPU. The system we used is equipped with 128 GB of RAM, 
two Nvidia Titan Xp GPUs, and a 16 Core AMD Ryzen 
Threadripper 2950X CPU. 

We were able to speed up the particle detection within 

raw images from 20 to 500 fps by means of parallelization, 

with common MATLAB code and up to 6000 fps with an 

optimized GPU code. The 3D reconstruction achieved up to 

2500 fps by means of parallelization in MATLAB. The 

tracking algorithm is not yet fully optimized. The main issue 

is the cubical rise of the number of seeding triplets with the 

number of particle detections, which makes the planning of 

memory allocations harder. However, within most experi- 

ments we can achieve 250 fps. 
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4. Validation 

 

In order to validate our approach, we created a set of synthetic 

datasets with a known ground truth of particle trajectories. A 

specific number of individual particle tracks was placed 

within a 3D volume. The trajectories followed all criteria 
given in section 3.5 (I–V). 

For each set of synthetic images, a mean velocity and a 

standard deviation along x, y, and z was set. According to the 

resulting normal distribution, the velocity components of each 

particle were randomly assigned. In addition to the above- 

mentioned criteria, only particle velocities with a positive y 

component were considered as valid. 

Based on the previous sections, we can conclude that the 

number of ghost particles and, therefore, potential misdetec- 

tions increases with the number of particles within the image I 

of a single time step. Two main causes can be identified for 

this. First, a low average speed of the particles leads to a 

longer time of the particles being within the observation 

volume. Second, the number of particles ejected per time step 

is increased. 

Even though this approach is not directly based on real 
experiment data but synthetic images, the particle properties 
are within the range of particles measured manually within 
real experiments and in accordance with the literature (I). This 
allows us to test the performance of our algorithm on a data 

set, which covers a large variety of particle properties. This 

cannot be achieved with manually labeled data. The overall 

number of synthetic images used for our validation was 

1500 000 images, which is equivalent to 400 GB of exper- 

imental data. 

Both cases were considered within the validation. First 

we increased the number of individual particles within the 

single experiment, keeping the particle velocities and standard 

deviations constant. Within the second test, we continuously 

increased the velocity. 

Figure 12 shows the validation results for particle num- 
bers, as seen within our initial experiments. For the purpose of 
comparability to the results from the previous sections, the 
average number of particles per frame is also plotted (blue). 
The number of particles within one frame is an equivalent to 

the number of detections shown in figure 5. 

In figure 12, four measures of the validation result are 
presented. The number of correctly detected particles (green) 
can be read as a measure for the information actually mea- 
sured. The number is set relative to the overall number of real 

particles within the known ground truth. The number of ghost 

particles is a measure for the measurement noise. 

The average ratio between ghost particles introducing 

noise to the measurement and real particles contributing to the 

measurement is 5%. However, looking at the deviation of 

the average speed taken from the measurement relative to the 
average speed within the ground truth (brown), the ghost 
particles do not have a high impact (below 1.5%). 

However, by increasing the number of particles further, it 

is visible that the measurement error increased with the 

number of particles within the image, as expected. The results 

for a larger number of particles are shown in figure 13. 

 

 

Figure 12. Number of detected particles, ghost particles and the 
number of undetected particles relative to the real number of 
particles for to-be-expected numbers of individual particles. 

 
 

Figure 13. Number of detected particles, ghost particles and the 
number of undetected particles relative to the real number of 
particles for large numbers of individual particles. 

 
 

Figure 14. Number of detected particles, ghost particles, and the 
number of undetected particles relative to the average overall particle 
speed. 

 

 
From figure 13, it follows that the accuracy will drop 

with an increasing number of particles. For the illuminated 
scene presented in figure 5(b), the to-be-expected ratio 
between ghost particles and real particles rose to 19%. This 
underlines the necessity of an illumination setup optimized 

towards the illumination of to-be-detected particles only. 

The validation results for an increase in velocity are 

shown in figure 14. For low velocities, the number of visible 

particles rose cubically, as expected. A large number of par- 

ticles also led to an increased probability of particles traveling 

with the same velocity. This led to the detection of ghost 

particles because the particles have similar epipolar lines over 

multiple time steps. However, the number of correctly 

detected particles rose for expected average particle velocities 

of 3–5m s
−1

. 
Increasing the velocity further, the number of correct 

tracks decreased. However, ghost particles were not present. 

Both can be explained by the particles leaving the measure- 

ment volume in shorter time and, consequently, within less 
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frames. As a result, fewer particles per frame were visible, 

which decreased ambiguity. Since the particles were only 

visible within fewer frames, the algorithm was more prone to 

missing detections, leading to non-tracked particles. This can 

be counteracted by increasing the frame rate or the use of both 

illuminated and non-illuminated images for the detection of 

particles with a velocity larger than 10 m s
−1

. 

However, in both validation cases, the comparison of the 

detected average velocity with the actual average velocity 

shows good accuracy. In all presented validation experiments 

applicable to our measurement tasks, the error was below 5%. 

 

 
5. Conclusion 

 
Within our work. we have shown and validated a new 
approach to measuring 3D trajectories of hot and cold parti- 
cles and their properties in the context of L-PBF by 
employing a 3D PTV approach. To the authors’ knowledge, 
this is a methodology which has not yet been introduced in 

the field of laser materials processing. 

Our validation has shown that the system delivers good 

results within the specified measurement task. However, the 

validation also revealed that the system is prone to mea- 

surement errors for velocities and particle numbers, exceeding 

those present in L-PBF. Nevertheless, the former can be 

avoided by an increased number of measurement points; and 

the latter can be resolved by an improved illumination setup, 

if needed. All in all, it can be concluded that the system is 

applicable to measuring particle properties within L-PBF. 

With the availability of this new measurement technique, 

future work will focus on the particle and, especially, the 

spatter behavior within different process situations and 

materials. The results may then be used to quantify the eva- 

poration behavior and its influence on the process. Further- 

more, we plan to investigate the correlation between process 

regime and spatter characteristics in order to assess the 

applicability of the approach for quality control within 

industrial machines. 

The system allows us to get a detailed view into the 

process behavior with a statistically sufficient sample size, 

literally accessing an additional dimension within the process 

observation of L-PBF. Increased process knowledge is nee- 

ded to realize a faster process, higher quality, more resilient 
parts—pushing the envelope further. 
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