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Abstract Internet of things (IoT) based location-based ser- 

vices (LBS) are playing an increasingly important role in 

our daily lives. However, since the LBS server may be 

hacked, malicious or not credible, there is a good chance 

that interacting with the LBS server may result in loss of 

privacy.As per journal instruction, author photo and biog- 

raphy are mandatory for this article. Please provide. Thus, 

protecting user privacy such as the privacy of user location 

and trajectory is an important issue to be addressed while 

using LBS. To address this problem, we first construct three 

kinds of attack models that may expose a user’s trajectory 

or path while the user is sending continuous queries to a 

LBS server. Then we construct a novel LBS system model 

for preserving privacy, and propose the k-anonymity trajec- 

tory (KAT) algorithm which is suitable for both single query 

and continuous queries. Different from existing works, the 
 

KAT algorithm selects k 1 dummy locations using the slid- 

ing window based k-anonymity mechanism when the user 

is making single query, and selects k 1 dummy trajec- 

tories using the trajectory select mechanism for continuous 

queries. We evaluate the effectiveness of our proposed algo- 

rithm by conducting simulations for the single-query and 

continuous-query scenarios. The simulation results show that 

our proposed algorithm can protect privacy of users better 

than existing approaches, while incurring a lower time com- 

plexity than those approaches. 

 

Keywords Location privacy · Trajectory privacy · 

k-anonymity · LBS · Internet of things 

 
1 Introduction 

 
Cloud computing offers networked and remote computing 

resources to process, manage, store and share huge vol- 

ume of internet of things (IoT) data, and allows small and 

scattered IoT devices to interact with its powerful back- 

end capabilities related to data analytics and control [1–4]. 

Its great potentiality to those mobile and IoT devices pro- 

vides substantially improved Quality of Service (QoS) to the 

applications requiring low latency, high bandwidth, location 

awareness, strong mobility, and widespread geographical 

distribution [5,6]. Consequently, cloud computing makes it 

suitable for location-based services in IoT. 

The rapid development in communication and mobile 

device technology has enabled the sensing and analysis of a 

user’s environment with respect to the user’s context. Loca- 

tion and location related information forms the core context 

in a pervasive computing environment. Advances in sensing 

technology allow us to easily obtain location and position- 

ing information with high accuracy using global positioning 
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systems (GPS), differential GPS (DGPS), and wide area aug- 

mentation systems (WAAS). The standard accuracy of GPS 

is approximately 15 m, and can be augmented to 3–5 m with 

DGPS, and to about 3 m with WAAS. Such location data 

is being used in a variety of location-based services (LBS) 

[7–11], which have gained rapid adoption during the recent 

past. Using LBS, users can easily get the information they 

want by using the hand-held terminals (e.g., smart phones, 

tablets). For example, users can find the nearest restaurant or 

hospital [12]. 

Privacy issues have not been addressed with respect to 

emerging IoT sensors, devices, cars, home appliances, drones 

and other applications that are expected to reach and use mag- 

nitude of location data as well as personal data. The identity 

of location data leads to other types of crime. One of the most 

important definition of privacy is the right to control the flow 

of one’s personal data. The key research areas include: 

 
location based privacy; 

privacy of cloud computing data; 

effective privacy definitions including some domain- 

specific privacy definitions; 

effective monitoring of social groups interactions; 

some aspect of privacy-driven policies and software devel- 

opment paradigm; 

accountability techniques for privacy violations; 

techniques and mechanisms for tracking information flow 

and control of that flow; 

techniques on large scale location based privacy data ana- 

lytics. 

 
However, using LBS can cause privacy concerns [13,14]. 

To use LBS, users send requests to the LBS provider (LP) 

with their precise location information. However, there is no 

guarantee that the LP is credible and trustworthy [15]. A 

malicious LP may steal or expose location data, even sell 

user location information to a third party. In the era of Big 

Data, the data obtained from the third party may be mined for 

more information, not only the user’s position, but also user’s 

motion patterns, gender, age, occupation, hobbies, etc. This 

may result in the users getting spam mail, advertisements, 

or cause other more serious issues that can affect the user’s 

normal life. 

Many researchers have proposed solutions [16–19] to 

address privacy preservation issues for LBS for single query. 

The k-anonymity technique, which was originally devel- 

oped for complying with privacy requirements in HIPAA 

[20], has been adapted for addressing the privacy preser- 

vation problem in LBS [21]. The objective of the original 

k-anonymity algorithm is to ensure that any individual can- 

not be uniquely identified within a group of k people. In the 

adapted k-anonymity for LBS technique, the user sends true 

position data along with k − 1 dummy or false location data 

when requesting for service, so that LBS server cannot dis- 

tinguish the user’s real location from the k locations. So the 

k-anonymity technique plays a significant role in protecting 

user’s position when a single query is made. However, in 

reality users may send service requests continuously for a 

period of time [22]. We call this kind of request “continuous 

queries”, and are assumed to arise from a certain behav- 

ior “model”. For example, a tourist submits a request to a 

LBS server for finding the nearest hotel, but when he reaches 

the hotel he finds it unsatisfactory (too expensive, not clean 

etc.) and so he initiates another request till he finds a desir- 

able hotel. Because of the correlation of various positions in 

the continuous queries, k-anonymity technology is no longer 

suitable. There is no guarantee that the tourist’s movements 

have not been exposed. The tourists’ trajectory information 

(hotels visited), which are part of their behavior models, can 

be exploited to uniquely identify the individual and allowing 

deducing the user’s information, e.g., earning ability, social 

class, and marital status situation etc. Therefore, protecting 

user location and trajectory information in LBS is an impor- 

tant issue that needs to be solved. 

In this paper, we design an efficient algorithm based on 

the k-anonymity technique to protect user trajectory privacy 

in location based services. Our scheme is not only suitable 

for the continuous queries, but also applicable for the single 

query scenario. The main contributions of this paper are as 

follows: 

 
As we noted that the LP may be malicious and not credi- 

ble. The traditional k-anonymity technique is not suitable 

to preserve the user trajectory privacy, since there are 

some scenarios and attacks where the user’s trajectory pri- 

vacy may be exposed. We consider three main attacks in 

this paper: shared attack, roadless attack and probability 

attack. 

We propose the k-anonymity trajectory algorithm (KAT) 

for preserving privacy, which can be applied to both sin- 

gle and continuous query scenarios. KAT is superior to the 

dummy location selection (DLS) algorithm proposed in 

[12], since the DLS algorithm is time consuming in select- 

ing other k 1 candidate locations form the 2k dummy 

locations. Whereas the KAT algorithm collects other k 1 

candidate locations by using the sliding window based k- 

anonymity mechanism, which can significantly to reduce 

the time complexity. 

To protect trajectory privacy, we introduce the maximum 

entropy and the trajectory select mechanism into our KAT 

algorithm for choosing other k 1 dummy trajectories to 

resist attacks in the continuous query scenario. 

 
The remainder of this paper is organized as follows. Sec- 

tion 2 discusses the related work. The problem statement is 

described in Sect. 3. Section 4 gives the preliminaries and 
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system model. Section 5 presents the detailed description for 

the proposed KAT algorithm for protecting location privacy 

and trajectory privacy. The simulation results and analysis are 

given in Sect. 6. Section 7 gives the discussion, and Sect. 8 

concludes the paper. 

 
 

2 Related work 

 
Significant attention has been paid on the problem of user 

privacy preservation for single query in LBS. For example, 

the k-anonymity scheme applied in single query scenario 

obtains considerable success with respect to protecting users’ 

location privacy [23–27]. There are three commonly used 

methods to realize k-anonymity to combat a malicious LBS 

provider (LP). 

 
When user issues a request, the user advertises k positions 

including one real location and k 1 dummy locations. In 

such a situation an attacker can infer a user’s real location 

with probability of 1/k [28]. 

For privacy preserving, the work in [29,30] realize k-

anonymity with a trusted anonymizer server. When a 

user issues a request, he/she will first send request to the 

anonymizer server. After receiving request message of k 

users, the anonymizer server generates a cloaking region 

for the k users and uses the cloaking region as the shared 

location of the k users. Then the anonymizer server sends 

requests for k users to LBS provider (LP). So the LP 

receives information of k users with the same location, 

and infers each user with probability of 1/k. 

In the distributed LBS system [31], k-anonymity is real- 

ized through an aggregation protocol. When a user issues 

a request, the user will aggregate other k 1 users using 

aggregation protocol and select a representative user from 

the k users. The representative user will send all request 

packets for the k users to the LP. Therefore, the LP cannot 

distinguish each user and infer one user with the proba- 

bility of 1/k. 

 
Protecting user trajectory information has received attention 

recently. The work in [31,32] focuses on trajectory privacy 

protection for the continuous queries scenario. The work in 

[32] proposed a virtual path programming solution for tra- 

jectory preserving and [31] proposed a location anonymity 

scheme based on the fake queries in continuous location- 

based services. In [33] the authors employed a Track False 

Data method with pseudonymization and perturbation, so 

as to not release user’s real trajectory data, by using the 

false tracks when user sends requests to the LP. For example, 

assume that the real path of a user is t1, which is composed 

of original locations l1, l2 and l3. First, the Track False Data 

method completes pseudonymization of l1, l2 and l3, and gen- 

erates three pseudo locations l1
r , l2

r  and l3
r . On the basis of 

these pseudo locations, we can construct the other three new 

locations l4
r , l5

r  and l6
r  by using perturbation. Thus it can con- 

struct a false track t2  including the locations l4
r , l5

r  and l6
r . 

When a user with real path t1 needs to submit a request to 
the LP, the user will send the false path t2 to LP rather than 

the real path t1 to protect their location and trajectory pri- 

vacy. The larger the range of pseudonyms and perturbation, 

the higher the degree of trajectory protection. However, this 

will result in a significant effect on the real location data, and 

may greatly reduce the quality of service for users. For pro- 

tecting users’ trajectory privacy, in [34] Xu and Cai used the 

method of historical data generalization, based on a trusted 

anonymization server which is a third party between the LP 

and user. When a user needs to send request to the LP, the user 

will first send it to the trusted anonymization server. Assume 

that the users’ real path is tr = {l1, l2 , ... li , . . . ,  lm}. The 
trusted anonymization server will convert the tr area into 

R r1, r 2 ,. .. ri . . . ,  rm . Each cloaking area ri is selected 

carefully based on the users’ historical location data and 

real location li . Then the trusted anonymization server sends 

R = {r1, r 2 , ... ri . . . ,  rm} to the LP. Thus, the cloaking area 

ri replaces user’s real location and protects trajectory privacy. 

However, if there are many users using the LBS system, the 

anonymization server can be a performance bottleneck or sin- 

gle point of failure. The researches in [35–40] consider the 

continuous query scenario for protecting trajectory privacy in 

LBS. In this work, we propose an effective method which is 

suitable for both the continuous queries and the single query 

scenario to protect location and trajectory privacy. 

 
 

3 Problem statement 

 
In this work we mainly focus on solving two problems: (i) 

location privacy preservation for single query, (ii) preserving 

trajectory privacy for continuous queries. For the first prob- 

lem, we design an efficient solution by improving the DLS 

[12] algorithm. Based on the side information (user’s query 

probability), each location has a probability of being queried 

in the past. Assume that the probability of real location is pd . 

To achieve k-anonymity, the DLS algorithm chooses other 

k   1 dummy locations from 2k candidates. Thus, it should 

loop C
k−1

 times to achieve the maximum entropy. Hence, 
the time complexity of the DLS algorithm increases expo- 

nentially with the growth of the value of k. Although the DLS 

algorithm has guaranteed the maximum entropy, the k proba- 

bilities of locations may not be similar. Some of them may be 

much smaller or larger than the probability pd . Attackers can 

easily filter out the impossible locations and guess the real 

location of user with a higher probability. To better preserve 

location privacy and reduce the time complexity, we design a 

sliding window based k-anonymity mechanism in this work. 

• 

• 
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As shown in Fig. 1, there are four locations (denoted by the 

small squares) in an anonymity area (denoted by circle). The 

malicious LP scans all trajectories between these locations 

and gets six trajectories Ra, Rb, Rc, Rd , Re, R f by match- 

ing with a map (e.g., from Google Maps). Then the LP can 

easily deduce that the user’s real trajectory is Rb, because the 

intersection of the three anonymity areas is on the trajectory 

of Rb. Thus, we should think about the correlation of the 

requested locations. The user’s real trajectory and the alter- 

native trajectories selected by the attacker should be shared 

Fig. 1 The shared-attack 
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Fig. 2 The roadless-attack 
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Fig. 3 The probability-attack 

 
 

For protecting trajectory privacy in continuous queries, 

we first study the case where trajectory privacy is exposed 

and propose three main attack models. In our attack model 

(showed in Figs. 1, 2, 3), we assume that user ui employs the 

traditional k-anonymity technique for preserving privacy and 

the LP is malicious. The value of k is the minimum degree 

of privacy that a user can tolerate. Here, we set the degree of 

privacy as k = 4. Without loss of generality, we suppose that 

each user sends three queries in a time period. Since each 

user sends query with the real location and the other k 1 

dummy locations to the LP, each query includes 4 locations. 

Therefore, we can get three areas termed as “anonymity area” 

for the three queries. 

in all of the anonymous area. There are at least two trajec- 

tories shared in all of the anonymous area, otherwise, user’s 

trajectory privacy may be easily exposed. 

 
 Roadless-attack 

 
As shown in Fig. 2, before matching with a map (e.g., Google 

Maps), the LP may consider the four trajectories are shared 

in the anonymity areas. However, after matching with the 

map, the LP discovers that there are no roads on some of the 

trajectories (pictured using dash line). Accordingly the LP 

filters the impossible trajectories and infers the user’s real 

trajectory is Ra. Thus, we should prevent choosing those 

locations that have no roads between them while selecting 

dummy trajectories. 

 
 Probability-attack 

 
Figure 3 indicates that the four trajectories are shared in all 

three anonymity areas, and we could know that the four tra- 

jectories are real after matching with the map. However, if the 

attacker achieves the side information [12], e.g., query prob- 

ability of location-vertex and trajectory-edge, then he/she 

would find that there are three trajectories Ra, Rc, Rd (pic- 

tured in the red line) have much smaller probability than the 

trajectory Rb (pictured in the green line). Thus, the attacker 

can easily infer that user’s real trajectory is Rb. 

Considering the three kinds of attack model, we propose 

the k-anonymity trajectory (KAT) algorithm in Sect. 5, to 

preserve users’ trajectory privacy. In our proposed KAT algo- 

rithm, it can be used to protect users’ location privacy in the 

single request scenario, as well protect users’ trajectory pri- 

vacy in the continuous requests scenario. 

 

 
4 Preliminaries and system model 

 
In this section, we first present some basic concepts and some 

definitions used in this paper, and then describe our system 

model in detail. 
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Fig. 4 
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Fig. 5 

   

 

 
 

 
 

 
   

 

 
The historical probability table of trajectory-edge 
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 Preliminaries 

 
(1) User location The location of a user is denoted by d(x , 

y), where x represents the latitude and y represents the 

longitude. 

(2) Request packet The request packet of a user is denoted 

by Req =(PI D, L, K, t, r, θmax, θmin), where PID is the 

pseudonym identification to identify the user uniquely, 

L is the set of positions (e.g., L d1, d 2 , . . . , dk ), 

including the user’s real location and k 1 dummy loca- 

tions, K is the minimum tolerable degree of privacy 

for a user (it denotes the number of candidate loca- 

tions/trajectories in this work). t denotes the sending 

time for the request; and r is the serviced content of the 

request (e.g., entertainment, dining, dating information 

request). θmax and θmin are used to determine the scope 

of the area for selecting the dummy location, where θmax 

and θmin are the maximum and minimum radius of the 

circular area. The size of θmax and θmin is set according 

to the user’s privacy degree K , walking speed and the 

time interval of submitting request. 

(3) Historical probability of location-vertex As shown in 
 

 

(4) Historical probability of trajectory-edge We can con- 

struct an undirected graph V, E by modeling Fig. 4. 

The graph V, E  is shown in Fig. 5. V is the point set 

of graph, which is the center of the small area. E is the 

edge set of graph. There exists an edge if the distance of 

two points meets the required threshold and there exists 

a real road on geographical map, otherwise it is no edge 

between the two points. The distance threshold of two 

points is related to user’s moving speed and the time 

interval between requests. Since it is impossible far away 

infinitely between the positions of the user’s request at 

the current moment and the next moment, there is no 

edge beyond the threshold. We call the sum of the two 

endpoints frequency of an edge as the edge’s frequency. 

For example, for the edge e  v1, v2 , the edge fre- 

quency can be calculated as follows: 

fe = fv1 + fv2 (2) 

Then we can calculate historical probability of trajectory 

edge eas following: 

  f 

i  = .m 
fe   

, j = 1, 2, . . . , m (3) 

request times of each small area in accordance with the 

historical statistics, called as frequency of the request, 

denoted by fi . It is very time-consuming to count the 

request times of each small area, so it is counted by a spe- 

cial counter server and updated once a week or a month. 

Then we can calculate the corresponding historical prob- 

ability of each small cell, denoted by p1, p 2 , . . . ,  pn. 

 

p      
      fi      

Theorem 1 The greater the probability of the two endpoints 

on an edge is, the larger the probability of the corresponding 

edge is. 

Proof For a point of interest on one route, we count the 

number of historical request and calculate the correspond- 

ing historical probability of this position. If this probability 

is high, it implies that many users pass the route. Hence, the 

probability of the corresponding edge (the route) is also high. 

i = n 
l=1 

fl 
, i = 1, 2 , . . . ,  n (1) п 

Figure 4 shows that each location has a probability of 

being queried in the past [12]. A user using the LBS 

service can get the probability of their location from the 

historical probability table of location-vertex. 

(5) Entropy In this work, we measure the degree of 

anonymity based on entropy. According to the knowl- 

edge of information theory, entropy reflects the uncer- 

tainty of a random variable. The greater the entropy is, 

Fig. 4, we divide a large area (location map) into many 

small grids of cells according to [12]. We can get the 
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the more uncertain information has. So we can know 

that if the entropy of the probability of location-vertex 

or trajectory-edge is maximal, the LP cannot determine 

the real user in which position or in which trajectory at 

the most extent. 

 

We denote { p1, p 2 , . . . ,  pk} as the k probabilities for the 

occurrence of an event, where the sum of all pi is 1. Then 

the entropy H for the k probabilities is defined as follows: 

 
k 

H = −  pi . log2 pi (4) 
i =1 

then we call the k endpoints of dummy trajectories as the k 

candidate locations. 

As shown in the above formulation, we should select the 

dummy position carefully, whose historical probability close 

to the probability of user’s real location as much as possible. 

Otherwise, the attacker can easily filter out the impossible 

position whose historical probability is too large or too less 

compared with the probability of user’s real position, and 

easily to find out the real location of user. For example, there 

are l probabilities of dummy locations that are much smaller 

than the probability of user’s real location, the attacker filters 

out the l dummy locations, and then infers the real location 

with the probability from 
1
 to 

1
 . 

k k−l 

Therefore, Hmax log2 k, where pi 1/ k, i 1, 2 , . . . ,  k. 

When a user sends request Req to the LP, the content 

L of Req includes the candidate set of locations, denoted 

by {d1, d 2 , . . . ,  dk}, whose corresponding historical prob- 

ability is p1, p 2 ,.. . pi . . . ,  pk . We note that the sum of 

k selected probabilities is less than 1, whereas the sum of 

all the probabilities in the historical probability of location- 

vertex is 1. Thus, we need to normalize these probabilities, 

 
(6) Anonymity degree As mentioned before k represents 

that there are k candidate locations/trajectories. Accord- 

ing to the historical probability table of location- 

vertex/trajectory-edge, we can get k corresponding prob- 

abilities. In order to ensure the k probabilities are similar, 

we define the anonymity degree D as follows: 

which we denoted as   pd1 

the entropy. 

, pd2 , . . . ,  pdk }
, before computing 

D = 2H
 ∈ [K − ε, K ] (9) 

There is a difference between anonymity degree D and 

pdi 

pi 
= 

k
 

j =1 
p 

, j = 1, 2 , . . . ,  k (5) privacy degree K . As mentioned before K is the min- 

imum degree of privacy that user can tolerate. It is 

set according to user’s own requirement before send- 

Now, we can ensure the      pdi 1, i   1, 2 , . . . ,  k. Then 
i 

we can compute the entropy. 

 
k 

H = −  pdi . log2 pdi (6) 

i =1 

When a user sends requests, there must be a trajectory 

between the two continuous queries. Thus, the trajectory has 

a historical trajectory probability q. Matching with the his- 

torical probability table of trajectory-edge, we can carefully 

choose k    1 dummy trajectories q   q q . 
We first normalize the probability of k trajectory qr qr 

...,  qk
r 
−1

} 
as follows. 

ing request. However, anonymity degree D is applied 

in the real-time process of anonymity. Generally, the 

anonymity degree D is less than K . Because the max- 

imum entropy H   log2 k at pi   
1
 , i   1, 2 , . . . ,  k, 

so the D   K . The smaller the D, the bigger the differ- 

ence between the k probabilities. Thus, D can be used 

to limit the similarity in the k probabilities by setting an 

appropriate value for ε. 

 
Theorem 2 When the anonymity degree D is much less than 

privacy degree K (i.e., D K), the DLS algorithm fails to 

protect the location privacy of the user. 

 
Proof When D   K , some probability of candidate loca- 

q qi 

q + 
.k−1 q 

i 
q + 
.k−1 q 

(7)  
tions are far away from the probability of user’s real location. 

Thus, we can filter out these impossible locations whose 
 

 

Then we have the corresponding entropy. 

 
k−1 

H = −qr.log2 q
r − qi

r . log2 qi
r
 

i =1 

 

 

 
(8)  

Assume there are kn impossible locations. Then we can infer 

user’s real location with a probability of 1/ (k  kn), which 

is higher than the theoretical probability 1/ k. Thus, the DLS 

algorithm fails to preserve location privacy when D K . 

In this work, for preserving location privacy in single 

We selected k candidate historical probabilities for trajectory 

edge based on the principle of the maximum entropy, and 

query scenario, we design the KAT algorithm to meet the 

requirement of anonymity degree. 

probabilities are much smaller or larger than the real location. i 
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(a) The existing LBS system (b) Our system model 

Fig. 6 The LBS system 

 

 

 System model 

 
Figure 6a shows the existing LBS system. Users can eas- 

ily submit queries to the LBS server with a hand-held (e.g. 

Smart phones, tablet) and get the information they want. 

In the LBS system shown in Fig. 6a, a user directly sub- 

mits request with real location to a LBS provider, which 

may be untrusted, resulting in the loss of location and 

trajectory privacy. For preserving privacy, we propose a 

novel system model, as showed in Fig. 6b composed of 

three major components: USER, PIDS and LP. Where the 

USER is the subscriber, PIDS is the pseudonym identity 

server generating a pseudo identity for users, and the LP 

is the LBS provider. We assume that each component in 

our system model works in accordance with the relevant 

legal agreement, it does not rule out each component’s 

curiosity to collect data through snooping on others. Our 

system model can be divided into three main stages as fol- 

lows. 

 

 
Stage 1 Pseudo identity (PID) distribution. When a “new 

user” wants to use the LBS services, the user regis- 

ters with the PIDS. The PIDS verifies and determines 

that whether the user is legal and distributes a pseudo 

identity to the legal user. If the user is illegal, the LBS 

system will refuse to serve him. In this work, a new 

user not only refers to a newly arriving user who sub- 

mits a query for the first time, but also refers to an 

old user who is reusing the LBS. For example, assume 

that a user is sending continuous requests for LBS, if 

the user does not find k 1 appropriate dummy loca- 

tions to form k-anonymity trajectory, then the user must 

reapply for another PID. At this time, the “old user” 

becomes a “new user”. Therefore, a user may have more 

than one pseudo identity in the process of processing 

continuous requests. For the LBS provider, it may be 

confused and believe that more than one user are send- 

ing requests at the period of time. In this stage, a user 

submits only their real ID as part of the query, so PIDS 

cannot deduce other information about the user. Each 

legal user using the LBS service is given a PID by the 

PIDS. 

Stage 2 The validation process. The main purpose of 

the validation process is to ensure that users do not 

forge the PID and once again confirm that they are 

legal. When the LP receives the request, it will check 

the user’ PID through communicating with the PIDS. 

If the user is legal, the LP returns some side infor- 

mation. The side information is limited to user’ query 

times for historical locations or trajectories. There are 

two kinds of side information for our LBS system: 

historical probability table of location-vertex and histor- 

ical probability table of trajectory-edge. For example, 

if a legal user sends a single request, the LP will 

return the historical probability table of location-vertex. 

And if he/she sends the continuous request, the LP 

will return historical probability table of trajectory- 

edge. 

Stage 3 Request processing. Using the information about 

the historical probability table of location-vertex or his- 

torical probability table of trajectory-edge, user chooses 

other k 1 dummy locations and sends request to the LP. 

Then the LP responds to the user based on the request 

content. For example, if a user is asking “where is the 

nearest restaurant”, the LP will return k restaurant mes- 

sages to the user based on the k positions. Then the user 

finds out the useful information according to his real loca- 

tion. 

 

 

 
5 Algorithm design 

 
In this section, we first present framework of the k-anonymity 

trajectory (KAT) preservation algorithm. Then we introduce 

the KAT algorithm which includes the Sliding Window based 

k-anonymity (SWK) algorithm for single query and the tra- 

jectory select mechanism (TSM) algorithm for continuous 

queries. 

 

 
 The KAT algorithm 

 
Figure 7 describes the framework of the KAT algorithm. It 

employs the sliding window based k-anonymity (SWK) algo- 

rithm while sending a single request or once before sending 

continuous requests; whereas for continuous requests, the 

KAT algorithm calls the trajectory select mechanism (TSM) 

algorithm. If a request does not satisfy the requirement (e.g., 

the selected k trajectory cannot meet the anonymity degree 

D), the KAT algorithm will re-call the SWK algorithm. Algo- 

rithm 1 describes the pseudo code of KAT algorithm. 

Network operator 

Users 
  Request  

 
Response 

LP 
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else 

 29: Return .  

= 

= 

= = 

i < d1 ) 2 d1 ) 2 

 

A in ascending order (Line 4). The area contains k locations 

at least, one of which is must the user’s location d1. This is 

guaranteed by the value of θmax and θmin. There are three 

scenarios: 

 

• number ( p p ≥ k−1 && number( p p ≥ k−1 

• number ( pi  < pd1 ) < k−
2 

1
 

• number( pi  > pd1 ) < k−
2 

1
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 The framework of the KAT algorithm 

 
Algorithm 1: K-Anonymity Trajectory (KAT) 

 

1: if (single request) 

2: Call the SWK algorithm. 

3: else if (continuous request) 

4: Call the TSM algorithm. 

5: if (it is the first time request || the false tracks don’t meet 

the requirement) 

6: Call the SWK algorithm. 

7: end if 

8: end if 
 

 

 

 The SWK algorithm 

 
In this algorithm, a user sets K, θmax and θmin based on his/her 

privacy requirements and gets real location d1 using some 

positioning device (e.g. GPS). Also, if time t 0 and f lag 

= 1, it is the first request of a continuous series of queries; 

and if t 0 and f lag = 0, it is a single query. Algorithm 2 

describes the pseudo code of SWK algorithm. 

As shown in Algorithm 2, the SWK algorithm is suit- 

able for the scenario of single request or the first time of 

continuous request. The input p is represented the historical 

probability table of location-vertexes, and d1 is represented 

user’s real location. The f lag is set to differentiate between a 

single request and a continuous request. It is a single request, 

when f lag  0. Otherwise f lag   1 represents a continu- 

ous request. After determining the scope of anonymous area 

A (Line 3), we sort the probabilities of locations included in 

Algorithm 2: Sliding Window based k-anonymity 

  algorithm (SWK)  

Input:   ,   , , , ,  , , 

Output:   = {    , ,…  , } 

1: if ((  == 0&& == 1) || = =0) 

2: Apply for a PID. 

3: Compute the scope of anonymous area by , 

and . 

4:  Sort the probabilities in the area in ascending order 

and let is the probability of location . 

5: if (number ( < ) ≥ (   − 1)/2  && number ( > 

)≥ (  − 1)/2) 

6:  Initialize the sliding window to include k probabilities 

which is the -centered and slide to both sides and 

compute anonymity degree . 

7: while ( [ −  ,   ]) 

8: Slide the window toward right with one step. 

9: if (  sliding window|| window.size() < ) 

10:  Failed to generate the sliding window. 

11: break 

12:   else if (number ( < ) < (  − 1)/2 ) 

13:  Reset the sliding window to include the k smaller 

probabilities and compute anonymity degree . 

14: while ( [ −  ,   ]) 

15: Slide the window toward right with one step 

16: if (  sliding window|| window.size() <  ) 

17:  Failed to generate the sliding window. 

18: break 

19:   else if (number ( > ) < (  − 1)/2 ) 

20:  Reset the sliding window to include the k larger 

probabilities and compute anonymity degree . 

21: while ( [ −  ,   ]) 

22:  Slide the window toward left with one step 

23: if (  sliding window || window.size() < ) 

24:   Failed to generate the sliding window. 

25: break 

26:  if (Failed to generate the sliding window) 

27:  Modify the value of   , and and submit 

request again. 

28: 
 

  

begin 

 

 
input 

TSM 
continuous Single or 

continuous 

request? 

Is the first 

time? 

N 

Y 

Meet the N 

requirement? 

 
Y 

ounput 

end 
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sliding window 
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When the numbers of location probabilities (both larger and 

smaller than the probability pd1 of user’s real location) are 

more than (k 1)/2 (Line 5), the initial pd1 -centered sliding 

window extends to both sides until it contains k probabilities 

of locations (Line 6). If it does not meet the requirement of 

the anonymity degree, the sliding window slides towards to 

the right until finding the k candidate probabilities (Line 8). 

When the numbers of location probabilities, which are 

smaller than the probability pd1 , are less than 
k−

2 
1  (Line 12), 

the initial sliding window contains k probabilities of loca- 

tions in ascending order (Line 13). If it does not meet the 

requirement of D, the sliding window is slid towards the 

right (Line 15). 

When the number of location probabilities, which are 

larger than the probability  pd1 , are less than  
k−

2 
1  (Line 19). 

The initial sliding window contains k location probabilities 

in descending order (Line 20). If it does not meet the require- 

 

 

Fig. 8 Repeatedly choose the locations 

 
 

request. For example, the location di−1, j may be selected two 
times. Figure 8 shows why we select the dummy trajectories 

whose endpoint may be repeatedly chosen. 

From Fig. 8, we can analyze that there are more than 

three trajectories (the black line is the real trajectory). 

Because of the repeat locations, it can be concluded there 

ment of D, the sliding window is slid towards the left (Line 

22). 

All three scenarios are aimed at finding k candidate proba- 

bilities, corresponding to the candidate locations which exist 

in the anonymous area A. If the SWK algorithm fails to gener- 

ate the sliding window, the three scenarios mentioned above 

follow the same process, i.e, the user will modify the value 

of K , θmax and θmin and submit the request again. 

Theorem 3 The time complexity of SWK algorithm is lower 

than that of the DLS algorithm. 

Proof DLS algorithm is only suitable for preserving the pri- 

vacy of single request. DLS algorithm chooses 2k dummy 

locations, among which k probabilities of dummy locations 

are before pd1 and k after pd1 . Then DLS algorithm selects 

k 1 candidate probabilities form the 2k dummy locations. 

Thus, the DLS algorithm loops C
k−1

 times and the time 

complexity increased exponentially with the growth of k. 

However, the SWK algorithm, proposed in this work, finds 

the k 1 candidate probabilities through sliding window. 

According to the experiment in Sect. 6, for successfully get- 

ting the right sliding window the SWK algorithm generally 

repeats more than three times. Thus, the time complexity of 

SWK algorithm is lower than that of the DLS algorithm. п 

 The TSM algorithm 

 
When a user sends continuous queries, the f lag is set as f lag 

=1. If it is not the first request for the continuous queries, 

the time is ti > 0. In this work, we suppose that the LBS 

system has memory, and it can remember all the candidate 

locations selected by users. So we can get k locations Lr = 
i −1,1, i −1,2,..., i −1, j , . . . ,  i −1,k 

time ti−1. Except considering that the probability of a user’s 
real trajectory, TSM algorithm will preferentially select the 

dummy trajectories whose endpoint is in the set Lr of last time 

are 13 paths. Then the attacker infers the user’s real 

path with a probability 1/13, which is much less than 

the probability 1/3 (using the traditional k-anonymity for 

protecting trajectory). So this kind of selecting mecha- 

nism greatly avoids the risk of leaking trajectory pri- 

vacy. 

Algorithm 3 shows the pseudo code of the TSM algo- 

rithm. The TSM algorithm is suitable for continuous request 

when the time ti > 0. The input q is represented the histori- 

cal probability table of trajectory-edge, and d1 is represented 

user’s real location at ti . The set Lrr, L r r , .. . ,  di−1,k}, denotes 

the k candidate locations of last query at ti−1. The output 
is also the k locations, denoted as L     d1, d 2 , . . . ,  dk . 

After determining the scope of anonymous area A, we sort 

the probability of all trajectories TR between the candi- 

date locations of the last request Lrr and the locations in 

anonymous area A (Line 3). The set TR contains k edges 

at least, one of which must be user’s real path probability 

q1. The TSM algorithm will preferentially select m trajecto- 

ries whose endpoint is in Lr from the set TR (Line 4–10). 

So we only find the other k   1   m trajectories except 

the m selected trajectories and user’s real trajectory. Every 

location of Lr = di−1,1, d i−1,2,..., di−1,k , except from 

the m 1 selected locations, has a trajectory set tr j with 

the endpoint in the anonymous area A. We store the prob- 

ability of trajectory-edge tr j into the corresponding storage 

str (qi ) (Line 14). Then we randomly choose one probabil- 

ity of trajectory-edge from the each storage str (qi ) every 

time, and get k  1-m probabilities (Line 17–18). Finally, we 

compute entropy for the k selected locations. If it meets the 

requirement of anonymity degree D (Line 19), the request is 

successful. Otherwise, we reset the time t   0 and back to 

the process of Algorithm 2 (Line 20). This process can pro- 

tect user’s trajectory privacy efficiently. And the malicious 

attacker infers the user real location/trajectory with a lower 

probability. 
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12: if ( , {the endpoint of trajectories}) 
j =1 i =1 

 

To realize k-anonymity and maximum entropy, TSM algo- 

rithm select k    1 dummy trajectories, whose probability 

of trajectory-edge is similar to the probability of the user’s 

real trajectory. Furthermore, the k trajectories selected by 

TSM algorithm may have some crossing points. The LP may 

believe that there are more than k trajectories. So the TSM 

algorithm can effectively protect trajectory privacy. For each 

request of continuous queries, TSM algorithm also achieves 

k-anonymity and protects location privacy of user. 

 

 Algorithm 3: Trajectory Select Mechanism (TSM)  

6 Simulation results and analysis 

 
For evaluating and the effectiveness of our proposed k- 

anonymity trajectory algorithm (KAT), we have conducted 

extensive simulations. In this section, we first describe the 

simulation environment, and then present the simulation 

results and analysis. 

 
 Simulation environment 

 
We first construct a graph to represent a large real geographic 

area. The horizontal axis of the graph represents the latitude 

Input: , 

 = { , 

, 

,…  , } 

of the geographic location and the vertical axis denotes the 

longitude. We then divide the graph into 10 × 10 small cells. 

Output:    = {    , ,…  , } 

1: if (    > 0 && ==1) 

2: Determine the scope of anonymous area by the , 

and . 

3:  Sort the probability of all trajectories between the 

candidate   locations   of   the   last   request and the 

locations in the anonymous area in ascending order. 

Label each cell with a ordered pair (i, pi ), where i represents 
the location and pi is the corresponding historical location 

probability. As described before, the historical probability 

must meet two constraints: 

 

0 < pi < 1 (10) 

4: if (the location is included in   and in area   ) 
 

 

 100 
p
 

 
= 1 (11) 

6: end if 

7:  Find the user’s real path probability marking the 

historical probability table of trajectory-edge . 

8: if (the   . = 1of endpoint of &&the probability 

of edge is similar with ) 

9: Choose the edges as the candidate trajectory. 

10:    Let the corresponding positions as the part of output 
, ,…  , . 

To simulate the roads in the real geographic area we randomly 

add edges qij between these locations. The triple i, j, qij 

denotes the historical trajectory probability between location 

i and location j . The probability qij should meet the follow- 

ing two conditions. 

 

0 ≤ qij < 1 (12) 

11:    for ( : ) 
 

 

 100         100 
q
 

= 1 (13) 

13:  Find all the trajectories between 

location 

and the 
 

 

Finally, we construct the undirected graph G V, E , where 
V is the set of points, which are the center locations of all of 

,… ,  in the area . 

14:  Store the probability of the trajectories in ( ). 

15: Let Q = 0, where Q represents the set of k selected 

probability of trajectory. 

16: for ( ( )) 

17: Select a probability from ( ) and the number is 

k-1-m. 

18: Compute the of the k-1-m probabilities, the 

probability of  trajectories, and user’s real q1 . 

19: if ( [ −   ,    ]) 

20: Q = {k probabilities of trajectory-edge}. 

21: break; 

22: if (Q) 

23: Return L (the corresponding endpoint of the k 

trajectories). 

24: else 

25: Reset and submit request again. 
 

 

the cells and E is the set of edges in the graph. 

In our simulations, we compare the performance of our 

proposed KAT algorithm and the DLS algorithm proposed 

in [12] under the scenarios of single request and continuous 

request. 

 
 Simulation results 

 
In our experiment, we assume that a user is in the location i 

20 and sends a single query. Table 1 shows the comparison 

for entropies of the KAT, DLS and MAXS (we use MAXS 

to denote the maximum entropy defined in Sect. 4.1). From 

Table 1, we can see that our KAT algorithm can achieve k- 

anonymity in single query. Because the entropies of DLS and 

KAT are identical when the privacy degree K varies from 3 

to 5, it means that they may select the same locations as the 

candidate location. With the increasing of K , the entropy of 

algorithm KAT is a little less than DLS. The entropy gained 

i =1 5: . = 1   

, , , 

, 

, 

i 

i j   
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Table 1 Comparison for the 

entropies of MAXS, DLS and 
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Fig. 9 The time consumption for single query 

 

Fig. 10 Comparison on entropies for continuous queries 
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7.0 

 

from both DLS and KAT algorithms are very closed to the 

maximal value (e.g., MAXS). 

Figure 9 shows the time complexity of the KAT and DLS 

algorithms with the different K in a single query. We can see 

that the time consumptions of the KAT algorithm and DLS 

algorithm are very closed to each other when the privacy 

degree K < 7. However, the time for selecting candidate 

locations grows exponentially when K > 7, whereas the time 

consumed by KAT algorithm is stable. Therefore, the KAT 

algorithm greatly reduces the time complexity compared to 

6.5 

 
6.0 

 
5.5 

 
5.0 

 
4.5 

 
 
 
 
 
 
 
 
 

 
1 2 3 4 

 
 
 
 
 
 
 
 
 

 
5 6 7 8 9 

Latitude 

DLS. 

Figure 10 shows the simulation results comparing entropy 

of the compared algorithms. In this set of simulations, we also 

assume that the user is in the location i    20 before send- 

ing continuous queries. In our experiments, the user submits 

three queries in total with the privacy degree k = 3. Accord- 

ingly the KAT algorithm selects 3 candidate locations (L = 

{di1=20, di2=33, di3=44}) at time t0. At time t1 the candidate 

locations denoted as L1 = {di1=34,di2=44, di3=24}. The loca- 

tion i = 44 is selected two times, because the location is in 
the both anonymous areas of the two queries. At time t2 the 

candidate locations are the L2       di1=58, di2=47, di3=56 . 
The entropies for KAT and DLS algorithm are both closed 

to the maximal entropy (MAXS). Thus, we can see that each 

Fig. 11 The trajectory map of KAT algorithm 

 

 
continuous query request gets the near maximal entropy and 

also achieves k-anonymity in our proposed KAT algorithm. 

Figure 11 shows the trajectory achieved by the KAT 

algorithm. The black line is the user’s real trajectory, and 

the other two are the dummy trajectories selected by the 

KAT algorithm. Because of the intersection point i 

44 (x 4.5, y 5.5), we can get 5 trajectories. Thus, the 

malicious attacker may infer the user’s real trajectory with 

probability of 1/5 rather than the probability of 1/3.  

Figure 12 shows the trajectory achieved by the DLS algo- 

rithm. The black line represents the user’s real trajectory and 
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KAT  3 4 5 6 7 8 9 10 

 
MAXS 1.58496 2.00000 2.32190 2.58500 2.80740 3.00000 3.16990 3.32190 

 DLS 1.58435 1.99899 2.31964 2.58226 2.80409 2.99535 3.16402 3.31354 

 KAT 1.58435 1.99899 2.31964 2.57885 2.80033 2.98704 3.15548 3.30315 
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protect trajectory privacy than the existing DLS algorithm 

for continuous LBS requests. 

Figure 13 illustrates the simulation results comparing the 

time complexity of the KAT and DLS algorithms under dif- 

ferent privacy degree k (k = 3, 5, 7, 9) with continuous queries. 

For the DLS algorithm, the time for selecting k candidate 

trajectories between each request of continuous query is sta- 

ble and increases quickly with the growth of the value of k. 

On the other hand the time for selecting the k trajectories 

increases slowly in the KAT algorithm. Thus, the KAT algo- 

rithm is more time efficient than the DLS algorithm in the 

continuous query scenario. 

 
 

7 Discussion 

 
In this paper, we propose the k-anonymity trajectory algo- 

rithm (KAT) for preserving privacy for the continuous query 

the other two are the dummy trajectory selected by the DLS 

algorithm. The dashed line implies that there are no roads 

in the geographic map. Figure 12 shows that there are two 

trajectories that have no roads. So the attacker can easily fil- 

ter out the dummy trajectories (no road) and infer user’s real 

trajectory. By comparing the results shown in Figs. 11 and 

12, we can see that our proposed KAT algorithm can better 

scenarios in IoT-cloud systems, rather than protecting the 

user’s privacy single query scenario in our previous work 

[41–43]. KAT is superior to the dummy location selection 

(DLS) algorithm proposed in [12], as shown in Fig. 9. The 

DLS algorithm is time consuming in selecting other k 1 

candidate locations form the 2k dummy locations. In con- 

trast, the time complexity of KAT algorithm is substantially 
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Fig. 13 The time consumption in continuous query 
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reduced by collecting other k 1 candidate locations by using 

the sliding window based k-anonymity mechanism. 

To protect trajectory privacy, we introduce the maximum 

entropy and the trajectory select mechanism into our KAT 

algorithm for choosing other k 1 dummy trajectories to 

resist attacks in the continuous query. We validated the tra- 

jectory anonymity through simulations in Figs. 11 and 12. It 

is evident that the malicious LP can easily infer the actual 

customer trajectory if the traditional DLS algorithm is used. 

It is also evident that the time consumption for the proposed 

KAT algorithm in continuous query is far less than the tradi- 

tional DLS algorithm for peer anonymity. 

 
8 Conclusion 

 
This paper has addressed privacy issues in location-based 

services for IoT-cloud systems and also identified a list of 

research issues in privacy. In this paper we have studied 

the problem of protecting trajectory and location privacy 

in LBS. We considered three attack models where a user 

applies traditional k-anonymity technology for trajectory pri- 

vacy preserving and the LP may be malicious attacker. We 

design an efficient k-anonymity trajectory algorithm for pre- 

serving users’ location privacy in single query and trajectory 

privacy in continuous queries. In our proposed algorithm, 

we design the k sliding window for selecting the dummy 

locations and the Trajectory Select Mechanism (TSM) for 

selecting the dummy trajectories. Simulation results show 

that our algorithm reduces the time complexity compared to 

the existing solutions for single query and effectively pre- 

serves users’ trajectory privacy for continuous queries. 
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