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Abstract: Fatty Liver Disease (FLD) is caused by the 

deposition of fat in liver cells and leads to deadly dis- 

eases such as liver cancer. Several FLD detection and 

characterization systems using machine learning (ML) 

based on Support Vector Machines (SVM) have been 

applied. These ML systems utilize large number of ul- 

trasonic grayscale features, pooling strategy for selecting 

the best features and several combinations of training/ 

testing. As result, they are computationally intensive, 

slow and do not guarantee high performance due to 

mismatch between grayscale features and classifier type. 

This study proposes a reliable and fast Extreme 

Learning Machine (ELM)-based tissue characterization 

system (a class of Symtosis) for risk stratification of 

ultrasound liver images. ELM is used to train single 

layer feed forward neural network (SLFFNN). The 
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input-to-hidden layer weights are randomly generated 

reducing computational cost. The only weights to be 

trained are hidden-to-output layer which is done in a 

single pass (without any iteration) making ELM faster 

than conventional ML methods. Adapting four types of K-

fold cross-validation (K = 2, 3, 5 and 10) protocols on 

three kinds of data sizes: S0-original, S4-four splits, S8-

sixty four splits (a total of 12 cases) and 46 types of 

grayscale features, we stratify the FLD US images using 

ELM and benchmark against SVM. Using the US liver 

database of 63 patients (27 normal/36 abnormal), our 

results demonstrate superior performance of ELM com- 

pared to SVM, for all cross-validation protocols (K2, 

K3, K5 and K10) and all types of US data sets (S0, 

S4, and S8) in terms of sensitivity, specificity, accuracy 

and area under the curve (AUC). Using the K10 cross- 

validation protocol on S8 data set, ELM showed an 

accuracy of 96.75% compared to 89.01% for SVM, 

and correspondingly, the AUC: 0.97 and 0.91, respec- 

tively. Further experiments also showed the mean reli- 

ability of 99% for ELM classifier, along with the mean 

speed improvement of 40% using ELM against SVM. 

We validated the symtosis system using two class bio- 

metric facial public data demonstrating an accuracy of 

100%. 

 

Keywords Fatty liver disease . Extreme learning machine . 
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Introduction 

 
Over the last two decades, liver-related mortality has 

ranked among the top 12 causes of death and has been 
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repeatedly listed as the fourth leading cause of death 

among adults aged 45–54 [1]. The presence of an ex- 

cess amount of fat in liver cells leads to Fatty Liver 

Diseases (FLD). The process of deposition of fat in 

the liver cells is called steatosis and this can be caused 

by metabolic syndrome, consumption of alcohol, obesity 

due to insulin resistance, and a variety of other factors. 

[1, 2]. FLD is further categorized into two types: alco- 

holic and non-alcoholic. The majority of the population 

of western nations suffering from FLD is afflicted by non-

alcoholic FLD (NAFLD) [3]. FLD may lead to se- rious 

diseases like inflammation (steatohepatitis), cirrho- sis 

and liver cancer. This disease is curable in the early stages 

and early detection of FLD has shown great suc- cess in 

patient to live long lifespan. Also, the cost of FLD 

detection is less compared to treatment of ad- vanced 

liver diseases. Currently, liver biopsy is the gold standard 

for the detection of FLD. The biopsy technique is 

uncomfortable, suffers from sampling error, and is invasive 

[4]. Various non-invasive imaging techniques such as 

Compute Tomography (CT) and Magnetic Resonance 

Imaging (MRI) are available for FLD detec- tion. CT 

suffers from the challenge of radiation risks [5], while 

MRI can only detect very small amount of fat [6]. The 

MRI technique works well while detecting fatty infiltration 

[1, 7]. An alternative to these modali- ties is Ultrasound 

(US) images, which are commonly adapted for FLD 

imaging [8]. The application of ma- chine learning (ML) 

for US liver images shows sensi- tivity and specificity 

above 80% [9]. Therefore, US has become one of the most 

popular scanning techniques for FLD detection [10]. 

Two sets of methods have been proposed in literature 

for characterization of liver disease: (a) based on ML 

and (b) based on signal processing. Under the class of 

Symtosis for FLD detection, Suri and his team designed 

tissue characterization system [11] utilizing features like: 

Discrete wavelet Transform (DWT) [12], High order 

spectra (HOS) [13] and texture features [14], which 

were computed using US liver images which were then 

fed to Decision Tree (DT)-based classifier leading to an 

accuracy of 93.3%. Under the same class, Acharya et al. 

in 2014, proposed a Fuzzy Classifier for detection of 

Hashimoto Thyroiditis from thyroid images [15–17] 

using wavelet transform [18]. The system achieved an 

accuracy of 84.6%. In 2014, Subramanya et al. [19] 

achieved accuracy of 84.9% on US liver images using 

SVM classifier. Using signal processing approach, Ma 

et al. in 2015, developed kurtosis-based [20] scanning 

method for detection and grading of FLD in US liver 

images, demonstrating an accuracy of 81.2%. In 2016, 

Suri and his team (Saba et al. [21]) used Back 

Propagation Neural Network (BPNN) consisting of 10 

hidden layers, and used 128 features extracted   from 

US liver images using six different types of feature 

extraction algorithms. BPNN showed an accuracy of 

97.6%. 

Support Vector Machine (SVM) [22] is a widely used 

ML technique for supervised learning. SVMs apply two 

main techniques for stratification. First, it applies kernel 

methods to transform the problem from original input 

space to a high dimensional one, called the feature 

space, where linear separation of training samples be- 

longing to different classes is possible. Second, it tries 

to find the best separating hyper-plane between the two 

classes. These ML systems utilize large number of ul- 

trasonic grayscale features, pooling strategy for selecting 

the best features and several combinations of training 

and testing. As a result, they are computationally inten- 

sive, slow and do not guarantee high performance due 

to mismatch between grayscale features and classifier 

type. Keeping the computational speed and performance 

with respect to data size in mind, we present here 

Extreme Learning Machine (ELM) [23, 24] paradigm. 

The ELM trains a single layer feed forward neural net- 

work (SLFFNN) where the input-to-hidden layer 

weights are randomly initialized. The ELM only trains 

the hidden-to-output layer weights using the least square 

loss model that employs a closed form solution given 

by the Moore–Penrose pseudo-inverse [25]. In a least 

square sense, the error is minimized and likely to prove 

more accurate or at least comparable to iterative neural 

network models [21]. Further, ELM allows only a single 

stop shop for training weights and therefore, we believe 

that ELM is likely to be faster technique compared to 

SVM, and will reach minimum least square error in a 

single pass irrespective of the training data size. Since 

ELM is single layered neural network architecture un- 

like other neural network architectures [21], this requires 

low resource management and likely to show better per- 

formance. We thus hypothesize that ELM will be a bet- 

ter system for FLD risk stratification compared to con- 

ventional ML systems. 

We provide a comprehensive analysis of the two 

methodologies in this paper using US liver dataset. We 

developed a computer aided system under the class of 

Symtosis for detection and stratification FLD-affected 

(diseased) and FLD-unaffected (controls or normal’s) 

liver images as shown in Fig. 1. The input US images 

are processed and partitioned before feeding them into 

the tissue characterization module. Four type of cross- 

validations (K = 2, 3, 5 and 10) are performed on the 

dataset before feeding. Since our data is limited, we 

additionally sub-sample the original images (S0) into 

four parts (S4) and sixty four parts (S8). Then, the tis- 

sue characterization module outputs a predicted risk 
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Fig. 1 Overall Symtosis system 

using ELM-based risk assessment 

system 
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based on ground truth (considered as biopsy reports) 

and cross-validation type. Finally, the predicted risk is 

evaluated against the ground truth that gives us the per- 

formance parameters. The Fig. 1 gives us an overall 

vision of the entire system. The system derives 46 fea- 

tures using Gabor, Gray-Level Co-occurrence Matrix 

(GLCM) and Gray Level Run Length matrix (GRLM). 

Since our scope of this paper is to purely understand 

and harness ELM and further to benchmark against 

SVM and back propagation   neural network (BPNN), 

we thus have limited ourselves to handling only limited fea- 

ture extraction without feature selection paradigms. Using 

K10 protocol on three kinds of data sets (S0, S4, S8), the 

system yields an accuracy of 92.4%, 94.8% and 96.7%, re- 

spectively, while the SVM-based system yields an accuracies 

as: 86%, 87.9%, and 89%, respectively. It is also observed that 

the accuracy values increase with an increase in K (cross- 

validation folds) and sub-sampling. We demonstrate a 40% 

improvement in ELM speed when compared against SVM. 

We further compared our architecture against BPNN [21], 

which is also designed using NN-based systems, showing 

comparable accuracy with efficient architecture and speed. 

The ELM-based tissue characterization system is also validat- 

ed using biometric facial dataset where it achieves an accuracy 

of 100% across all cross-validation protocols showing greater 

degree of generalization compared to contemporary ML algo- 

rithms such as SVM. 

In the following section 2, we discuss data demographics 

and US image acquisition protocol. Section 3 presents dif- 

ferent feature extraction algorithms and establishes the math- 

ematical foundation of the ELM paradigm. Experimental 

protocol is presented in section 4 and the results are present- 

ed in section 5. Benchmarking against conventional SVM- 

based classification is presented in section 6 while the dis- 

cussion is presented in section 7. Conclusions are presented 

in section 8. 

 

(b) 
 

 
 
 
 
 
 
 
 
 
 

 
Data demographics, collection and preparation 

 
demographics, ethics approval and gold standard Sixty- 

three patients (36 abnormal and 27 normal) were collected 

after IRB approval by Instituto Superior Tecnico (IST), 

University of Lisbon, Portugal and written informed 

consent provided by all the patients. The images were 

retrospectively analyzed. The patient with normal body 

mass index was selected. The normal/abnormal US 

scanned images are as shown in Fig. 2. The gold stan- 

dard or ground truth label for each patient (normal or 

abnormal) was determined by taking a liver biopsy and 

analyzing it in the tissue pathological laboratory [11]. 

 
Liver ultrasound scanning, data collection and prepara- 

tion The US scanning and analysis were done on the patients 

with the help of medical experts. A Philips CX 50 US machine 

was used for capturing US scanned images. The US 

scanner had frequency from 1 to 5 MHz and 160 pie- 

zoelectric elements of curved shape. The captured im- 

ages were gray scale images with 1024 × 1024 pixels. 

Each gray scale image was stored as 8 bits/pixel reso- 

lution. The manufactures were provided a default com- 

puter interface for obtaining input. We used this inter- 

face for obtaining patient’s image data. We checked the 

setting and collaboration of US machine before 

obtaining input   images. The standardization was done 

as per Qayyum et al. [26] approach. i.e., 20 patients 

with normal liver and normal body mass index (18.5– 

24.9) were called and US scanning was performed. The 

result of the image was then examined. Based on the 

results, standardization was done. US machine with im- 

age depth of 15 cm and frequency 3.5 MHz was used. 

The image had two focal zones with 7.5 cm in the 

central. The dynamic range for this experiment was set 

at 70 dB but the gain was changed based on the patient 
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Fig. 2 Top row: Normal liver 

images; Bottom row: Abnormal 

liver images 

 

 

 

 

 

 

 

 

 

biotype. For all the examination of scanned images 

Time Gain Compensation (TGC) was fixed at the cen- 

tral point to remove this variable parameter. The fixed 

central position assists standardization of the protocol. 

Different transducer angles and orientations were used 

based on patient biotype to get the liver anatomical 

landmarks. Patients were kept in supine, comfortable 

position during scanning for avoiding major patient mo- 

tion. The liver has a small left lobe (in the epigastric 

are a) a nd a l ar g e r i g h t  lo be ( in  t he r ig  h t 

hypochondrium) [27]. The effect of FLD disease can 

be viewed in both parts of the liver. Since right liver 

is the major liver part, we used scanned image of the 

right lobe liver. A region of interest (ROI) of 128 × 128 

pixels along the medial axis was extracted from each 

image. 

 

 
Sub-sampling of us data sets (S4 and S8) Since the learning 

strategies of ELM-based Symtosis require faster generaliza- 

tion if the training samples be increased. We therefore sub- 

sample the original DICOM images using spatial transforma- 

tion into two sets of data sets: S4 and S8. Examples of S4 and 

S8 images are as shown in Figs. 3 and 4. 

Methodology 

 
The working of classifiers in the Symtosis system 

shown in Fig. 1 has been discussed here. The main 

challenge in application of SVM is computational cost 

involved with finding support vectors in the training 

dataset. The application of kernel functions to find lin- 

ear solution for non-linearly separable data in high di- 

mensional space adds to the mathematical stress [28]. 

ELM solves the problem of classification in single iter- 

ation, i.e., removing the idea of an iterative approach. 

The internal architecture ELM-based tissue classification 

in Symtosis system that allows training of the SLFFNN 

in a single pass is shown in Fig. 5. It is seen that ELM 

combines generalized matrix inverse of an activation 

function (sometimes called as pseudo inverse matrix ac- 

tivation function matrix-shown in Appendix A) with the 

known targets to find the optimized hidden-to-output 

weights in  a single iteration and thereby reducing com- 

putational cost of the system. Note that, the activation 

function consists of the combination of input features 

and randomized input-to-hidden layer weights. We per- 

form feature extraction on US liver images and propose 

an ELM-based CADx system for the detection and risk 

 

Fig. 3 S4 datasets: Top two 

rows: Normal liver images; 

Bottom two rows: Abnormal 

liver images 
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Fig. 4 S8 datasets: Top two rows: Normal liver images; Bottom two rows: Abnormal liver images 

 

stratification for FLD diseases [23, 24, 29]. We use 

three texture feature extraction algorithms namely 

Gabor, GLCM and GRLM features [30–34].  The 

Gabor feature extraction is based on the scale and di- 

rection of the pixel distribution in image using Gabor 

filters. GLCM extracts statistical second order features 

and finally, GRLM matrix calculates the neighboring 

pixel of a reference pixel and texture feature are then 

computed (Appendix C). The details of ELM architec- 

ture and mathematical foundation are discussed in sub- 

section 3.1, while subsection 3.2 presents the tissue 

characterization algorithm. The details of feature extrac- 

tion algorithms are given in subsection 3.3. 

 

Three layered ELM architecture for training weights 

 
Extreme learning machine (ELM) is a SLFFNN which can be 

trained in a single pass, making it faster compared to contem- 

porary ML algorithms. There are three layers of neurons (or 

nodes) in SLFFNN, where weights between input and the 

hidden nodes are randomly initiated and then fixed without 

any iteration (so called input-to-hidden weights). The only 

weights that are to be learned are the weights between the 

hidden layer and the output layer. Since ELM learns the 

weights in single pass, it tends to reach a global optimum 
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immediately. The architecture for ELM is shown in Fig. 5. It 

is a three layered architecture. The first layer accepts the input 

and forwards it to the hidden layer. The outputs from hidden 

layer are forwarded to the output layer. 

Let the number of training input images be represented by 

vector Ptrg and testing images be represented as Ptst. The label 

vectors corresponding to training images and testing images 

be represented as Ltrg and Ltst. Let the weight vector be W 

from input-to-hidden layer. Let Q be the output of application 

of activation function to the input data. Let δ be the hidden-to- 

output layer vector of training weights. Then, the least square 

solution is given by Q δ
 
 −Ltrg  min Qδ−Ltrg; where δ

 
 is the 

δ 

least squares solution of the Qδ = Ltrg. For a larger training 

dataset the smallest norm least squares solution of the linear 

system is given by: δ
 
    Q

†
Ltrg; where ,Q

†
 is the Moore– 

Penrose [35] generalized inverse of matrix Q. The complete 

set of mathematical symbols and their meaning are given in 

Table 9. The mathematical derivation of ELM is given in 

detail in Appendix A. 

 
Tissue characterization and risk stratification using ELM 

and SVM frameworks 

 
The system for tissue characterization and risk stratifi- 

cation is based on the conventional ML system design, 

where, the input data is split into training and testing 

data sets for cross-validation protocol design. This can 
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be seen in Fig. 6. This consists of two components: 

training-phase and testing-phase correspondingly shown 

as the left and right half of the Fig. 6. The training- 

phase generates the training weights or coefficients, 

while the testing-phase predicts the label class. The testing-

phase is primarily the mirror image of training- phase, 

except that the training-phase uses ground truth 
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labels along with grayscale features computed from 

training US liver images to generate the training 

Fig. 5 Architecture of ELM paradigm using single layer feed-forward 

neural network in Symtosis class liver tissue stratification 

weights (or training coefficients). The testing-phase then 

predicts the label class on the test images which is 
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Fig. 6 Tissue characterization 

and risk prediction system in 

ELM and SVM frameworks 
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computed by transformation of testing features using the 

training weights. Note that both systems (ELM and 

SVM) adapt the same feature computation protocol. 

The ELM-based tissue characterization system uses 

SLFFNN that is comprised of three sets of neurons 

connected by lines carrying weights. The weights be- 

tween input and the hidden neurons (input-to-hidden 

weights) are randomly initiated while the weights that 

are to be learned are the weights between the hidden 

layer and the output (hidden-to-output) layer. The num- 

ber of input neurons equals the number of features ex- 

tracted from an image. Empirically, the number of hid- 

den layer neurons is taken as two hundred. All input 

neurons are connected to the hidden neurons. 

The most common types of activation functions used in 

ELM are: sigmoid, sine hard limit, triangular basis function 

and radial basis function. The activation function used adapted 

in our experiment is sigmoid function. The number of output 

neurons set is based on the type of classification problem. 

Each of the hidden neurons is connected to the output layer 

neuron. Using the notations (as explained in the Appendix A), 

the least square solution can be converted into the algorithmic 

steps as presented in the pseudo code block shown below. 

Note that, if SVM (as explained in Appendix B) is adapted 

in Fig. 6, then, the maximum margin hyper-plane between two 

 
Fig. 7 Gabor filter representation 

at different orientations 

classes is found out from the computed support vectors ob- 

tained from the SVM during training-phase. 

 
Feature extraction 

 
The idea behind the feature extraction to compute a 

limited number of features to understand the power of 

ELM while benchmarking against SVM. Here, we dis- 

cuss the feature extraction algorithms applied in our 

experiment i.e., Gabor, GLCM, GRLM. The choice of 

these features are based on the directions and scales 

combined with texture repeatability [36]. 

 
Gabor-based directional features 

 
Gabor filter is edge detection filter and is the combina- 

tion of Gaussian and complex-plane wave. Through this 

combination, it tries to diminish the uncertainty in both 

spatial and frequency domains. Application of dilations 

and rotations of this function produce alike Gabor fil- 

ters. It helps in the alignment and scale-tunable edge 

and line detection. It helps in expanding an image and 

become contained in spatial frequency depiction. Gabor 

transform has an impulse response that can be repre- 

sented by a sinusoidal wave (a plane wave for distinct 
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(a) Accuracy vs. Data size for K2 protocol (b) Accuracy vs. Data size for K3 protocol 

  

(c) Accuracy vs. Data size for K5 protocol (d) Accuracy vs. Data size for K10 protocol 

Fig. 8  Accuracy analysis for (a) K2, (b) K3, (c) K5 and (d) K10 cross-validations for different data sizes 
 

frequency and aligned 2-D Gabor). The function is giv- 

en as: 

pixels. It calculates the occurrence of a pixel with a 

specific gray level or intensity compared to its neigh- 

bors in a number of directions. Features are calculated ( 
1 
" 

  p 
  2

   
q 
 2

#) 
 

 
based on the statistical distribution of pixel intensities. 

f ðp; qÞ ¼ exp − 
2
 

σp 
þ  

σq 
exp½ j2πðUp þ VqÞ] 

ð1Þ 

GLCM based feature extraction uses second order sta- 

tistics. The texture feature obtained in Co-occurrence 

matrix never directly uses for analysis. Gray level co- 

where, (p, q) represents the spatial-domain rectilinear co- 

ordinates, (U, V) are points that are the specific 2-D 

frequency of the complex sinusoid and (σp, σq) depict 

the spatial extent and bandwidth of f. The Fig. 7 shows 

the Gabor filters used for feature extraction. A scale of 

2 and 10 orientations were selected to define 20 Gabor 

features. 

 
Gray level co-occurrence matrix 

 
Gray Level Co-occurrence Matrix (GLCM) is a widely 

known methodology for texture extraction [37–41]. 

GLCM shows the spatial relationship of neighboring 

occurrence matrix calculates the probability of two pixel 

with gray level i, j which located in inter distance d 

direction, θ. The probability is represented by p(i, j | 

d, θ). The spatial relationship is represented in terms of 

angle θ and distance d. From the calculated probability 

we calculate features. A brief description of GLCM is 

given in Appendix C.1. 

 
Gray level run length matrix 

 
Gray Level Run Length Matrix (GRLM) is based on a 

set of collinear pixels that have the same gray level 

called Run Length Matrix (RLM). The main function 
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a 
  

(a) ROC for K2 protocol (b) ROC for K3 protocol 

  

(c) ROC for K5 protocol (d) ROC for K10 protocol 

b 
  

(a) ROC for K2 protocol (b) ROC for K3 protocol 

  

(c) ROC for K5 protocol (d) ROC for K10 protocol 

Fig. 9 a. ROC curves for (a) K2, (b) K3, (c) K5 and (d) K10 cross-validations using S0 dataset. b. ROC curves for (a) K2, (b) K3, (c) K5 and (d) K10 

cross-validations using S4 dataset. c. ROC curves for (a) K2, (b) K3, (c) K5 and (d) K10 cross-validations using S8 dataset 
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c 
  

(a) ROC for K2 protocol (b) ROC for K3 protocol 

  

(c) ROC for K5 protocol (d) ROC for K10 protocol 

Fig. 9 (continued) 
 

of GRLM is to extract texture features and images of 

grey intensity pixels in a specific orientation from 

which the reference pixels are computed. The number 

of neighboring pixels with the same grey intensity in a 

particular direction is called run length represented as 

S(i, j | d, θ), which is the number of j neighboring 

pixels with the intensity i, in the direction θ. GRLM 

is further discussed in Appendix C.2. Description for 

all symbols are given in Appendix D. 

 

 

Experimental protocol 

 
We carry out cross-validation experimental protocol to 

analyze the strength of generalization for each method- 

ology. The subsection 4.1 discusses the effect of four 

cross-validation protocols on stratification accuracy 

using all three kinds of data sets. In the subsection 

4.2, we study the effect of percentage of data size on sub-

sampling data on the system’s accuracy using vari- ous 

cross-validation protocols. Since ELM is a single pass 

algorithm, we inspect the time required by ELM and 

SVM in this experiment. Subsection 4.3 presents 

the comparative time analysis for ELM and SVM 

algorithms. 

 
Experiment 1: Effect of training data size on accuracy 

using four CV protocols 

 
The objective of this experiment is to understand the 

effect of training data size on the performance of risk 

stratification. The cross-validation protocol allows us to 

change the number of patients in the training data sets. 

We adapted four kinds of cross-validation protocols: K2, 

K3, K5 and K10 labeled as: 2 fold, 3 fold, 5 fold and 

10 fold, respectively. Each fold is a part of the data set. 

In K2 cross-validation, the dataset is equally partitioned 

into two, where one part is used for training and the 

other part is used for testing. This process is the same 

for K3, K5, and K10, with data in KN being divided 

into N parts where N-1 parts are used for training and 

the remaining one part is used for testing. Each of the 

cross-validated datasets is the input into the classifier 

(ELM or SVM) for training and testing. The protocols 

are repeated twenty times randomly and average accu- 

racy, sensitivity, specificity and time are recorded. 
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Experiment 2: Effect of training set size using 

sub-sampling strategy 

 
It is important to understand the effect of the training 

data size on the ELM architecture. Since no iterations 

are involved unlike conventional NN or BPNN, the size 

of the training data can play a larger role in the com- 

puting the performance of the ELM system. We there- 

fore sub-sampled the original databases (S0) into two 

kinds of sub-samplings called as: S4 and S8 datasets. 

In S4, images in S0 dataset were divided into 4 equal 

Experiment 1: Effect of training data size on accuracy 

using four CV protocols 

 
If ηsys is the system accuracy, k represents the cross- 

v a l i d a t i o n  m e t h o d  i . e . ,  K 2 ,  K 3,  K5 an d 

K10, t represents index of trial numbers, T represents 

total number of trials, i represents index of data size, 

NL represents total size of the liver dataset, then the 

average accuracy for each cross-validation protocol, k, 

of the system can be mathematically expressed as: 

∑T
 ∑NL ηðk; i; tÞ 

 parts with each image representing one-fourth dimension 
of original image. The S4 dataset consists of 252 im- 

ηsysðkÞ ¼ t¼1    i¼1 

× NL  
ð2Þ 

ages. The S8 was obtained from S4 data set. This 

means 16 parts for each of the S4 data sets. Thus, S8 

was: ×16 parts of 252, which is (252 × 16) 4032. So, 

S  0     =     6 3  ,     S  4     =     6 3     ×     4     =     2  5  2  ;   

S8 = 252 × 16 = 63x4x16 = 4032. The images are 

shown in Figs. 3 and 4. It is therefore required to run 

all CV protocols (i.e., K2, K3, K5 and K10 cross-vali- 

dations) for all three kinds of data sets: S0, S4 and S8. 

 

Experiment 3: Time comparison between ELM & SVM 

 
Since Extreme Learning Machine comes from the ability to 

learn extremely fast, it is necessary to compute the time com- 

plexity of the ELM system for both training-phase and testing- 

phases. Thus, it requires computing the times for all CV pro- 

tocols (i.e., K2, K3, K5 and K10 cross-validations) and for all 

three kinds of data sets (i.e, S0, S4 and S8), thus, leading to 12 

time comparisons. 

 

 

Results 

 
This section provides the results of the three experiments car- 

ried out on the US liver dataset in ELM framework. Sub sec- 

tion 5.1 shows the effect of training data size using four CV 

Protocols. The results on the effect of training set size using 

sub-sampling strategy are shown in sub section 5.2. The 

timing analysis results are presented in sub section 5.3. 

A total of T = 20 trials are conducted. The average 

accuracy, sensitivity, specificity and timing for all pro- 

tocols are as shown in Table 1. Note that same formula 

is applicable for SVM-based and ELM-based Symtosis 

systems. It is clearly seen that, ELM outperforms SVM 

for all cross-validations. ELM gives 92.4% accuracy 

with K10 cross-validation compared to SVM that gives 

only 86.42%. The average specificity and sensitivity is 

higher for ELM when compared with SVM. Results for 

S4 and S8 datasets are given in Table 10 and Table 11 

in Appendix E. 

 
Experiment 2: Effect of percentage of training data size 

during CV protocols 

 
To know the effect of the training data size on the ELM archi- 

tecture, we perform the experiment with varying data sizes. 

We performed this experiment on S0, S4 and S8 datasets. As 

the size of training dataset increases, the accuracy also in- 

creased. The S4 outperforms S0, while S8 outperforms S4 

and S0 for all training dataset sizes. The accuracy obtained 

for SVM and ELM with different dataset sizes for each 

cross-validation is shown separately in Fig. 8. 

 
Experiment 3: Time comparison between ELM & SVM 

 
ELM is a fast learning neural network. The ELM gives 

better performance in terms of training and testing time. 

The time comparison between ELM and SVM classifier 
 

Table 1 Comparison between 

ELM-based and SVM-based 

learning methods for S0 dataset 

 
 

CV* Accuracy (%) Sensitivity (%) Specificity (%) AUC 
 

Classifier ELM SVM 
 

ELM SVM 
 

ELM SVM 
 

ELM SVM 

K2 81.70 76.14 
 

85.10 84.90 
 

78.52 74.52 
 

0.82 0.76 

K3 82.70 75.40  85.70 76.80  84.66 75.40  0.81 0.74 

K5 89.00 83.50  87.16 80.16  87.42 85.40  0.89 0.83 

K10 92.40 86.42  91.30 88.20  92.10 86.30  0.92 0.86 

*CV: Cross-validation protocol 

T 
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TimeSVM TimeSVM 

TimeSVM 

 

Table 2 Time comparison between ELM and SVM for S0 
 

 

Training & Testing Time CV* ELM SVM Speed-up*** (%) 

Table 4 Time comparison between ELM and SVM for S8 
 

 

Training & Testing Time CV* ELM SVM Speed-up*** (%) 
 

  

Average 

Training 

Time 

(ms**) 

K2 2.1 7.2 70.8 
 

K3 4.3 7.9 45.6 

K5 7.4 9.6 22.9 

Average 

Training 

Time 

(ms**) 

K2 8.7 17.5 50.3 

K3 10.1 17.9 43.6 

K5 13.2 18.1 27.1 

 K10 9.3 13.3 30.1  K10 15.3 19.5 21.5 

Average K2 2.7 3.6 25.0 Average K2 5.3 9.8 45.9 

 

(ms**) 

Testing 
Time 

(ms**) 

K3 5.0 9.3 46.2 

K5 4.8 8.6 44.2 

K10 4.1 7.8 47.4 

*CV: Cross-validation protocol, **ms: milliseconds, ***Speed- 

up=jTimeSVM −TimeELM j × 100 

*CV: Cross-validation protocol, **ms: milliseconds, ***Speed- 

up=jTimeSVM −TimeELM j × 100 

 
for S0 is given in Table 2, S4 in Table 3, and S8 in 

Table 4. The training time is less for K2 and more for 

K10, but for testing it is reversed. It happens because 

the data size in case of training increases from K2 to 

K10 and for testing it decreases from K2 to K10. The 

SVM has greater training and testing time for all types 

of cross-validations in all three datasets. The ELM ar- 

chitecture uses 2.1 milliseconds (ms) for testing and 

9.3 ms in training for K10 cross-validation for S0. The 

testing time is almost negligible. The average speed-up 

improvement of ELM over SVM is 31% for S0. The 

testing time for S4 is 3.0 ms and training time is 

10.3 ms for K10 cross-validation with ELM. The max- 

imum testing time is for K2 which is 4.6 ms for ELM 

classifier. The time increased from S0 to S4 for ELM 

and SVM, but is still negligible. For SVM training time 

is 16.0 ms in K10 cross-validation. The speed-up 

achieved for ELM over SVM is approximate 47% for 

S4. When we consider S8 dataset SVM needs maximum 

19.5 ms for training whereas ELM needs only 15.3 ms 

for training. The increase in performance speed for 

ELM over SVM for S8 is 41%. Overall, the average speed-

up of ELM over SVM is approximately 40%. 

 
Table 3   Time comparison between ELM and SVM for S4 

 

Training & Testing Time CV* ELM SVM Speed-up*** (%) 

Average K2 7.1 14.5 51.0 

Training 

Time 

(ms**) 
K10 10.3 16.0 35.6 

 
We further validated our ELM and SVM classification 

using 2-class biometric facial data (Appendix F). 

 

 
Performance valuation 

 
The performance of the ELM system is computed by plotting 

the ROC and AUC’s for all sets of CV protocols. We further 

record the performance attributes such as: accuracy, sensitiv- 

ity, specificity and is presented in subsection 6.1. The reliabil- 

ity and stability analysis is evaluated in subsection 6.2. 

 
ROC curves 

 
The performance of the ELM was computed using the ROC 

curves using all three kinds of datasets: S0, S4 and S8. For 

each data set, we adapted four kinds of cross-validation pro- 

tocols: K2, K3, K5 and K10. Thus we demonstrate 12 ROC 

curves spanned in 3 figures: Fig. 9 (A), (B), and (C), respec- 

tively. Note that in each combination of K and S, we compute 

ROC curves using the two sets of machine learning systems: 

ELM and SVM. They are represented by alphabets (a), (b), (c) 

and (d) in each of the three set of figures. The AUC for S0, S4 

and S8 data set is shown in Table 1, Table 10 and Table 11. For 

each data set (S0, S4 and S8), K10 does the best off all the four 

cross-validation protocols and ELM shows superior perfor- 

mance when compared against SVM (0.97 vs. 0.91). 

 
Table 5 Reliability Index of ELM for varying data sizes for different K- 

fold cross-validations 
 

 

Average 

Testing 

K2 4.6 8.4 45.2 

K3 4.1 8.0 48.8 

Data size (Images) Normal/Abnormal Reliability Index (%) 

K2 K3 K5 K10 
Time 

(ms**) 
K5 3.6 7.5 52.00    

*CV: Cross-validation protocol, **ms: milliseconds, ***Speed- 4032 1728/2304 99.8 99.9 100.0 99.9 

up=jTimeSVM −TimeELM j × 100    

K10 3.0 7.1 57.8 63 27/36 99.7 98.9 100.0 99.9 

    252 108/144 99.6 98.9 99.4 99.8 

 

Testing K3 2.3 3.1 25.8 

Time 
K5

 2.2 2.9 24.1 

K10 2.1 2.2 4.5 

 

K3 8.0 14.8 46.0 

K5 9.7 15.1 35.8 
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Reliability and stability analysis 

 
In this subsection, reliability and stability analysis of 

ELM is done. This assessment is crucial because it 

gives an indication how the system performs under re- 

peated conditions and also different conditions. This af- 

firms the results produced are consistent and repeatable. 

The reliability index has been derived by observing the 

deviation of the classification accuracy with respect to 

its mean as the data size increases [33]. The reliability 

index ζNL 
ð%Þ is formulated as: 

number of features to one-third and also reducing the 

number of hidden layers by one-third (as demonstrated 

by BPNN [21]), the ELM still yielded comparable ac- 

curacy and the speed several times faster. While Suri’s 

group [21, 40] have developed features maximizing 

close to 1000 features combined with feature selection 

methods such as PCA, FDA embedded with classifiers 

such as Bayesian, SVM, K-mean, etc., we have con- 

fined this study only to benchmark the ELM against SVM-

based paradigm for tissue liver classification. We 

performed the scientific validation using biometric facial 
datasets shown in the Appendix F. 

ζNL 
ð%Þ ¼

 

1− × 100 ð3Þ μNL
 

 

L 

 

Where, μNL 
is the mean accuracy and σNL represents 

the standard deviation of all accuracies for NL US liver 

images. 

The stability assessment analyses how the system 

changes across repeated conditions. We do this by using 

a similar approach to dynamics of the control theory [34]. 

Firstly, a threshold stability criterion of 5% variation is 

defined. When a system varies more than 5%, it is said 

that the system is not stable. Next we calculate the stan- 

dard deviation (SD) for each computation of different data 

sizes. If the SD is less than 5% we can declare that the 

system is stable. The reliability indices for all four K-fold 

protocols in Table 5 are above 0.95 indicating a strong 

reliability of the ELM classification system. We further 

validated our ELM and SVM classification using 2-class 

biometric facial data (Appendix F). 

 

 
 

Discussion 

 
This study proposed a reliable and fast Extreme 

Learning Machine (ELM)-based tissue characterization 

system (a class of Symtosis system) for stratification 

of FLD disease in US liver images. ELM was used to 

train SLFFNN. The input-to-hidden layer weights were 

randomly generated reducing computational cost. The 

only weights to be trained were hidden-to-output layer 

which was done in a single pass (without any iteration) 

making ELM faster compared to SVM model. ELM- 

based characterization system was benchmarked against 

previously developed SVM-based system. Note that 

same set of feature were applied to ELM and SVM 

systems. The common three sets of grayscale features 

were: GRLM, GLCM and Gabor. The main spirit of 

the study was to compare ELM vs. SVM. Since ELM 

is a NN-based system, we compared ELM against 

BPNN. It was demonstrated that by reducing the 

Benchmarking 

 
There is not much literature covering CADx-based sys- 

tem for liver diagnosis and risk stratification. Suri and 

his team performed classification of US liver dataset 

[11] using Decision tree (DT) and detection of 

Hashimoto Thyroiditis using Fuzzy classifiers [25] 

(shown in Table 6). Three sets of features were comput- 

ed which was then applied to the DT-based classifier. 

This constituted Higher Order Spectra (HOS), Texture 

and Discrete Wavelet Transform (DWT) with the as- 

sumption that the pixels are distributed non-linear in 

nature. Texture captured the various granular structures 

in the US liver images, which was ideal. Feature reduc- 

tion was performed followed by DT-based classification 

yielding an accuracy of 93.3%. Douali et al. [42] used 

Case Based Fuzzy Cognitive Map (CBFCM) in the year 

2013, for classification of FLD and achieved an accura- 

cy of 91.9% for 162 patients. In the year 2014, 

Vanderbeck et al. [43] achieved an accuracy of 89.3% 

using SVM on 47 patients using 582 features. In the 

year 2014, Acharya et al. [29] proposed a Fuzzy 

Classifier (FC) for detection of Hashimoto Thyroiditis 

from US thyroid images. The features were extracted 

using wavelet transform. A total of 526 US images 

were used and the system achieved an accuracy of 

84.6%. In 2014, Subramanya et al. [19] used 53 US 

liver images which were distributed among four differ- 

ent classes consisting of: 12 normal, 14 mild, 14 mod- 

erate and 13 severe. Six types of features were comput- 

ed such as: First Order Statics (FOS), Gradient-based 

(Gr), Mutual Information-based (MI), GRLM, GLCM 

and Laws Texture. SVM was applied to achieve an av- 

erage accuracy of 84.9%. Very recently, Suri and his 

team [21] achieved an accuracy of 97.6% using BPNN 

on US liver images. A short comparison of BPNN and 

ELM is discussed in the next subsection. More recently, 

Liu et al. [44] used a combination of liver capsule de- 

tection technique and trained Convolution Neural 

σN 
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Table 6 Benchmark table 
 

SN Authors Data Type Classifier Type Types of Features No. of Features Data Size Accuracy (%) 

1 Acharya et al. [11] Liver Decision Tree HOS, Texture & DWT - 100 93.3 

2 Douali et al. [42] Liver *CBFCM - - 162 91.9 

3 Vanderbeck et al. [43] Liver SVM GLCM, N-jet, Nuclei Density, 582 47 89.3 

 

2 

 

Acharya et al. [29] 

 

Thyroid 

 

FC 

Morphological, Texture 

Wavelet Transform 

 

40 

 

526 

 

84.6 

3 Subramanya et al. [19] Liver SVM FOS, Gr, MI, GRLM, GLCM, Laws 636 53 84.9 

4 Saba et al. [21] Liver BPNN BG, Fourier, DCT, Harlick, Gupta, Gabor 128 62 97.6 

6 Liu et al. [44] Liver SVM CNN-based features 500 91 89.2 

7a Proposed work  ELM - 46 63 92.4 

7b Proposed work   - 46 252 94.8 

7c Proposed work   - 46 4032 96.7 

 

 

 

Network [45] model for feature extraction, and used 

SVM as classifier to achieve accuracy of 89.2%. 

Our study used ELM for the classification process on 

three kinds of data sets: S0, S4, S8 data sets demon- 

strating the accuracies of: 92.4%, 94.8% and 96.7%, 

respectively. The K10 cross-validation outperforms other 

three cross-validations. It is observed from Table 1 that 

ELM accuracy is higher than SVM for all cross- 

validation protocols i.e., K2, K3, K5 and K1 (81.70, 

82.70, 89.00 and 92.40 against 76.14, 75.40, 83.50, 

86.42, percentage respectively). It is also observed from 

Tables 2, 3 and 4 that average speed-up of ELM over 

SVM is approximately 40% asserting the hypothesis that 

ELM is faster than SVM. The stability analysis from 

Table 5 shows that ELM is highly reliable and stable 

system. It is further noted, that ELM accuracy increases 

as the data size increases. 

FC: Fuzzy Classifier; HOS: High Order Spectra; 

DWT: Wavelet Packet Decomposition; FOS: First 

Order Statistics; Gr: Gradient based features; MI: 

Moment invariant; Laws: Laws texture features; BG: 

Basic geometr ic ,  CBFCM: Case Based Fuzzy 

Cognitive Map 

 
A short comparison on ELM Vs. BPNN 

 
Since ELM and BPNN are both NN-based strategies, 

we therefore ensured that we compared them very close- 

ly. BPNN adapted by Suri produced an accuracy of 

97.6% while ELM gave the best accuracy of 96.7%. 

From these observations (also shown in Table 6), it 

can be argued that BPNN achieved better accuracy com- 

pared to ELM, so BPNN would be a better classifier. 

However, the merits of ELM far outweigh BPNN. ELM 

is a single layer feed forward neural network, thus net- 

work complexity is much lower compared to BPNN, 

 

since BPNN can have multiple number of hidden layers 

and neurons (up to 10 layers in [21]). Second, BPNN 

convergence is far slower compared to ELM, because 

each weight in BPNN architecture is updated iteratively, 

and such iterations can be a larger number (say 1000), 

which can take more time unlike one iteration in ELM, 

thereby increasing computational complexity of the sys- 

tem. On the contrary, ELM achieves a comparable ac- 

curacy in a single pass, due to its simple matrix multi- 

plications and single hidden layer. Moreover, ELM 

achieves accuracy difference less than 1 % (0.9%) with 

only 46 ordinary features, unlike BPNN, which takes 

three times more number of features (128). Overall, 

these merits rationalize the selection of ELM compared 

to BPNN and SVM which are categorized as conven- 

tional ML techniques. 

 
A special note on ELM Vs. SVM 

 
The SVM training is in two stages. i.e., in stage one, 

the input data is mapped to a higher dimensional feature 

space through a nonlinear feature mapping function or 

kernel functions and in the stage two, the optimization 

method is used to find maximum separating margin of 

two different classes in this feature space while mini- 

mizing the training errors. The optimization problem is 

quadratic and convex, and so it can be solved 

efficiently. 

The ELM trains a SLFFNN in two main stages: (1) 

feature mapping and (2) linear parameters solving. In 

the first stage, the hidden layer weights are randomly 

initialized to map the input data into a feature space by 

some non-linear mapping functions i.e., sigmoid. In the 

second stage of ELM learning, the weights in hidden-to- 

output layer, denoted by δ are solved by minimizing the 

approximation error in the squared error sense. The 
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ELM is basically a SLFFNN whose weights and biases 

in the first layer are randomly initialized and kept con- 

stant. The weights and optionally biases of the second 

layer are selected by minimizing the squared loss of 

predicted errors by using Moore–Penrose pseudo- 

inverse [25, 34]. The weights of hidden-to-output neu- 

rons are learned in a single step. The ELM requires a 

time proportional to the number of hidden neurons for 

datasets smaller than the size of hidden neurons [26]. 

However, ELM is different from SVM, as the input-to- 

hidden layer weights do need not be tuned. ELM provides a 

universal solution for regression, binary and multi-class clas- 

sification where the least square solution is dependent only on 

input data and number of training samples [46]. The ELM 

computational complexity is much simpler than SVM since 

training of ELM only involves finding hidden-to-output layer 

weights which is obtained in single pass by multiplying of 

Moore-Penrose inverse of activation function output and the 

target. Therefore, computational complexity of the ELM is 

dependent on the number of hidden nodes for smaller dataset 

and requires a time proportional to the number of hid- 

den neurons, which is much larger than the size of 

small datasets and whose evaluations require a single feed-

forward pass. The SVM computational complexity 

increases with non-linearly separable data as it has to be 

solved in high-dimensional space using kernel functions. 

Also, the kernel functions of SVM vary from 

application-to-application while ELM provides a more 

generalized solution to the classification problem. It be- 

comes more complex in SVM with an increase in size 

of training dataset since it involves finding support vec- 

tors from the entire training dataset involving huge 

number mathematical computations. Although,   ELM 

and SVM employ the same cost function, the optimiza- 

tion constraint in case of ELM is milder compared to 

SVM, wherein, in the former case it employs the least 

square model for optimization while the latter uses 

highest separating margin approach. The ELM is faster 

compared to other classifiers because the input-hidden 

weights are constant; the model learns only the 

hidden-output weights, which is equivalent to learning 

a linear model [46, 47]. It was verified from experi- 

ments that ELM with random hidden nodes can run 

even up to ten times faster compared to SVM. From 

this assessment, it is correctly concluded and justified 

that ELM gives faster accuracy results compared to 

SVM. 

The ELM employs constrained least square model for 

error minimization. It applies gradient descent derivative 

of error with respect to δ, in a single pass over the 

whole feature space [48–50], allowing smallest possible 

training error. In SVM, the application of all features 

allows presence of noisy data which does not allow it 

to converge it to a single optimized separating hyper- 

plane. Therefore, it is necessary for SVM to identify 

feature types and employ feature selection algorithms 

to remove noisy features for achieving higher accuracy. 

So thus can say with confidence that accuracy of ELM 

is better than SVM in absence of feature selection 

algorithms. 

 
Strengths, weaknesses and future work 

 
It is clearly seen that ELM is faster and more accurate 

compared to SVM, however, there is a need for testing 

ELM for Big Data applications [51] to know its actual 

strength. We also need to test ELM on abdomen [52] 

and other bio-inspired imaging applications [53]. Also a 

comparison is needed to be made with contemporary 

Deep Learning [54] techniques. The experimental scope 

of work is limited to basic feature extraction algorithms 

only. In future, we intent to propose for application of 

better feature selection algorithms leveraging on princi- 

ple component analysis or discriminate analysis or mu- 

tual information-based. This ensures that other feature 

extraction methods can be adapted along with feature 

selection methods, however this study is focused on 

benchmarking of SVM against ELM for liver tissue 

characterization, keeping the paradigms in comparison 

framework. To improve classifier performance, it is pro- 

posed that larger training dataset be provided for effi- 

cient classification. The high classification accuracy of 

basic ELM model in this study entails us to study other 

versions of ELM for stratification of US liver images in 

future. 

 
 

Conclusions 

 
The study presented a superior strategy for FDL strati- 

fication using Extreme Learning Machine (ELM) and 

benchmarked against SVM. The ELM was based on 

single layer feed forward neural network where input- to-

hidden layer weights are randomly generated reduc- ing 

computational cost and hidden-to-output weights were 

only trained. Due to simpler architecture and sin- gle 

pass, ELM was faster compared to SVM. Further, since 

the least square’s paradigm was adapted, hence more 

accurate with lesser number of features. The Symtosis 

system adapted four types of K-fold cross- validation (K = 

2, 3, 5 and 10) protocols on three kinds of data sizes: S0-

original, S4-four splits, S8-sixty four splits (a total of 12 

cases) using 46 types of grayscale features derived using 

Gabor, GLCM and GRLM fea- ture sets. Using the K10 

cross-validation protocol on S8 data set, ELM showed 

an accuracy of 96.75% 
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compared to 89.01% for SVM, and correspondingly, the 

AUC: 0.97 and 0.91, respectively. Further experiments 

also showed the mean reliability of 99% for ELM clas- 

sifier, along with the mean speed improvement of 40% 
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Appendix A: ELM mathematical framework 
and solution 
Let there be H hidden layer neurons and N output neu- 

rons. Let each training sample of P images be denoted 

as (aj, lj), where each input image denoted as aj = [aj1, 

aj2, …, ajm]
T
 ∈ Rm

 and each output label is denoted as lj- 

= [l ,   lj2, …, ljN]
T
 ∈ RN

. The output vector is denoted as 

L = [l1,  l2, …, lj, …lP]
T
. Further, the P images and their 

ground truth labels are divided into two parts for train- 

ing and testing which can be represented by Ptrg ¼ 
 

atrg; ltrg
     

for training and Ptst ¼
 

atst; ltst
 

. Similarly, 
 

 

The objective is to find the minimum δ which min- 

imizes the cost function E. By using Eq. 5, the Eq. 6 

can also be written as: 

‖Qδ̂−Ltrg‖ ¼ min Qδ−Ltrg‖ ð7Þ 
where δ

 
 is the least squares solution of the Qδ = Ltrg. If 

the number of hidden nodes is equal to the number of 

training samples (#Ptrg = H), the matrix   Q   is square 

and invertible. Therefore, with random weights wi and 

bias bi the training samples can be approximated with 

zero error. However, in maximum cases, number of 

training samples is larger than number of hidden nodes. 

So, the smallest norm least squares solution of the lin- 

ear system is given by: 

δ̂ ¼ Q
†
Ltrg ð8Þ 

Where, Q
†
 is the Moore–Penrose [35] generalized inverse 

of matrix Q. Thus the smallest training error can be reached 

by: 

Ltst . Each input layer neuron is connected to all hidden ‖Qδ̂−Ltrg‖ ¼ ‖QQ
†
Ltrg−Ltrg‖ ¼ min ‖Qδ−Ltrg‖ ð9Þ 

layer neurons. Let each hidden layer weight be denoted 

as a vector wi = [w1i, w2i, …, wmi ]
T
. Each of the con- 

nections or weights from hidden-to-output layer are de- 

noted as δi = [δi1, δi2, …,  δiN]
T
 connecting i

th
 hidden 

node to the output nodes. A standard SLFFNN can be 

modeled as given by: 
 
∑H  δi gi

   

atrg

    
¼ ∑H  δi g

  

wiatrg þ bi

   

¼ ltrg for j ¼ 1; 2; …; #Ptrg

 
 

 

The trained hidden-to-output layer weights are then used in 

Testing-phase as shown in Fig. 5, to test the performance of 

the Symtosis model using test dataset Ptst. 

Appendix B: Support vector machine 

i¼1 j i¼1 j j 

ð4Þ 
Support Vector Machine (SVM) is a kernel based clas- 

sification technique based on the maximum margin clas- 

where, g is the activation function and b is the bias. 

This equation is written in more compact form which 

is given by: 

sifier. It transforms the original input data to high- 

dimensional feature space and tries to find the hyper- 

plane which maximizes the distance between data points 

output vector L is also divided into two sets Ltrg and 

l T 

j j j 

using ELM against SVM. We validated the symtosis 

δ 
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j¼0 

∑ i 
    

¼ ð Þ ð Þþ 

i¼2          

ð Þ  

ð Þþ 

j¼0 

i¼0 j¼0 

2 i¼1 j¼1 ∑N−1∑N−1ði− μÞ2 log ðCði; jÞÞ 

i¼2 

¼   a:a
0  

þ 1 
x¼1 y¼1 

N −1 N −1 

∑ 

2 

 

of distinct classes. We consider a binary classification 

task with the training dataset designated as {(ai, Li), i = 

1, 2, …, l} where aiє R
q
 is the input data for i

th
 training 

sample and Liє [−1, +1] are the equivalent target values, 
l designates total number of samples and q is the input 

space dimension. The SVM model can be represented in 

feature space by following equation: 

(10) 
 

 

  

where, ℵ(x) represents kernel function, b represents bias and 
is a weight vector which is normal to the hyper-plane. The 

decision rule is mathematically represented in the Eq. (11): 

Appendix C: Feature extraction 

 

Haralick texture (GLCM) 

 
GLCM calculates the following features shown Table 7 from 

the co-occurrence matrix calculated from the image. 

 

 
Table 7 Features from gray level co-occurrence matrix 

SN Features Description 

1 Contrast 
N −1 N     N 2 
∑ n ∑ ∑ Cði; jÞ 

(11) 
 

2 Autocorrelation 
n¼0 i¼0 j¼0 

N −1 N −1 

∑ ∑ ðijÞCði; jÞ 
 

    

3 Maximum probability 

i¼0   j¼0 

N −1 N −1 

∑ ∑ maxðCði; jÞÞ 

The non-linear kernel function finds the maximum margin 

hyper-plane, between the classes in a feature space. To 

i¼0   j¼0 
4 Dissimilarity 

∑N−1∑N−1ji− jjðCði; jÞÞ 

find optimal hyper-plane, the Eq. (12) is minimized subject to 
5 

Homogeneity 
i¼0   j¼0 

N −1 N −1 

Eqs. (10) and (11). ∑ 
i¼0 

∑ 1=ð1 þði− jÞ 2Þ  ðCði; jÞÞ 

(12) 
6 

Entropy N −1 N −1 

∑ ∑ Cði; jÞlogCði; jÞ 

 
where, ϑ represents the trade-off between error and mar- 

gin and ξ is a slack variable. By using Lagrangian mul- 

i¼0   j¼0 

7 Energy 
∑N−1∑N−1

Cði; jÞ2
 8 

Correlation ∑N−1∑N−1ði; jÞCði; jÞ− μ μ  = σ 

tipliers (α) in dual form, the Eq. (12) can be trans- 
formed into following optimization problem: 

i¼0 

σy 
j¼0 x   y x 

9 Cluster shade 
∑N−1∑N−1ðði þ jÞ − μ μ Þ3 Cði; jÞ 

maximize 
l 

α − 
1 l

 

l 

∑ αiαjLiLjK f    ai; aj ð13Þ 
 10 

Variance 

i¼0 j¼0 x   y 

 

l 
11  Sum average 

i¼0 

2N 

j¼0 

subject to ∑ αiLi 0;  αi ≥ 0∀i 14 
i¼1 

∑ iCx y i 
i¼2 

12 Sum entropy -∑2N
 iCxþyðiÞ logCx + y(i) 

where;  K f ai; aj ¼ ℵðaiÞ
T 

:ℵ aj ð15Þ 

The final decision function is given by following equation: 

l 

LðxÞ ¼ ∑ αiLiK f ða; aiÞ þ γ ð16Þ 

13 Sum variance 

 

 
14 Difference variance 

 
2N 

∑ i−Isent 
2 Cx y i 

i¼2 

2N 

∑ i−Isavg 
2Cx−y i 

i¼2 

i¼1 15 Difference entropy 
−∑N −1

iC
 

ðiÞ logC (i) 

The parameters ωand γ define the separating hyper- 

plane. The most general kernel functions are: 

Linear Kernel :    K f 
 

a; a
0 
  

¼ a:a
0 

ð17Þ 

16 Information correlation 

measure 1 
 

17 Information correlation 

measure 2 

HXY −HXY 1 =maxðHx −HyÞ 

1 − (e−2HXY2 − HXY)1/2 

 
   deg 18 Sum Of Squares Variance 

 

 
m      n 
∑ ∑ f ðx; yÞ 

Where, deg. is the degree of kernel in Eq. 18 and (.) denotes 

the dot product. 

∑ 
i¼0 

∑ 1=ð1 þ ji − jjðCði; jÞÞ 

19 Inverse Difference 

i¼1 

x−y x − y 

Polynomial Kernel :    K f   a; a
0

 ð18Þ 
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x¼1 x¼1 x¼1 y¼1 

x¼1   x¼1 

x¼1   x¼1 

 

Run length texture 
Table 9 (continued) 

 
 

Symbol Description of symbol 

GRLM feature extraction algorithm calculate features from    

the run length matrix as shown in Table 8. 

Table 8 Features from gray level run length matrix 

SN Features Description 

Q†
 Moore–Penrose generalized inverse of matrix Q 

R Dimension 
Weight vector 

b Bias 

ℵ Kernel function 
ϑ Trade-off parameter between error and margin 

   ξ Slack variable 

1 Short Run Emphasis 

(SRE) 

 
∑Na ∑Na Pðx;yÞ 

x¼1    y¼1    y2
 = ∑Na

 ∑Nb
 Pði; jÞ 

α Lagrangian multiplier 
Kf Kernel 
deg Degree of polynomial kernel 

2 Long Run Emphasis ∑Na
 ∑Nb

 j
2
Pðx; yÞ = ∑Na

 ∑Nb
 Pðx; yÞ k Type of cross-validation protocol (K2, K3, K5 and K10) 

(LRE) 
3 Gray level non 

x¼1 x¼1 x¼1 x¼1 η(k, i, t) Accuracy for kth protocol, ith datasize and tth trial 
ηsys System accuracy 

uniformity ∑Na
 

 
∑Nb

 Pðx; yÞ2
 

=  ∑Na
 ∑Nb

 P 
NL Total size of US Liver dataset 

 

 
4 Run length 

Non-uniformity 

ðx; yÞ 

∑Na
 
∑Nb

 Pðx; yÞ2
  

= ∑Na
 ∑Nb

 Pðx; yÞ 

ζN L 

μN 

Reliability index for NL US liver images 

Mean Accuracy for NL US liver images 

(RLNU) 
x¼1 x¼1 x¼1 x¼1 L 

σN L 

Standard deviation of all accuracies for NL images 

5 Run Percentage (RP) 

 
6 Low Gray-level Run 

Emphasis (LGRE) 

 
∑Na ∑Nb Pðx;yÞ 

x¼1    x¼1     Q 

 
∑Na ∑Nb Pðx;yÞ 

x¼1    y¼1    x2
 

 

= ∑Na
 ∑Nb

 Pðx; yÞ 

h Gabor Transform 
(p, q) Spatial domain linear co-ordinates 
(U, V) Points that are the particular 2D frequency of the 

complex sinusoid 
(σp, σq) Represents the characterization the spatial extent and 

bandwidth of h 
7 High Gray-level Run ∑Na

 ∑Nb
 x

2
Qðx; yÞ = ∑Na

 ∑Nb
 Qðx; yÞ 

 

Emphasis (HGRE) x¼1 x¼1 x¼1 x¼1  
Appendix E: Results of ELM/SVM classifier for S4 

Appendix D: Symbols table 
and S8 dataset 

 
 

Table 9 Symbols and their description 

Table 10 Comparison between ELM-based and SVM-based learning 

methods for S4 dataset 

 

Symbol Description of symbol 

 
P US liver dataset 
Ptrg Training US liver images 
Ptst Test US liver images 
aj jth input image with m features; 

aj = [aj1, aj2, …, ajm]T ∈ Rm 
m Total number of features/number of 

input neurons 
L Output label/class/target vector 
Ltrg Output training vector 
Ltst Output test vector 

CV* Accuracy (%) Sensitivity 

(%) 

 

 

 

 

 

 

 

 

*CV: Cross-validation protocol 

Specificity 

(%) 

AUC 

trg 
j 

 
tst 
j 

Label of input training image j 

 
Label of input test image j 

 
 

Table 11 Comparison between ELM-based and SVM-based learning 

methods for S8 dataset 
N Total number of output neurons 
H Total number of hidden layer neurons 
w Input-to-hidden weight 
w1i Input neuron 1-to-ith hidden neuron weight 
[w1i, w2i, …, wmi ]T Weight vector 
δ Vector of Hidden-to-output weights 

corresponding to US liver images. 
[δi1, δi2, …, δiN]T ith hidden-to-output weight vector 
gi(aj) Activation function for jth image for the 

ith hidden node 
Q Hidden layer output matrix 
E Error matrix 

Optimal Solution 

δ̂ 

 

CV* Accuracy (%) 

   

Sensitivity 

(%) 
   

Specificity 

(%) 
   

AUC 

   

Classifier ELM SVM ELM SVM ELM SVM ELM SVM 

K2 85.19 74.45 88.71 78.81 81.41 71.23 0.85 0.73 

K3 90.03 80.16 89.41 82.96 84.65 78.84 0.87 0.81 

K5 93.27 85.14 93.46 85.95 93.14 84.49 0.93 0.86 

K10 96.75 89.01 94.23 92.23 97.59 88.87 0.97 0.91 

*CV: Cross-validation protocol 

T Total number of trials 

l 

l 

Classifier ELM SVM 
 

ELM   SVM 
 

ELM SVM ELM SVM 

K2 83.05 71.14 
 

86.91 71.65 
 

78.52 67.42 0.83 0.73 

K3 88.05 78.83  88.25 81.45  88.77 73.72 0.88 0.77 

K5 92.18 84.65  91.27 87.77  90.42 82.34 0.91 0.86 

K10 94.78 87.91  92.32 89.37  95.12 84.50 0.94 0.88 

 



Dogo Rangsang Research Journal                                                  UGC Care Group I Journal 

ISSN : 2347-7180                                                                              Vol-08 Issue-14 No. 04: 2021  

Page | 1409                                                                                       Copyright @ 2021 Authors 

 

Appendix F: Scientific validation 

 
Scientific validation is always an integrated component of the 

system design. For validation, one needs to run another set of 

liver data sets whose results are known a priori. Since such a 

clinical data is hard to obtain, we use facial biometric data set to 

test the classification accuracy. We do acknowledge Dr. Libor 

Spacek of Department of Computer Science, University of 

Essex for providing data on biometric facial dataset, namely 

Face94 [42]. This dataset consisting of male and female faces 

was experimented for validation using ELM/SVM. 

Face94 data set We have conducted experiments to validate 

our results using Face94 data set. The Face94 data set 

consists 153 individual images with various expressions 

and poses seated at a fixed distance from camera. There 

are 2 classes, male and female and total number of 

images are 2660, of which 2260 are male images and 

400 are female images. A subset of images is given in 

Fig. 10. Cross-validation protocol (K2, K3, K5 and K10) 

is also performed to check generalization. The valida- 

tion results are shown in Table 12. It is seen ELM gives 

100% accuracy across all cross-validation protocols. 
 

 

 

 

Fig. 10 Male images (top row) 

and female images (bottom row) 

taken from Face94 data set 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 12 Comparison between ELM and SVM for Face94 dataset 
 

CV* Accuracy (%) 
  

Sensitivity (%) 
  

Specificity (%) 
  

AUC 
 

Classifier ELM SVM 
 

ELM SVM 
 

ELM SVM 
 

ELM SVM 

K2 100 98.46 
 

100 97.50 
 

100 99.29 
 

1 0.98 

K3 100 98.85  100 98.06  100 99.52  1 0.99 

K5 100 98.69  100 98.67  100 98.71  1 0.99 

K10 100 98.88  100 98.33  100 99.36  1 0.99 

*CV: Cross-validation protocol 
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