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Abstract 

 

 

Breast cancer has become the most common form of 

cancer in world recently having overtaken cervical 

cancer in urban cities. Immense research has been 

carried out on breast cancer and several automated 

machines for detection have been formed, however, 

they are far from perfection and medical assessments 

need more reliable services. Computer Assisted 

Diagnostics programs have been developed over the 

past 2 decades to help radiologists interpret 

mammogram screening. Deep convolutional neural 

networks (CNN), which have surpassed human output 

since 2012, have been an immense suc- cess in image 

recognition. Deep CNNs will revolutionize the 

analysis of medical images. We propose a method for 

breast cancer detection based on Faster R-CNN, the 

most common frameworks for object detection. In a 

non-human interference mammogram, the device 

detects and categorizes malignant or benign lesions. 

The method proposed sets the current status of the 

INbreast database public classification scheme, AUC = 

0.95. In the digital mammography challenge DREAM 

with AUC = 0.85, the method mentioned here was 

second. When the device is used as a sensor, the 

accuracy of the INbreast data set is extremely low with 

very false positive image points.
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1 Introduction 

Breast cancer is the leading cause of women and worldwide 

breast cancer death [1]. Mammography screening has shown 

a 38–48% decreasing death rate among participants of breast 

cancer [2]. In 25 out of the 27 Member States of the EU, 

initiatives for the detection and treatment of breast cancer 

are under preparation, piloting or introducing screenings [3]. 

X-ray pictures are taken from two sides of each breast during 

normal mammographic screening. One or two specialized 

radiologists examine these images for malignant lesions’. For 

further diagnostic evaluation suspected cases are demanded. 

Human readers test screening mammograms. The reading 

method is one-size-fits-all, tiring, Lengthy, costly and mostly 

mistaken. Several reports have shown that the previous 

negative screening test by blinded reviewers retrospectively 

shows 20–30% of cancer diagnoses [4]. Despite the latest 

FFDM [4, 5], the issue of lack of cancer remains a matter 

of full digital mammography. The responsiveness and the 

unique characteristics of screening. 

Mammograms are 77–87% and 89–97%. These sta- 

   tistics reflect readers ‘average performance and there are 

 significant differences in individual doctors’ results, with 

recorded false positive levels of 1–29% and sensitivities of 

29–97%. The output was improved by double reading and 

introduced in several countries. Double reading was found. 

More than 10 readers will boost their diagnostic efficiency 

and show that mammograms have room for development 

beyond duplication. The rapid growth of machine learning 

and in particular profound Expertise continues to drive the 

healthcare industry’s interest in applying these technologies 

to boost the precision of cancer screening. Mammograms 

have been found to minimize mortality [7] and American 

women suffer from breast cancer as the second leading cause 
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of death [6]. Despite its advantages, screening mammograms 

are extremely likely to produce false positive and false nega- 

tive tests [8]. The average sensitivity of mammography for 

optical screens is 84.4% and the overall specificity is 90.8%, 

according to a report carried out in 2009 by the Breast Can- 

cer Surveillance Consortium (BCPC). Computer-assisted 

diagnostic detection (CAD) software (as revised in [9]) the 

radiologists’ predictive accuracy in testing mammography 

was improved and in clinical use since the 1990s. Sadly, 

there is evidence that commercial CAD systems have not 

brought about substantial changes in performance [10], and 

growth has stagnated over the last ten years. With its remark- 

able success in in-depth learning in the identification and 

detection of visual artifacts, it is important to help radiolo- 

gists and enhance screening accuracy in many other areas 

[11, 12]. 

The early detection of subclinical breast cancer as an 

image recognition task is difficult, as the tumors them- 

selves occupy only a very small part of the breast picture. 

A full-field FFDM image, for example, usually shows 4000 

per 3000 pixels while a ROI can be just as small as 100 

to 100 pixels. If mammography database ROI annotations 

are regularly available, the object detection and classifica- 

tion procedures could be easily implemented, for example, 

the regional R-CNN [13] and the regionally-based neuronal 

convolutional network [13]. However, ROI annotations [14] 

approaches are often not large-transferable; expensive mam- 

mograms that lack ROI annotations. In addition, there are 

few public repositories of mammography [15] annotated. 

However, in-depth education needs the most powerful broad 

data sets. Only the few completely annotated datasets and 

large datasets with a cancer status for each picture will boost 

the accuracy of brain cancer classification algorithms. Pre- 

training is a safe way of approaching the issue of prepa- 

ration. Hinton et al. [16] for example used pre-training in 

the layer in order to initialize the deep belief (DBN) weight 

parameters with the three secret layer and then to fine-tune 

them in order to identify them. They noticed the training 

pace and the accuracy of handwritten visual recognition 

improved before the class. Firstly, a deeper learning models 

for an extensive database such as ImageNet are developed 

and finalized [17]. Since the new function is not linked to the 

initial training data collection, the weight parameters of the 

model are already initialed and can easily be used for a dif- 

ferent job to identify fundamental features such as borders, 

corner and textures. Additionally, time saved and machine 

performance increased [19]. 

A variety of approaches for object detection with deep 

learning is included in the computer vision literature. The 

region-based convolutional networks (RCNNs) seek to 

gather bordering the targets boxes with position and target 

sizes information. RCNN is sadly incredibly sluggish and 

expensive in computing. For that reason, the faster and more 

effective RCNN [20, 21] was constructed on the basis of a 

complete, joint training program Both the national CNN ini- 

tiatives and the weight-sharing national classification mod- 

ule. This improves the sensitivity and speed of the RCNN 

to objects in comparison with RCNN or RCNN with these 

characteristics. However, it does lack literature on how this 

system could be used for mass sensing in DBT, thus reduc- 

ing time-consuming properties. We analyzed how easily 

the R-CNN can be used to screen for ROIs and the differ- 

ence between real masses and FPs in DBT. We compared 

its findings on the public INbreast database, AUC = 0.95. 

The proposed method sets the state-of-the-art classification 

performance on the public INbreast database, AUC = 0.95. 

The approach described here has achieved the 2nd place 

in the Digital Mammography DREAM Challenge with 

AUC = 0.85. When used as a detector, the system reaches 

high sensitivity with very few false positive marks per image 

on the INbreast dataset. When used as a detector, this device 

is very sensitive with very few false positive characteristics 

per picture in the INbreast dataset. 

 
2 Proposed system 

The proposed method employs Faster RCNN object detec- 

tion framework to classify and localize breast cancer lesions 

as benign or malignant. Faster R-CNN is the core of our 

model and focuses on a convolutional network for the detec- 

tion and placement of objects in an image, with additional 

components. Quick R-CNN has a division called the Area 

Network Proposal, which identifies and localizes objects 

within the image regardless of the object size, after the 

last convolutional layer of the original network. Automatic 

screens of various dimensions and aspect ratios are required 

to find items of different sizes and shapes. The area propos- 

als for the other sector of the network are considered the 

top scoring default boxes. The other neural network branch 

measures the signal from each area that is measured at a 

fixed size of the last convolutional layer. To improve the 

boundaries of the object in the sector, both branches attempt 

to resolve the classification challenge and the bounding 

regression challenge. The best predictions can be selected 

using non-maximum deletion from the detected overlapping 

objects. The initial article provides more detail on Faster 

R-CNN. Figure 1 display a pattern outline. Distribution of 

value (excluding background) and re-scaling to 0–255. A 

16-layer deep VGG16 network was the basis for our plan. 

Two kinds of images, milder lesions or malignant lesions 

can be identified by the final layer. For each lesion found, the 

model generates a bounding box and a result that represents 

trust in the lesion class. In order to define a single scoring 

picture, we use the maximum scores of all malignant lesions 

found for several and we take the average number of photos 
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Fig. 1 The outline of the Faster R-CNN model for CAD in mammog- 

raphy 

 

of the same breast. Two models with shuffled training data 

sets have been created for the DM challenge. The picture 

score for the assembly of those models was the average score 

of each model. An earlier research on autonomous yet quick 

and functional human readers has influenced this approach. 

It’s been very good. The Faster R-CNN [18] Framework was 

developed by the developers, which was integrated into the 

Caffe deep learning framework. The proposed CAD have 

optimized during training the object detection aspect and 

the model rating component. We used back propagation and 

stochastic decrease in weight of gradients. The first trained 

model with ImageNet images was 1, 2 million. 

Higher resolution performs better, because mammograms 

are isotropically rescaled on the shorter side, a longer side 

of less than 2100 pixels or under 1700 pixels. This resolu- 

tion is similar to the full graphics card memory. In line with 

the Hologic norm aspect ratio, the dimension ratio has been 

chosen. 

In order to increase the training dataset, the proposed 

CAD used vertical and horizontal rotation. Mammograms 

contain fewer artifacts than usual images, thus mini-batches 

dominate negative propositions. In order to allow more posi- 

tive measurements in each mini-batch it has been reduced 

from 0.7 to 0.5 the threes for front-end artifacts in the area 

Proposed Network intersection over Union (IoU). It also 

relieves positive evidence that mammalian lesions are much 

less defined than in a typical photograph of a car or dog. The 

final, non-maximum (nms) deletion IoU threshold was set at 

0.1, despite the fact that mammograms reflect a smaller and 

more compact 3D space compare to ordinary pictures. The 

model was trained for 40 k iterations. The previous testing 

of the DM challenge training data showed that this amount 

is close to optimal. 

In this work, Faster R-CNN CAD method is suggested, 

reaching 2nd in the AUC range = 0.95 in the Digital Mam- 

mography Challenge final validation results. The findings 

of the competition have proved to be one of the best meth- 

ods to classification of mammograms for cancer. The DM 

problem concentrated on recognizing malignant lesions and 

the picture. 

Classification as a whole was the only method that the 

proposed system used to get away from the identification 

mission. An accident detector is much safer clinically than 

a listen. Just one single marker may be given for a case or 

breast, but the cancer that is necessary for additional diag- 

nosis or treatment is unable to be identified. 

 
 Data sets 

 
The model was based on a public mammography screening 

(DDSM) digital database and an INbreast public data col- 

lection data set from the University of Semmelweis in Buda- 

pest. The photos used for the training contain histologically 

confirmed cancers or stable injuries, reminiscent of which 

were not malignant after further testing. Our understanding 

with both lesions is anticipated to help our model recog- 

nize more lesions and to distinguish between malignant and 

benign examples. 

The INbreast dataset comprises 115 FFDM cases of 

ground-level pixel realities and histological evidence for 

cancer. In conjunction with our test scenario the INbreast 

pixel annotations have been modified. The benign annota- 

tions were overlooked and the malignant lesion annotations 

were translated into bounding boxes. Eight studies with 

additional observations, objects, past procedures, or unclear 

disease outcomes were omitted. Thus we have changed the 

pixel level range, with the images of low contrast. The pixel 

values have been cut to 500 pixels less and 800 pixels higher 

than the pixel mode. 

DDSM includes more than 2620 scanned mammograms, 

including mild, Pathological details reviewed in benign and 

malignant cases (see Fig. 2). For the case of a single cranio- 

caudally bilateral (CC) and an oblique Medio lateral (MLO), 

four mammograms with two separate views are observed. In 

benign and malignant cases, important abnormality informa- 

tion is provided. 

 
 Image preprocessing 

 
The 3D bounding box was annotated manually by an expe- 

rienced radiologist and the ROIs extracted from the precise 

positions of the radiologist, the true mass of TP groups. 

The screening ROIs represented the FP artefacts. The Fig. 3 
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Fig. 2 Taking DDSM mammograms. From left to right: breast with- 

out any evidence of abnormality, tumor breast and benign tumor 

breast 

 

 

 
Fig. 3 An example of the mass ROI annotation in a MLO and b CC 

images for DBT images 

 
displays a manual mass annotation in two views of different 

sizes on DBT images. 

Since the acquired in-plane resolution (including 49.5 to 

49.5 μm) from Siemens is comparatively bigger than that of 

UIS, all UIS sliced images are sampled in an in-plane resolu- 

tion of 85 μm to be able to achieve an equivalent resolution 

of 85–85 μm using a bi-cubic interpolation algorithm [22]. 

A 3D Laplacian filter of 3 × 3x3 was used in all volumes of 

DBT to boost the edges of the tumor. In addition, a two-view 

(CC and MLO views) knowledge fusion approach was used 

to classify the automatic nipple location [23]. Afterwards, 

the skin and context were omitted from the breast region 

using a complex multiple thresher dependent breast bound- 

ary method, as shown in the Fig. 4 [24, 25]. This picture 

 

 

 

 
Fig. 4 An example of the removal of the skin. a First, broad-based 

slice. b Surface and skin preprocessed image removed 

 
preprocessing was performed to prevent large scale measure- 

ments of RCNN CAM background pixels. 

 
3 RCNN‑based CAD 

In this section, the structure and specification for the faster 

RCNN model were briefly presented in our RCNN CAD 

framework. 

 Faster RCNN architecture and hyper parameters 

 
The Faster R-CNN model was updated using 5 coated layers 

in the previous study in our RCNN CAD framework [26], 

using DCNN architectural features. As Fig. 5 shows. The 

RCN Network Fig. 5a consists of two major constituents for 

the faster RCNN model: (1) a Regional Proposition Network 

(RPN), a profoundly convolutional network that produces 

proposal bounded boxes in an input picture with all sizes. 

In addition, each projected bounding box and convolution 

features in the ROI pooling layer are accepted. To obtain 

information about the TP likelihood and location, a SoftMax 

layer and bounding box regression are used. In the single 

network, RPN and Classifier networks shared a broad image 

convergence, which reduced the time required to produce 

regional propositions dramatically. As shown in Fig. 5b, the 

network consists of 5 standard coagulation layers (C1, C2, 

C3, C4, C5) and 2 total coagulation layers between C1 and 

C2, C2 and C3 Fig. 5b. The typical convolutional layers are 

96, 128, 384, 192 and 128 filter kernel sizes, respectively, of 

11 × 11, 5 × 5, 3 × 3, 3 × 3 and 3 × 3, respectively. The unique 

convolutional layers (C6, C7, and C8) of RPN have 256, 

14, and 28 filter kernels of sizes of 3 × 3, 1 × 1, and 1 × 1, 
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Fig. 5 Our faster RCNN-based CAD device platform and architec- 

ture. a Fast RCNN mass detection framework in DBT pictures. b 

Faster RCNN-based cad architecture 

 

respectively. The network of classifiers contains three fully- 

connected layers (FC1, FC2 and FC3) with 4096, 4096 and 

two neurons. Anchor boxes with various dimensions and 

aspect ratios were used for detecting masses with different 

sizes on each sliding window on a convolution diagram. Six 

scales (1, 0.5, and 2), have been used for each anchor, which 

produced 18 anchors at a sliding window location. Three 

scales (182, 372, 722, 1442, 2882, have been employed and 

5762 pixels). The previous research offers thorough explana- 

tions of this method [27]. 

The heat-map is flattened and connected to the image 

classification output by means of FC layers in a simple 

approach to creating a whole image classifier from a patch 

classifier. A maximum pooling layer after the heat-map is 

necessary to improve the translational invariance of the 

model to the performance of the patch classifier. In addition, 

the heating map and the output can be simplified to simplify 

preparation. The heat-map is from the output of the patch 

classifier, which is activated by the softmax: 

The activation is always supported to be ReLU unless oth- 

erwise specified when referring to the heat map in a whole 

image classifier. 

 
 Faster RCNN training 

 
For faster RCNN preparation, sampling from a Gaussian dis- 

tribution randomly initialized all weights. The initial 0.001 

learning rate was used for all layers experimentally. For 

every 20 epochs there was a stepwise procedure for raising 

the learning rate by 0.1. In learning kernels, an L2 control 

concept was used to minimize overfitting for the weights of 

loss functions. A method was also used to randomly drop a 

node in a hidden layer and a chance was calculated to drop 

all the hidden node values to 0.5. A four-stage algorithm 

with alternating optimization was used to learn network 

parameters for training faster RCNN. The RPN have been 

trained for the first time as a candidate mass in Phase 1 with 

the initialized network. In Step 2, a different classification 

network was trained using the RPN boxes in Step 1. All 

networks were trained independently at this stage without 

parameters. Phase 3 was initialized by the qualified Phase 2 

network for the purpose of RPN, However, its fundamental 

learning levels (i.e., C1, C2, C3, C4 and C5) have frozen 

by 0%. For the second time, the RPN was conditioned by 

upgrading the different RPN layers (i.e. C6, C7 and C8). 

Step 4 addresses joint layouts and step 2 redundant for the 

establishment of the classification scheme, by updating the 

different RCNN layers more quickly (i.e. FC1, FC2, and 

FC3). 

Here, C7 performance predicts whether the bordering 

boxes of the proposal reflect a mass. Box center coordi- 

nates of C8, i.e. X, Y, W and H, and their width and height, 

are represented by the C8 outputs. In order to differenti- 

ate between the box coordinates, the convolution features 

and projected bounding systems were transferred to the 

ROI bond layer. For through proposal bounding, the sys- 

tem produces a mass probability value, size and position 

information. 

ezj                               

f (z)j = ∑e 
j=1 

 

ezi 

for j = 1, … , C 
 

(1) 4 Result and discussion 

The Softmax activation however reduces gradients for large 

inputs which, in an intermediate layer, can impede gradi- 

ent flow. Consequently, linear corrected units (ReLU) can 

instead be used: 

In this section the results of the test of the qualified data 

set images are presented using the python and MATLAB
©
 

framework. The accuracy was established by the following 

equation to evaluate the results: 

f (z)j = max 0, zj for j = 1, … , C (2) 
Accuracy = 100 ×

 TP + TN 
 

TP + TN + FP + FN 
(3) 

TP means true positives, TN means true negatives, FP 

means false positives, and FN means false negatives. 
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If the entire number of images chosen for network train- 

ing is used as a training input for the training process, 

the program tested the validation collection. The average 

accuracy of the classification was 95% in the two groups 

studied following network formation: benign and malig- 

nant tumors the classification. 

After these results were collected, the network’s out- 

put images were analyzed to see the boundary boxes sug- 

gested by the machine over their original pictures. The 

Fig. 6 displays the results of our method for accuracy when 

tumors inside the dataset samples considered for research 

are observed. Photos in Fig. 6 left hand is consistent with 

the output from our method, with border boxes colored in 

blue, and the correct mark images are shown in the right 

section, showing where there are tumors, taking this in 

mind as the ground truth. 

 
 Cancer classification 

 
The model efficiency has been also measured with the 

ROC metric data collection, Fig. 7. The INbreast data col- 

lection has many one-hand experiments, so the forecasts 

have been calculated for each brain. The machine obtained 

AUC = 0.95, (95 percentile interval from 10,000 bootstrap 

samples, 0.91 to 0.98). To our knowledge, it is a single 

model oriented, fully automated device, with the highest 

AUC in the INbreast dataset. 

 

 

 

 

 

 
Fig. 6 Examples of detection: The yellow boxes display the model’s 

lesion. The identification threshold was chosen to be 0.9 = lesion 

sensitivity. A Malignant injury, B Malignant injury, C False positive 

lesions found correctly 

 

 

 
Fig. 7 Classification efficiency. The solid blue line indicates a curve 

ROC on the breast stage (AUC = 0.95) on the basis of 10,000 boot- 

strap studies. The dotted lines indicate the 95-percentile curve distri- 

bution 

 

 FROC analysis 

 
We tested the predictions for the INbreast data set using 

the free-response ROC (FROC) curve to check the capac- 

ity for detecting malignant lesions and locating them accu- 

rately. The FROC curve shows sensitivity as the result of 

the amount of false positive marks inserted in the picture 

(fraction of correctively localized lesions) as shown in the 

Fig. 8. The detection was considered correct when the center 

of the proposed lesion fell within the bottom of a true box. 

Generally, the same criteria are used to measure the per- 

formance of CAD products currently used. There is no lesion 

annotation in the DM challenge dataset, so we cannot use it 

for FROC research. 

 
 

 
Fig. 8 INbreast dataset’s FROC curve. Sensitivity per lesion is deter- 

mined. The solid curve with squares shows the results with every sin- 

gle image, while the dashed lines indicate the interval of 95 percen- 

tiles from 10,000 samples 
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5 Discussion 

We have suggested a Faster R-CNN cad method, reaching 

2nd in the AUC range = 0.95 in the Digital Mammography 

Challenge final validation results. The results of the com- 

petition have proven one of the best approaches in cancer 

mammograms classification. The DM question centered on 

recognizing malignant injuries while the overall picture clas- 

sification is an important step away from the task of identifi- 

cation, which was the only method we used. Just one single 

marker may be given for a case or breast, but the cancer that 

is necessary for additional diagnosis or treatment is unable 

to be identified. 

We tested the model for the INbreast dataset that was 

available to the public. In an inbraast dataset, the system 

detects 90% of damaged injuries with just 0.3 false positives 

per picture.This also includes the latest data on the public 

INbreas dataset for cancer ratings. The program only uses 

mammograms with no annotations and interactions between 

users. 

 
6 Comparison 

We designed and implemented novel algorithms and deep 

neural networks for pre-processing, visualization and per- 

formance enhancement. 

• Achieved similar performance on Mass versus Calcifica- 

tion for both models on INbreast, but on AIIMS, FRCNN 

outperformed Retinanet by missing fewer malignant 

lesions and correctly identifying more masses and calci- 

fications 

• We also tested on small masses wherein both networks 

gave similar AUC while for localization, FRCNN per- 

formed better than Retinanet 

• On 20,000 image-labelled AIIMS data, FRCNN gave a 

higher AUC compared to Retinanet we have built and 

trained the photometric transform network and are cur- 

rently testing it and experimenting further by adding 

hinge loss and modifying hyper parameters (as shown 

in the Table 1). The Fast R-CNN integrates the region 

candidate generation, feature extraction and region clas- 

sification stages in one pipeline. It performs mass detec- 

tion and segmentation tasks altogether and the network 

can be optimized as a whole. The proposed CAD does 

not require massive training of the Faster R-CNN. Each 

round of training only takes approximately 10 min with 

10 epochs. The testing of the Fast R-CNN model takes 

less than 1 s per image. 

 
In this research four CAD systems’ performance have 

been compared using the FROC area difference [28–30]. 

The Bootstrap test was used to re-evaluate the output value 

of the CAD without assuming parameters. The differential 

distribution was compared to the difference in the metric. 

The differential was observed. When the measured distri- 

bution width was much the discrepancies between methods 

were found to be significant less than the metric observed. 

The statistical value of the disparity in output between our 

CAD systems based on the RCNN, LSTM, DCNN and CNN 

was determined from the FROC breast curves. 

In addition, in the model size, number and time-consum- 

ing parameters and AUC, we compared our network with 

other models. Table 2 shows that the proposed CAD using 

Faster R-CNN achieves a similar detection performance and 

a higher segmentation performance compared to [31], and 

outperforms [32, 33] in both detection and segmentation on 

INbreast data. Budak et al. [32] and Agarwal et al. [33] both 

have separate networks for region candidate proposal, clas- 

sification and mass segmentation, which need to be tuned 

sequentially, while the proposed CAD integrates all these 

stages. 

Our network obtained a successful outcome with less 

capacity than DCNN from the contents of Table 2. Although 

storage space is more than the DCNN, the efficiency and 

time consuming are significantly better. 

 
7 Conclusion 

In this work, we proposed an integrated mammographic 

CAD for simultaneous mass detection and segmentation 

based on pseudo-color mammograms and Faster R-CNN. 

 
Table 2 Comparison of our network with traditional ones 

 
Table 1 performance Comparison table 

Name Size (MB) Parameters Time per 

image 

(ms) 

AUC DB 

 
 

Faster- 527 1.41e + 08    2.6 0.95   INbreast 

 

 

 

 

Dataset FRCNN (proposed) RetinaNet  

INBreast AUC: 0.95 

Sens: 0.9 at 0.3 FP 

AUC: 0.941 

Sens: 0.8 at 0.3 FP 

RCNN 

DCNN [31] 

 
230 

 
2.5e + 07 

 
6 

 
0.91 

 
DREAM 

DREAM AUC: 0.85 AUC: 0.805 LSTM [32] 170 1.5e + 04 – 0.93 CIFAR-10 

 Sens: 0.857 at 0.3 FP Sens: 0.68 at 0.3 FP CNN [33] 485 1e + 00.3 4 0.85 OMI-DB 
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The findings of the competition have proved to be one of the 

best methods to classification of mammograms for cancer. 

The DM problem concentrated on recognizing malignant 

lesions and the picture classification as a whole was the only 

method that used to get away from the identification mission. 

We think an injury sensor is much more useful clinically 

than an arbitrary classification. Just one single marker may 

be given for a case or breast, but the cancer that is neces- 

sary for additional diagnosis or treatment is unable to be 

identified. 

Education approaches have tremendous potential. Our 

approach can lead to the development of superior CAD sys- 

tems which increase benefit and reduce the harmful effects 

of mammography screening and can be used with low ROI 

imagery. 
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