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Abstract- The majority of methods for measuring surface soil moisture (SSM) using optical and thermal 

infrared (TIR) spectroscopies are designed to compute several characteristic bands or indices and then 

create a regression connection between them using measurement data. Yet, the regression relationship 

frequently exhibits nonlinearity as a result of the combined influence of several factors. However, it is 

challenging to develop a more comprehensive model for the remote sensing (RS) estimate of SSM 

because the link between the single temporal picture and the measured data is not transplantable in time 

and space. The back propagation (BP) neural network (NN) is used to identify the link between the 

characteristic band/index and the measurement data. This network has good nonlinear mapping 

capabilities. 
 

 

 

1. Introduction 
Soil water content (SWC) is a crucial variable in 

meteorology, hydrology, and agricultural science that 

significantly affects water displacement, vegetation 

photosynthesis, and land surface evaporation [1, 2]. The 

groundwater, surface water, and atmospheric water cycle 

systems are connected by it [3, 4]. Soil moisture (SM) 

monitoring accuracy is crucial for the correct prediction of 

climate change [5, 6]. Although direct measurement is the 

most precise way to track SM, in situ measurement data are 

ineffective in displaying the geographical distribution of 

SM and cannot be used to track large-scale changes in SM's 

spatial and temporal characteristics [7, 8]. 

The development of a remote sensing (RS) data algo- 

rithm provides an efective solution to the large-scale 

monitoring of surface soil moisture (SSM) [9, 10]. 

Various RS methods have been developed in diferent re- 

gions of the electromagnetic spectrum. These methods may 

be classified into three major groups: microwave (MW), 

thermal infrared (TIR), and optical [11, 12]. Microwave is 

advantageous due to its stronger penetration ability, longer 

wavelength, and the robustness to adverse weather condi- 

tions. Therefore, MW technology shows a greater potential 

in monitoring global SM dynamics [13]. However, due to the 

relatively rough resolution of SM products provided by Soil 

Moisture Active Passive (SMAP) mission and Soil Moisture 

and Ocean Salinity (SMOS) mission, they are not suitable for 

small-scale regional applications. Apart from that, a chal- 

lenge presented by using MW to monitor SSM is the need to 

input various physical parameters, some of which are still 

not well defined at present [14]. For example, surface 

roughness, which is easily changeable, must be measured in 

the field, which is time-consuming. 
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Compared with MW SM products, optical/TIR RS data 

usually have a higher spatial resolution, which can well meet 

the needs of SM data in various fields [15]. Optical methods 

apply the visible, near infrared (NIR), and shortwave in- 

frared (SWIR) data for SM retrieval. Many scholars have 

used diferent vegetation indices to monitor SM and dryness 

[16]. However, there is a certain lag in vegetation growth for 

the degree of surface drought. Some other studies used 

spectral feature space to construct SSM retrieval models. For 

example, the perpendicular drought index (PDI) [17] is 

derived from the red and near infrared (NIR) band re- 

flectance triangular space. This method needs to determine 

the soil line artificially to realize the model. However, the 

distribution of soil lines highly depends on some parameters, 

such as soil minerals, iron oxide content, particle size dis- 

tribution, and organic matter [18]. Although TIR methods 

are developed based on physical principles, the methods are 

usually empirical and depend on local meteorological 

conditions, such as humidity, temperature, and wind speed, 

and thus, the measurement results vary temporally and with 

land cover types [19, 20]. 
The combination of optical and TIR RS data mostly 

results in better accuracy for SM retrieval. To some extent, 

land surface temperature (LST) can be taken as an indicator 

of the change in SM and vegetation. Therefore, the retrieval 

model based on LSTand vegetation index (VI) can be used to 

estimate SM [21]. The temperature vegetation dryness index 

(TVDI) is parameterized based on the LST-VI space [22]. 

Over the past two decades, this simple model and those 

improved models in relation to it have already been applied 

to SSM estimation [23–26]. Despite this, the spatial distri- 

bution of LST-VI remains possible not to conform to tri- 

angle or trapezoid, thus afecting the accuracy of SM 

estimation. The spatial shape is treated as a triangle or 

trapezoid in the context of human intervention, which can 

lead to uncertainty in the calculation results. 
A major method of estimating SWC based on optical and 

thermal infrared data is to retrieve the SM index or drought 

index using satellite data [27–30], so as to establish the 

regression relationship between the index and the actual 

SWC using the measurement data [31]. However, the var- 

iation of SWC can be afected by various factors (e.g., soil 

texture, surface roughness, topography, temperature, and 

vegetation coverage), which leads to the nonlinear regression 

relationship. Moreover, the relationship between the single 

temporal image and the measurement data is not trans- 

ferable in time and space, which makes it challenging to 

establish a more general model of RS estimation for SM. 

Compared with those traditional methods, the neural 

network (NN) model demonstrates various advantages, 

including the flexibility in combining information from 

diferent sources and mapping the input-output relationship 

of any data without needing an empirical formula [32]. The 

statistical relationship between satellite observation and SSM 

can be simulated on the basis of satellite data and measured 

SM estimation without explicitly establishing any physical 

connection. The excellent nonlinear mapping ability of the 

NN model makes it capable to minimize uncertainty and 

improve the accuracy of SM retrieval from RS data [33–35]. 

Some scholars have constructed an NN model based on 

microwave data for estimating soil moisture [36, 37]. There 

is also a synergistic use of microwave and optical data to 

retrieve soil moisture using NN models [38, 39]. In these 

studies, NN models estimated soil moisture with a high 

degree of accuracy. Some studies have used the normalized 

diference vegetation index calculated by optical data and 

land surface temperature calculated from thermal infrared 

data as parameters into the neural network model to esti- 

mate soil moisture [40]. Optical and thermal infrared data 

have an exceptional potential for estimating soil moisture. 

However, there are few studies on SM estimation using 

optical and TIR data with the NN model. 

The primary purpose of this paper is to build a highly 

universal SM retrieval model, which can overcome the in- 

fluence of soil texture, vegetation cover, terrain, and other 

factors. As one variety of the ANN, the back propagation 

(BP) neural network (NN) is applied to construct the SM 

prediction model. The characteristic band/index with high 

resolution and multitemporal data is taken as the input data, 

while the measured SM is treated as the output data. Finally, 

the multiple spatial and temporal Landsat-8 and MODIS 

data were used to estimate SSM. The model constructed in 

this paper is universal and can be applied to estimate SM in 

both bare land and vegetated areas. 

2. Study Area and Data Source 

 Study Area. As shown in Figure 1, the study area is 

located in the middle of the Tibetan Plateau. The map 

of China is downloaded from website 

https://bzdt.ch.mnr.gov. cn/index.html. The climate in 

the Naqu area is relatively warm from May to 

September each year, and this period refers to the 

season of vigorous vegetation growth. During this 

period, the land cover is dominated by plateau 

meadow. The other period includes the snow and soil 

freezing period, during which most areas are covered 

by snow and frozen soil. As impacted by low biomass, 

air quality, and humidity, the MW signal attenuation is 

weak, so this area acts as an ideal place to verify 

satellite and model simulation of SM products [41]. 

 In Situ Measurements. The measured SM data used 

in this study originated from the SM observation 

network in the Naqu area. There were 57 stations 

available in the network, with SM and temperature 

data at four observation depths (i.e., 5, 10, 20, and 40 

cm), and the sampling interval was 30 min. The 

mentioned measurements provided con- siderable 

valuable experimental data for SM retrieval in the 

Tibetan Plateau [42]. In the present study, the 

measured SM data from 2014 to 2016 were collected to 

assess the per- formance of the SSM retrieval model. The 

dataset is provided by the National Tibetan Plateau 

Data Center. 

 Remote Sensing Data. Landsat 8 carries Operational 

Land Imager (OLI) and Thermal Infrared Sensor (TIRS). 

The OLI provides nine optical bands, and the TIRS 

provides two thermal bands. Twelve Landsat-8 images 

https://bzdt.ch.mnr.gov.cn/index.html
https://bzdt.ch.mnr.gov.cn/index.html
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FIgurE 1: Location of the study area. 

 
May, 18 June, and 27 July, 2014; 20 May, 23 July, 30 July, 31 
August, 9 September, and 16 September, 2015; 25 July and 17 

August, 2016, were acquired. 

 

3. Research Method 

By using the BPNN, the coastal, blue, green, red, NIR, 
shortwave infrared (SWIR) band, and LST were taken as the y 

input data, the measured soil volumetric moisture was taken as 

the output data, and the SM retrieval model is established. The 

LST data were calculated using the TIRS1 and TIRS2 bands of 

Landsat-8. In addition, the observed SM data are used to test 

the results of model estimation and evaluate retrieval accuracy. 

 

 BPNN Model. The BPNN refers to a type of the 

mul- tilayer feed-forward network with a hidden layer. 

In the practical application of ANNs, the BP network 

has been extensively used in data compression, pattern 

recognition, as well as function approximation. The BP 

network consists of an input layer, hidden layer, and 

output layer. The BPNN comprises an input layer, a 

hidden layer, and an output layer. The structure with a 

single hidden layer of the BPNN is shown in Figure 2. 

All neurons were configured according to the model 

shown in Figure 3. 

The training operation of the BPNN consists of signal 

forward propagation and error back propagation. Forward 

propagation means that the input signal was transmitted 

from the input layer via the hidden layer to the output layer. 

If the output layer yields the desired output (the actual 

output is consistent with the expected output), the learning 

algorithm ends; otherwise, it turns to back propagation. 

Back propagation aims to reduce the error by calculating the 

error according to the original connection path direction 

and adjusting the weight and threshold of each layer node 

based on the gradient descent method. After repeated 

learning and training, the network parameters (weight and 

threshold) are determined for the minimum error and the 

training is terminated. At this point, the trained NN is 

capable to process the input information of similar samples 

and to output the nonlinear converted information with the 

minimum error. 

 
FIgurE 2: Topological structure diagram of the BPNN. 

 

 

x0 = -1 

FIgurE 3: Single neuron structure. 

 
 Input Parameter Scheme. The approach to 

monitoring SM with optical data is mainly based on 

the spatial shape of pixel distribution in Landsat-8 

bands to estimate SM. The SWIR 1 and SWIR 2 bands 

of Landsat-8 data (1650 nm corresponding to band 6, 

2210 nm corresponding to band 7) are sensitive to SWC, 

especially at 2210 nm [43]. In this 
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TaBlE 1: Parameter setting of diferent schemes. 

Scheme Input variables Output variable 
 

1 Coastal, blue, green, red, NIR, SWIR 

2 Blue, green, red, NIR, SWIR 

3 Red, NIR, SWIR 

4 Red, NIR 

5 NIR, SWIR 

6 Red, SWIR 

7 Coastal, blue, green, red, NIR, SWIR, LST 

8 Blue, green, red, NIR, SWIR, LST 

9 Red, NIR, SWIR, LST 

10 Red, NIR, LST 

11 NIR, SWIR, LST 

12 Red, SWIR, LST 

Measured soil volume water content 

 

 

study, the SWIR 2 is taken as the input parameters of the 

SSM estimation model. 

There are twelve schemes that were constructed to an- 

alyze the efect of various parameters on the accuracy of SSM 

estimation (Table 1). Scheme 1 sets all optical bands as input 

parameters. Based on the formula expressing SM in Tasselled 

Cap transformation, the band used in the formula was taken 

as the input parameter of scheme 2. According to the 

previous models applied to calculate SM through optical 

data, it can be found out that there were only a small number 

of bands in red, NIR, and SWIR bands as used in these 

models, so that schemes 3–6 were designed. On the basis of 

schemes 1–6, the LST data were introduced, respectively, 

with schemes 7–12 set. 

 

4. Results 

 SSM Estimation Results and Validation. In the 

experi- ment, a total of 252 sample data were extracted 

from the study area. In addition, the BPNN was set 

below: the training sample was 189 and the test sample 

was 63. In order to ensure the stability of the BPNN 

model, we trained the BPNN model 100 times to obtain 

the correlation coefficient of estimating and measuring 

soil moisture. Finally, the average value of 100 training 

results is selected as the estimation accuracy of the 

model. The in situ measured soil volumetric moisture 

was used as a reference to calculate the coefficient , 

root mean square error (RMSE), unbiased root mean 

square error (ubRMSE), and bias (Bias) of the 

estimated SSM. Figure 4 shows the scatter distribution 

of soil volumetric moisture estimated and measured by 

12 schemes. Table 2 shows the accuracy of the 

estimated SSM in each scheme. 
With only the optical bands as the input parameters of 

the SM estimation model (schemes 1–6), the estimated SM 

shows correlation with the measured value to a certain 

extent, and the correlation coefficient reaches up to 0.8682, 

which renders the accuracy of retrieval poor. In the scheme 

of estimating SM with optical data, all bands were treated as 

input to obtain the most accurate SM (scheme 1). In scheme 

2, the r between the estimated and measured SM is 0.8163. 

After removing the coastal band, the estimation accuracy of 

SM does not change significantly. As for the input, only the 

red, NIR, and SWIR bands are retained (scheme 3). 

Whereas,   the   estimation   accuracy   of   SM   remains 

comparable to that of scheme 1, indicating that the red, NIR, 

and SWIR bands play a major role in SM estimation. 

In schemes 7–12, the input parameters were set as optical 

bands and LST, and the estimated SSM was closer to the 

observation. The SM estimated by scheme 7 had the highest 

accuracy. It showed a RMSE of 0.0017 and r of 0.9001. The 

normalized diference vegetation index (NDVI) and nor- 

malized diference water index (NDWI) were calculated by 

red, NIR, and SWIR bands. According to the LST-VI SM 

estimation model, schemes 10–11 of red, NIR, SWIR, and 

LST are designed as input parameters. Scheme 11 shows 

a higher estimation accuracy of SSM than that of scheme 10, 

which suggests that NDWI is more suitable to represent VI 

for SSM estimation than NDVI. With red, SWIR band, and 

LST as input parameters (scheme 12), the SM estimation 

accuracy was higher than in schemes 10 and 11. 
When using the BPNN model to retrieve soil moisture, 

the soil moisture with the highest accuracy can be estimated 

by selecting scheme 7. In case of lack of TIR data, scheme 1 is 

preferred to retrieve soil moisture. 

 

 Land Surface Feature Influence on SSM Estimation 

Results. Zhang et al. [44] used the random forest 

model, which had land surface feature parameters and 

in situ soil moisture data to predict SSM. It would be 

good to test the same experiment on a diferent 

environment to check the consistency of the results. To 

analyse the influence of land surface feature factors on 

SSM estimation results, the ele- vation, slope, aspect, 

and vegetation coverage (normalized diference 

vegetation index, NDVI) factors were added into 

BPNN model. The soil texture of all observation 

stations in the study area is the same type, so this 

factor was not considered. On the basis of scheme 7, 

each influence factor was added, respectively. The 

estimated soil moisture were grouped according to the 

value of the influence factors. Also, the r between each 

group of data and the corresponding measured soil 

moisture were discussed (Table 3). 
With the increase of elevation and slope, the r between 

estimated and measured SSM gradually decreases. The r of 

the north aspect was obviously lower than that of other 

aspects. The terrain of Naqu study area fluctuates violently, 

and it was easy to have shadow in areas with large elevation, 

steep slope, and north aspect. In the shadow areas, the 
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surface reflectance is very low, and the satellite data in this 

area will greatly reduce the accuracy of estimated SSM. It is 

worth noting that the mountain shadow in the southern 

hemisphere appears on the south aspect. In areas with 

diferent NDVI values, the r values of estimated and 

measured SSM were similar. Vegetation coverage will not 

significantly afect SSM estimated by the BPNN model. 

BPNN is not afected by the underlying surface condition 

and can be applied to areas with diferent vegetation cov- 

erage. However, when using optical satellite data as input 
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TaBlE 2: Accuracy evaluation of soil volumetric moisture retrieval results. 
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TaBlE 3: The results for BPNN in four groups respective to the pixels land surface feature values. 
 

Elevation ≤ 4500 m 

R 

4500 m < Elevation ≤ 4600 m 

r 

4600 m < Elevation ≤ 4700 m 

r 

4700 m < Elevation 

r 

0.9197 0.9082 0.8552 0.8186 

Slope ≤ 3.5° 3.5° < Slope ≤ 5.5° 5.5° < Slope ≤ 9° 9° < Slope 

r r r r 

0.9283 0.8992 0.8138 0.7513 

North aspect East aspect South aspect West aspect 

r r r r 

0.6972 0.8937 0.9395 0.8718 

NDVI ≤ 0.25 0.25 < NDVI ≤ 0.40 0.40 < NDVI ≤ 0.55 0.55 < NDVI 

R R R R 

0.8724 0.8801 0.8916 0.8786 

 

parameters, the BPNN model is more suitable for the area 

with flat terrain and gentle slope. Also, BPNN cannot’ 

construct the empirical formula to express the relationship 

between soil moisture and various parameters. 

 
 Application of the SSM Estimation Model. Since the 

grid size of Landsat data was 30 m 30 m, the small-scale 

ob- servation network of the Naqu SM observation 

network was taken as the retrieval area of SSM. Figure 5 

shows the surface soil moisture map retrieved from 

scheme 7 on May 20, 2015. The soil volumetric 

moisture of the 9 stations estimated in the area ranged 

from 0.122 to 0.357 cm3/cm3 in accordance with the in 

situ data (0.145–0.395 cm3/cm3). The scatter plot 

between measured and estimated soil volumetric 

moisture is shown in Figure 5©. It showed a RMSE of 

0.0429 and r of 0.8392. The result indicates that 

calibration of the BPNN model with in situ data 

generally leads to reasonable SM estimates. 

5. Discussion 

The PDI and TVDI models were used to retrieve soil 

moisture, respectively. The PDI and TVDI models were used 

to estimate SSM in the same area of Figure 5. The red and 

NIR bands shall be applied to calculate PDI (corresponding 

to scheme 4), while the red, NIR, and LST shall be applied to 

calculate TVDI (corresponding to scheme 10). The scatter 

plot of SM estimated and measured by PDI and TVDI is 

shown in Figure 6. The r between the estimated and mea- 

sured SM are 0.4786 and 0.5047, respectively. Comparing the 

SSM calculated by PDI and TVDI, the accuracy of SM 

calculated by the BPNN has significantly improved. 

We also brought MODIS data into the BPNN model to 

estimate soil moisture. There is a slight diference between 

the band range of MODIS and Landsat-8 data (Table 4), and 

there is no coastal band in MODIS data. The LST data were 

obtained from MOD11A1 products. There are ten schemes 

(schemes 2–6 and schemes 7–12 in Table 1) to estimate SM 

using the BPNN. 

We collected 742 MODIS data, 594 data were used as 

training samples, and the remaining 148 data were used as 

test samples. The retrieved SSM had the highest accuracy 

when the input parameters were green, blue, red, NIR, SWIR 

band, and LST data. The scatter plot between measured and 

estimated soil volumetric moisture is shown in Figure 7. It 

showed a RMSE of 0.0573 and r of 0.8164. The SSM esti- 

mation accuracy is similar to Landsat-8 data (scheme 8). 

It is worth noting that the more the input sample data, 

the higher the accuracy of SSM retrieved by the BPNN. 

However, this method is not applicable in cloud and 

shadow-covered areas. Since the input parameters in the 

model are all derived from RS raster data, the images with 

diferent spatial resolutions can be used for the SSM esti- 

mation model based on the BPNN. Sentinel-2 is regarded as 

another ideal RS data due to its high temporal and spatial 

resolution. 

The BPNN model is not limited by RS data. The RS 

images such as Landsat-8, MODIS, and Sentinel-2 can be 

used as input parameters to retrieve soil moisture. Since the 

BPNN model directly uses the surface spectral reflectance 

data to retrieve soil moisture, the model is not limited by 

regional conditions. The BPNN model can simultaneously 

retrieve soil moisture of bare soil and vegetated areas. 

However, when optical and TIR data are input into the NN 

Evaluating Scheme Scheme Scheme Scheme Scheme Scheme Scheme Scheme Scheme Scheme Scheme Scheme 

indices 1 2 3 4 5 6 7 8 9 10 11 12 

R 0.8682 0.8163 0.7815 0.6477 0.7093 0.7382 0.9001 0.8519 0.8049 0.7008 0.7588 0.7669 

RMSE (cm3/ 
0.0593

 0.0579 0.0577 0.0674 0.0648 0.0631 0.0414 0.0547 0.0579 0.0635 0.0575 0.0588 

ubRMSE 
0.0544

 
0.0577 0.0575 0.0774 0.0646 0.0617 0.0414 0.0537 0.0574 0.0634 0.0569 0.0582 

Bias (cm3/ 
−0.0035

 
−0.0034 −0.0033 −0.0045 −0.0042 −0.0039 −0.0017 −0.0030 −0.0033 −0.0041 −0.0033 −0.0034 
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FIgurE 5: Soil moisture mapping in retrieval area on May 20, 2015. 
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FIgurE 6: The scatter plot between measured and estimated soil volumetric moisture. A 1 : 1 line was added to the map. (a) PDI. (b) TVDI. 

 

TaBlE   4:  Correspondence  between  MODIS  and  landsat-8 model, it is necessary to exclude raster data that are obscured 

data bands. 
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6. Conclusion 

Combined with optical-thermal infrared RS data and 

measured soil volumetric moisture data, a retrieval model of 

SSM is established on the basis of the BPNN. It can be found 

that the BPNN is suitable for establishing the relationship 

between the characteristic band/index and the measurement 

data, thus improving the accuracy of the SM estimation 

model. However, the accuracy of SSM estimated only by 

optical data is poor. By introducing TIR data, the retrieval 

accuracy of SSM can be improved significantly. It is worth 

noting that when the optical satellite data are used as the 

input parameters, the BPNN model is more suitable for the 

area with flat terrain and gentle slope. 

When the quality of RS image varies, it is possible that 

the spatial distribution of the LST-VI model is unable to 

form a complete triangle or trapezoid, thus resulting in 

a significant diference between the estimated SM and the 

measured value. The model proposed in this study addresses 

the abovementioned problems while estimating SSM in case 

of a small sample size. The BPNN model provides a powerful 

tool for estimating SSM in complex/heterogeneous media 

(e.g., rough vegetated surfaces). In this paper, the soil 

moisture retrieved by Landsat-8 and MODIS data has high 

accuracy. The SSM retrieval model based on the BPNN can 

be applied to estimate the SSM with diferent spatial 

resolution. 

0 0.1 0.2 0.3 0.4 0.5  
Measured soil volumetric moisture (cm3/cm3) 

FIgurE 7: The scatter plot between measured and estimated soil 
volumetric moisture. A 1 : 1 line was added to the map. 
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