
 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 

ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1671                                                                                       Copyright @ 2021 Authors  

 

Attacking Inclusive Last-Level Caches Automatically 
 

Ms. PRIYADARSHNI SAMAL*, RAJESH KUMAR PATI 
Dept. OF Computer Science and Engineering, NIT , BBSR 

priyadarsini@thenalanda.com*,rajeshkumar@thenalanda.com 
 

 

Abstract 
Recent research on cache attacks has 

demonstrated that CPU caches are a significant 
information leakage source. However, current 
attacks necessitate manually identifying 
weaknesses, such as data accesses or instruction 
executions dependent on confidential information. 
We discuss cache template attacks in this article. 
With this general attack method, we can 
automatically profile and take advantage of any 
program's cache-based information leakage without 
having any prior knowledge of the software or even 
the system. Without requiring any prior offline 
calculations or measurements, Cache Template 
Attacks can be carried out online on a remote 
machine. Attacks using cache templates have two 
stages. We identify connections between processing 
secret data, such as particular key inputs or private 
keys of cryptographic primitives, and particular cache 
accesses during the profiling phase. We calculate the 
secret values at the exploitation stage using observed 
cache accesses. We demonstrate the effectiveness of 
the suggested strategy in a number of attacks as well as 
in a practical application for programmers. The 
application of Cache Template Attacks to infer 
keystrokes and—even more serious—the identification 
of certain keys on Linux and Windows user interfaces 
are among the techniques that are demonstrated. More 
particular, we can drop the entropy per character on 
Linux platforms for lower-case only passwords from 
log2(26)= 4.7 to 1.4 bits. Also, we launch an automated 
attack.  

 
Introduction 

Cache-based side-channel attacks have gained increas- 
ing attention among the scientific community. First, in 
terms of ever improving attacks against cryptographic 
implementations, both symmetric [4, 6, 16, 39, 41, 53] as 
well as asymmetric cryptography [3, 7, 9, 54], and sec- 

 

, in terms of developing countermeasures to prevent 
these types of attacks [31, 34]. Recently, Yarom and 
Falkner [55] proposed the Flush+Reload attack, which 
has been successfully applied against cryptographic im- 
plementations [3, 17, 22]. Besides the possibility of 
attacking cryptographic implementations, Yarom and 
Falkner pointed out that their attack might also be used 
to attack other software as well, for instance, to collect 
keystroke timing information. However, no clear indica- 
tion is given on how to exploit such vulnerabilities with 
their attack. A similar attack has already been suggested 
in 2009 by Ristenpart et al. [44], who reported being 
able to gather keystroke timing information by observ- 
ing cache activities on an otherwise idle machine. 

The limiting factor of all existing attacks is that sophis- 
ticated knowledge about the attacked algorithm or soft- 
ware is necessary, i.e., access to the source code or even 
modification of the source code [7] is required in order 
to identify vulnerable memory accesses or the execution 
of specific code fragments manually. 

In this paper, we make use of the Flush+Reload at- 
tack [55] and present the concept of Cache Template At- 
tacks,1 a generic approach to exploit cache-based vul- 
nerabilities in any program running on architectures with 
shared inclusive last-level caches. Our attack exploits 
four fundamental concepts of modern cache architectures 
and operating systems. 

1. Last-level caches are shared among all CPUs. 
2. Last-level caches are inclusive, i.e., all data which 

is cached within the L1 and L2 cache must also be 
cached in the L3 cache. Thus, any modification of 
the L3 cache on one core immediately influences 
the cache behavior of all other cores. 

3. Cache lines are shared among different processes. 
4. The operating system allows programs to map any 

other program binary or library, i.e., code and static 
data, into their own address space. 

 
 

1The basic framework can be found at https://github.com/ 
IAIK/cache_template_attacks. 
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Based on these observations, we demonstrate how to per- 
form Cache Template Attacks on any program automat- 
ically in order to determine memory addresses which 
are accessed depending on secret information or specific 
events. Thus, we are not only able to attack crypto- 
graphic implementations, but also any other event, e.g., 
keyboard input, which might be of interest to an attacker. 

We demonstrate how to use Cache Template Attacks 
to derive keystroke information with a deviation of less 
than 1 microsecond from the actual keystroke and an 
accuracy of almost 100%. With our approach, we are 
not only able to infer keystroke timing information, but 
even to infer specific keys pressed on the keyboard, both 
for GTK-based Linux user interfaces and Windows user 
interfaces. Furthermore, all attacks to date require so- 
phisticated knowledge of the attacked software and the 
executable itself. In contrast, our technique can be ap- 
plied to any executable in a generic way. In order to 
demonstrate this, we automatically attack the T-table- 
based AES [10, 35] implementation of OpenSSL [37]. 

Besides demonstrating the power of Cache Template 
Attacks to exploit cache-based vulnerabilities, we also 
discuss how this generic concept supports developers in 
detecting cache-based information leaks within their own 
software, including third party libraries. Based on the in- 
sights we gained during the development of the presented 
concept, we also present possible countermeasures to 
mitigate specific types of cache attacks. 

 
Outline. The remaining paper is organized as follows. 
In Section 2, we provide background information on 
CPU caches, shared memory, and cache attacks in gen- 
eral. We describe Cache Template Attacks in Section 3. 
We illustrate the basic idea on an artificial example pro- 
gram in Section 4 and demonstrate Cache Template At- 
tacks against real-world applications in Section 5. In 
Section 6, we discuss countermeasures against cache at- 
tacks in general. Finally, we conclude in Section 7. 

 
1 Background and Related Work 

In this section, we give a basic introduction to the con- 
cept of CPU caches and shared memory. Furthermore, 
we provide a basic introduction to cache attacks. 

 
 CPU Caches 

The basic idea of CPU caches is to hide memory ac- 
cesses to the slow physical memory by buffering fre- 
quently used data in a small and fast memory. Today, 
most architectures employ set-associative caches, mean- 
ing that the cache is divided into multiple cache sets and 
each cache set consists of several cache lines (also called 

ways). An index is used to map specific memory loca- 
tions to the sets of the cache memory. 

We distinguish between virtually indexed and physi- 
cally indexed caches, which derive the index from the 
virtual or physical address, respectively. In general, vir- 
tually indexed caches are considered to be faster than 
physically indexed caches. However, the drawback of 
virtually indexed caches is that different virtual addresses 
mapping to the same physical address are cached in dif- 
ferent cache lines. In order to uniquely identify a spe- 
cific cache line within a cache set, so-called tags are 
used. Again, caches can be virtually tagged or physically 
tagged. A virtual tag has the same drawback as a virtual 
index. Physical tags, however, are less expensive than 
physical indices as they can be computed simultaneously 
with the virtual index. 

In addition, there is a distinction between inclusive and 
exclusive caches. On Intel systems, the L3 cache is an 
inclusive cache, meaning that all data within the L1 and 
L2 caches are also present within the L3 cache. Further- 
more, the L3 cache is shared among all cores. Due to 
the shared L3 cache, executing code or accessing data on 
one core has immediate consequences for all other cores. 
This is the basis for the Flush+Reload [55] attack as de- 
scribed in Section 2.3. 

Our test systems (Intel Core i5-2/3 CPUs) have 
two 32 KB L1 caches—one for data and one for 
instructions—per core, a unified L2 cache of 256 KB, 
and a unified L3 cache of 3 MB (12 ways) shared among 
all cores. The cache-line size is 64 bytes for all caches. 

 
 Shared Memory 

Operating systems use shared memory to reduce memory 
utilization. For instance, libraries used by several pro- 
grams are shared among all processes using them. The 
operating system loads the libraries into physical mem- 
ory only once and maps the same physical pages into the 
address space of each process. 

The operating system employs shared memory in sev- 
eral more cases. First, when forking a process, the mem- 
ory is shared between the two processes. Only when 
the data is modified, the corresponding memory regions 
are copied. Second, a similar mechanism is used when 
starting another instance of an already running program. 
Third, it is also possible for user programs to request 
shared memory using system calls like mmap. 

The operating system tries to unify these three cate- 
gories. On Linux, mapping a program file or a shared 
library file as a read-only memory with mmap results 
in sharing memory with all these programs, respec- 
tively programs using the same shared library or pro- 
gram binary. This is also possible on Windows using the 
LoadLibrary function. Thus, even if a program is stat- 
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ically linked, its memory is shared with other programs 
which execute or map the same binary. 

Another form of shared memory is content-based page 
deduplication. The hypervisor or operating system scans 
the physical memory for pages with identical content. 
All mappings to identical pages are redirected to one 
of the pages while the other pages are marked as free. 
Thus, memory is shared between completely unrelated 
processes and even between processes running in differ- 
ent virtual machines. When the data is modified by one 
process, memory is duplicated again. These examples 
demonstrate that code as well as static data can be shared 
among processes, even without their knowledge. Never- 
theless, page deduplication can enhance system perfor- 
mance and besides the application in cloud systems, it is 
also relevant in smaller systems like smartphones. 

User programs can retrieve information on their virtual 
and physical memory using operating-system services 
like /proc/<pid>/maps on Linux or tools like vmmap 
on Windows. The list of mappings typically includes all 
loaded shared-object files and the program binary. 

 
 Cache Attacks 

Cache attacks are a specific type of side-channel attacks 
that exploit the effects of the cache memory on the execu- 
tion time of algorithms. The first theoretical attacks were 
mentioned by Kocher [28] and Kelsey et al. [26]. Later 
on, practical attacks for DES were proposed by Page [41] 
as well as Tsunoo et al. [50]. In 2004, Bernstein [4] 

proposed the first time-driven cache attack against AES. 
This attack has been investigated quite extensively [36]. 

A more fine-grained attack has been proposed by Per- 
cival [42], who suggested to measure the time to access 
all ways of a cache set. As the access time correlates with 
the number of occupied cache ways, an attacker can de- 
termine the cache ways occupied by other processes. At 
the same time, Osvik et al. [39] proposed two fundamen- 
tal techniques that allow an attacker to determine which 
specific cache sets have been accessed by a victim pro- 
gram. The first technique is Evict+Time, which consists 
of three steps. First, the victim program is executed and 
its execution time is measured. Afterwards, an attacker 
evicts one specific cache set and finally measures the ex- 
ecution time of the victim again. If the execution time 

increased, the cache set was probably accessed during 
the execution. 

The second technique is Prime+Probe, which is sim- 
ilar to Percival’s attack. During the Prime step, the at- 
tacker occupies specific cache sets. After the victim pro- 
gram has been scheduled, the Probe step is used to deter- 
mine which cache sets are still occupied. 

Later on, Gullasch et al. [16] proposed a significantly 
more powerful attack that exploits the fact that shared 

memory is loaded into the same cache sets for differ- 
ent processes. While Gullasch et al. attacked the L1 
cache, Yarom and Falkner [55] presented an improve- 
ment called Flush+Reload that targets the L3 cache. 

Flush+Reload relies on the availability of shared mem- 
ory and especially shared libraries between the attacker 
and the victim program. An attacker constantly flushes 
a cache line using the clflush instruction on an ad- 

dress within the shared memory. After the victim has 
been scheduled, the attacker measures the time it takes 
to reaccess the same address again. The measured time 
reveals whether the data has been loaded into the cache 
by reaccessing it or whether the victim program loaded 
the data into the cache before reaccessing. This allows 
the attacker to determine the memory accesses of the vic- 
tim process. As the L3 cache is shared among all cores, 
it is not necessary to constantly interrupt the victim pro- 
cess. Instead, both processes run on different cores while 
still working on the same L3 cache. Furthermore, the 
L3 cache is a unified inclusive cache and, thus, even al- 
lows to determine when a certain instruction is executed. 
Because of the size of the L3 cache, there are signifi- 
cantly fewer false negative cache-hit detections caused 
by evictions. Even though false positive cache-hit detec- 
tions (as in Prime+Probe) are not possible because of the 
shared-memory-based approach, false positive cache hits 
can still occur if data is loaded into the cache acciden- 
tally (e.g., by the prefetcher). Nevertheless, applications 
of Flush+Reload have been shown to be quite reliable 
and powerful, for example, to detect specific versions of 
cryptographic libraries [23], to revive supposedly fixed 
attacks (e.g., Lucky 13) [24] as well as to improve at- 
tacks against T-table-based AES implementations [17]. 

As shared memory is not always available between 
different virtual machines in the cloud, more recent cache 
attacks use the Prime+Probe technique to perform cache 
attacks across virtual machine borders. For example, Ira- 
zoqui et al. [20] demonstrated a cross-VM attack on a 
T-Table-based AES implementation and Liu et al. [32] 
demonstrated a cross-VM attack on GnuPG. Both attacks 
require manual identification of exploitable code and 
data in targeted binaries. Similarly, Maurice et al. [33] 
built a cache-index-agnostic cross-VM covert channel 
based on Prime+Probe. 

Simultaneous to our work, Oren et al. [38] devel- 
oped a cache attack from within sandboxed JavaScript 
to attack user-specific data like network traffic or mouse 
movements. Contrary to existing attack approaches, we 
present a general attack framework to exploit cache vul- 
nerabilities automatically. We demonstrate the effective- 
ness of this approach by inferring keystroke informa- 
tion and, for comparison reasons, by attacking a T-table- 
based AES implementation. 
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2 Cache Template Attacks 

Chari et al. [8] presented template attacks as one of 
the strongest forms of side-channel attacks. First, side- 
channel traces are generated on a device controlled by the 
attacker. Based on these traces, the template—an exact 
model of signal and noise—is generated. A single side- 
channel trace from an identical device with unknown key 
is then iteratively classified using the template to derive 
the unknown key. 

Similarly, Brumley and Hakala [7] described cache- 
timing template attacks to automatically analyze and ex- 
ploit cache vulnerabilities. Their attack is based on 
Prime+Probe on the L1 cache and, thus, needs to run on 
the same core as the spy program. Furthermore, they 
describe a profiling phase for specific operations exe- 
cuted in the attacked binary, which requires manual work 
or even modification of the attacked software. In con- 
trast, our attack only requires an attacker to know how 
to trigger specific events in order to attack them. Subse- 
quently, Brumley and Hakala match these timing tem- 
plates against the cache timing observed. In contrast, 
we match memory-access templates against the observed 
memory accesses. 

Inspired by their work we propose Cache Template At- 
tacks. The presented approach of Cache Template At- 
tacks allows the exploitation of any cache vulnerability 
present in any program on any operating system executed 
on architectures with shared inclusive last-level caches 
and shared memory enabled. Cache Template Attacks 
consist of two phases: 1) a profiling phase, and 2) an ex- 
ploitation phase. In the profiling phase, we compute a 
Cache Template matrix containing the cache-hit ratio on 
an address given a specific target event in the binary un- 
der attack. The exploitation phase uses this Cache Tem- 
plate matrix to infer events from cache hits. 

Both phases rely on Flush+Reload and, thus, attack 
code and static data within binaries. In both phases the 
attacked binary is mapped into read-only shared mem- 
ory in the attacker process. By accessing its own vir- 
tual addresses in the allocated read-only shared memory 
region, the attacker accesses the same physical memory 
and the same cache lines (due to the physically-indexed 
last level cache) as the process under attack. Therefore, 
the attacker completely bypasses address space layout 
randomization (ASLR). Also, due to shared memory, the 
additional memory consumption caused by the attacker 
process is negligible, i.e., in the range of a few megabytes 
at most. 

In general, both phases are performed online on the 
attacked system and, therefore, cannot be prevented 
through differences in binaries due to different versions 
or the concept of software diversity [12]. However, if 
online profiling is not possible, e.g., in case the events 

must be triggered by a user or Flush+Reload is not pos- 
sible on the attacked system, it can also be performed in a 
controlled environment. Below, we describe the profiling 
phase and the exploitation phase in more detail. 

 
 Profiling Phase 

The profiling phase measures how many cache hits occur 
on a specific address during the execution of a specific 
event, i.e., the cache-hit ratio. The cache-hit ratios for 
different events are stored in the Cache Template matrix 
which has one column per event and one row per address. 
We refer to the column vector for an event as a profile. 
Examples of Cache Template matrices can be found in 
Section 4 and Section 5.1. 

An event in terms of a Cache Template Attack can be 
anything that involves code execution or data accesses, 
e.g., low-frequency events, such as keystrokes or receiv- 
ing an email, or high-frequency events, such as encryp- 
tion with one or more key bits set to a specific value. To 
automate the profiling phase, it must be possible to trig- 
ger the event programmatically, e.g., by calling a func- 
tion to simulate a keypress event, or executing a program. 

The Cache Template matrix is computed in three steps. 
The first step is the generation of the cache-hit trace and 
the event trace. This is the main computation step of the 
Cache Template Attack, where the data for the Template 
is measured. In the second step, we extract the cache-hit 
ratio for each trace and store it in the Cache Template 
matrix. In a third post-processing step, we prune rows 
and columns which contain redundant information from 
the matrix. Algorithm 1 summarizes the profiling phase. 
We explain the corresponding steps in detail below. 

 

  Algorithm 1: Profiling phase.  
Input: Set of events E, target program binary B, 

duration d 
Output: Cache Template matrix T 

Map binary B into memory 
foreach event e in E do 

foreach address a in binary B do 
while duration d not passed do 

simultaneously 

Trigger event e and save event trace g(E) 
Flush+Reload attack on address a 

and save cache-hit trace g(H) 

end 

Extract cache-hit ratio Ha,e from g(E) 

and g(H) and store it in T 
end 

end 
Prune Cache Template matrix T 
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Therefore, we can only profile addresses on different 
pages simultaneously. Thus, profiling all pages only 
takes as long as profiling a single page. 

In case of low-frequency events, it is possible to pro- 
file all pages within one binary in parallel. However, this 

may lead to less accurate cache-hit traces g(H), i.e., tim- 
ing deviations above 1 microsecond from the real event, 
which is only acceptable for low-frequency events. 

 
Hit-Ratio Extraction.    After the cache-hit trace and 
the event trace have been computed for a specific event e 

Figure 1: Trace of a single keypress event for address 
0x4ebc0 of libgdk.so. 

 

Cache-Hit Trace and Event Trace. The generation of 

the cache-hit trace and the event trace is repeated for each 
event and address for the specified duration (the while 

loop of Algorithm 1). The cache-hit trace g(H) is a binary 
function which has value 1 for every timestamp t where 
a cache hit has been observed. The function value re- 
mains 1 until the next timestamp t where a cache miss has 
been observed. We call subsequent cache hits a cache-hit 

phase. The event trace g(E) is a binary function which has 
value 1 when the processing of one specific event e starts 
or ends and value 0 for all other points. 

In the measurement step, the binary under attack is 
executed and the event is triggered constantly. Each ad- 
dress of the attacked binary is profiled for a specific du- 
ration d. It must be long enough to trigger one or more 
events. Therefore, d depends only on the execution time 
of the event to be measured. The more events triggered 

and a specific address a (the while loop of Algorithm 1), 
we derive the cache-hit ratio for each event and address. 
The cache-hit ratio Ha,e is either a simple value or a time- 
dependent ratio function. In our case it is the ratio of 
cache hits on address a and the number of times the event 
e has been triggered within the profiling duration d. 

To illustrate the difference between a cache-hit ratio 
with time dependency and without time dependency, we 
discuss two such functions. The cache-hit ratio with 
time dependency can be defined as follows. The event 
traces contain the start and end points of the processing 
of one event e. These start and end points define the rel- 
evant parts (denoted as slices) within the cache-hit trace. 
The slices are stored in a vector and scaled to the same 
length. Each slice contains a cache-hit pattern relative to 
the event e. If we average over this vector, we get the 
cache-hit ratio function for event e. 

The second, much simpler approach is to define the 
cache-hit ratio without time dependency. In this case, we 
count the number of cache hits k on address a and divide 
it by the number of times n the event e has been triggered 
within the profiling duration d. That is, we define Ha = 

within the specified duration d, the more accurate the re- k 
,e 

sulting profile is. However, increasing the duration d in- 
creases the overall time required for the profiling phase. 

The results of this measurement step are a cache-hit 
trace and an event trace, which are generated for all ad- 
dresses a in the binary and all events e we want to profile. 
An excerpt of such a cache-hit trace and the correspond- 
ing event trace is shown in Figure 1. The start of the 
event is measured directly before the event is triggered. 
As we monitor library code, the cache-hit phase is mea- 
sured before the attacked binary observes the event. 

The generation of the traces can be sped up by two 
factors. First, in case of a cache miss, the CPU always 
fetches a whole cache line. Thus, we cannot distinguish 
between offsets of different accesses within a cache line 
and we can deduce the same information by probing only 
one address within each cache-line sized memory area. 

Second, we reduce the overall number of triggered 
events by profiling multiple addresses at the same time. 
However, profiling multiple addresses on the same page 
can cause prefetching of more data from this page. 

n . In case of a low-noise side channel and event detection 
through single cache hits, it is sufficient to use a simple 
hit-ratio extraction function. 

Like the previous step, this step is repeated for all ad- 
dresses a in the binary b and all events e to be profiled. 
The result is the full Cache Template matrix T . We de- 
note the column vectors →pe as profiles for specific events. 

 
Pruning. In the exploitation phase, we are limited re- 
garding the number of addresses we can attack. There- 
fore, we want to reduce the number of addresses in the 
Cache Template. We remove redundant rows from the 
Cache Template matrix and merge events which cannot 
be distinguished based on their profiles →pe. 

As cache hits can be independent of an event, the mea- 
sured cache-hit ratio on a specific address can be inde- 
pendent of the event, i.e., code which is always executed, 
frequent data accesses by threads running all the time, 
or code that is never executed and data that is never ac- 
cessed. In order to be able to detect an event e, the set 
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of events has to contain at least one event e′ which does 
not include event e. For example, in order to be able to 
detect the event “user pressed key A” we need to profile 
at least one event where the user does not press key A. 

The pruning happens in three steps on the matrix. 
First, the removal of all addresses that have a small dif- 
ference between minimum and maximum cache-hit ra- 
tio for all events. Second, merging all similar columns 
(events) into one set of events, i.e., events that cannot be 
distinguished from each other are merged into one col- 
umn. The similarity measure for this is, for example, 
based on a mean squared error (MSE) function. Third, 
the removal of redundant lines. These steps ensure that 
we select the most interesting addresses and also allows 
us to reduce the attack complexity by reducing the over- 
all number of monitored addresses. 

We measure the reliability of a cache-based side chan- 
nel by true and false positives as well as true and false 
negatives. Cache hits that coincide with an event are 
counted as true positive and cache hits that do not coin- 
cide with an event as false positive. Cache misses which 
coincide with an event are counted as true negative and 
cache misses which do not coincide with an event as false 
negative. Based on these four values we can determine 
the accuracy of our Template, for instance, by computing 
the F-Score, which is defined as the harmonic mean of 
the cache-hit ratio and the positive predictive value (per- 
centage of true positives of the total cache hits). High F-
Score values show that we can distinguish the given 
event accurately by attacking a specific address. In some 
cases further lines can be pruned from the Cache Tem- 
plate matrix based on these measures. The true positive 
rate and the false positive rate for an event e can be de- 
termined by the profile →pe  of e and the average over all 
profiles except e. 

 
Runtime of the Profiling Phase. Measuring the cache-
hit ratio is the most expensive step in our attack. To 
quantify the cost we give two examples. In both cases 
we want to profile a 1 MB library, once for a low- 
frequency event, e.g., a keypress, and once for a high- 
frequency event, e.g., an encryption. In both cases, we 
try to achieve a runtime which is realistic for offline and 
online attacks while maintaining a high accuracy. 

We choose a profiling duration of d = 0.8 seconds for 
the low-frequency event. During 0.8 seconds we can trig- 

on average. As in the previous example, we profile each 
address 200 times and, thus, we need 40–50 microsec- 

onds per address, i.e., d = 50µs. The basic attack takes 
less than 55 seconds to profile the full library for one 
event. Profiling only cache-line-aligned addresses takes 
less than 1 second and applying both optimizations re- 
sults in a negligible runtime. 

As already mentioned above, the accuracy of the re- 
sulting profile depends on how many times an event can 
be triggered during profiling duration d. In both cases we 
chose durations which are more than sufficient to create 
accurate profiles and still achieve reasonable execution 
times for an online attack. Our observations showed that 
it is necessary to profile each event at least 10 times to 
get meaningful results. However, profiling an event more 
than a few hundred times does not increase the accuracy 
of the profile anymore. 

 
 Exploitation Phase 

In the exploitation phase we execute a generic spy pro- 
gram which performs either the Flush+Reload or the 
Prime+Probe algorithm. For all addresses in the Cache 
Template matrix resulting from the profiling phase, the 
cache activity is constantly monitored. 

We monitor all addresses and record whether a cache 
hit occurred. This information is stored in a boolean vec- 

tor →h.  To determine which event occurred based on this 
observation, we compute the similarity S(→h,→pe) between 
→h  and  each  profile →pe  from  the  Cache  Template  matrix. 
The similarity measure S can be based, for example, on 
a mean squared error (MSE) function. Algorithm 2 sum- 
marizes the exploitation phase. 

 

  Algorithm 2: Exploitation phase.  
Input: Target program binary b, 

Cache Template matrix T  = (→pe1 ,→pe2 , ...,→pen ) 

Map binary b into memory 
repeat 

foreach address a in T do 
Flush+Reload attack on address a 

Store 0/1 in→h[a] for cache miss/cache hit 
end 

if →pe equals→h w.r.t. similarity measure then 
Event e detected 

end 
ger around 200 events, which is enough to create a highly    

accurate profile. Profiling each address in the library for 
0.8 seconds would take 10 days. Profiling only cache- 
line-aligned addresses still takes 4 hours. Applying both 
optimizations, the full library is profiled in 17 seconds. 

In case of the high-frequency event, we attack an en- 
cryption. We assume that one encryption and the cor- 
responding Flush+Reload measurement take 520 cycles 

The exploitation phase has the same requirements as 
the underlying attack techniques. The attacker needs to 
be able to execute a spy program on the attacked sys- 
tem. In case of Flush+Reload, the spy program needs 
no privileges, except opening the attacked program bi- 
nary in a read-only shared memory.  It is even possible 
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1  in  t  map [1 30]  [1 0  24 ] = 1U    , . . .  , 130U ; 
2 in t  main ( in t  argc ,  char argv ) 
3 while  ( 1)  
4 i n t  c = g e t c  ha r  ( ) ;  / /  u n b u f fe  re d 
5  i f  ( map [ ( c % 128 )  +  1 ] [ 0 ]  ==  0 ) 

6  e x i t  ( −1) ; 
7 }  } 

Listing 1: Victim program with large array on Linux 

 
 
 

0x32040 
0x33040 

0x34040 
0x35040 
0x36040 

0x37040 
0x38040 
0x39040 
0x3a040 
0x3b040 

KEY 
0  1  2  3  4  5  6  7  8  9 

 

 
 

 

to attack binaries running in a different virtual machine 
on the same physical machine, if the hypervisor has page 
deduplication enabled. In case of Prime+Probe, the spy 
program needs no privileges at all and it is even possi- 
ble to attack binaries running in a different virtual ma- 
chine on the same physical machine, as shown by Irazo- 
qui et al. [20]. However, the Prime+Probe technique is 
more susceptible to noise and therefore the exploitation 
phase will produce less reliable results, making attacks 
on low-frequency events more difficult. 

The result of the exploitation phase is a log file con- 
taining all detected events and their corresponding times- 
tamps. The interpretation of the log file still has to be 
done manually by the attacker. 

 
4 Attacks on Artificial Applications 

Before we actually exploit cache-based vulnerabilities in 
real applications in Section 5, we demonstrate the basic 
working principle of Cache Template Attacks on two ar- 
tificial victim programs. These illustrative attacks show 
how Cache Template Attacks automatically profile and 
exploit cache activity in any program. The two attack 
scenarios we demonstrate are: 1) an attack on lookup 
tables, and 2) an attack on executed instructions. Hence, 
our ideal victim program or library either contains a large 
lookup table which is accessed depending on secret in- 
formation, e.g., depending on secret lookup indices, or 
specific portions of program code which are executed 
based on secret information. 

 
Attack on Data Accesses. For demonstration pur- 
poses, we spy on simple events like keypresses. In 
our victim program, shown in Listing 1, each keypress 
causes a memory access in a large array called map. 
These key-based accesses are 4096 bytes apart from each 
other to avoid triggering the prefetcher. The array is ini- 
tialized with static values in order to place it in the data 
segment and to guarantee that each page contains differ- 
ent data and, thus, is not deduplicated in any way. It is 
necessary to place it in the data segment in order to make 
it shareable with the spy program. 

In the profiling phase of the Cache Template Attack, 
we simulate different keystroke events using the X11 au- 

Figure 2: Cache Template matrix for the artificial victim 
program shown in Listing 1. Dark cells indicate high 
cache-hit ratios. 

 
tomation library libxdo. This library can be linked stat- 
ically into the spy program, i.e., it does not need to be 
installed. The Cache Template matrix is generated as de- 

scribed in Section 3. Within a duration of d = 0.8 sec- 
onds we simulated around 700 keypress events. The re- 
sulting Cache Template matrix can be seen in Figure 2 
for all number keys. We observe cache hits on addresses 
that are exactly 4 096 bytes apart, which is due to the data 
type and the dimension of the map array. In our measure- 
ments, there were less than 0.3% false positive cache hits 
on the corresponding addresses and less than 2% false 
negative cache hits. The false positive and false negative 
cache hits are due to the high key rate in the keypress 
simulation. 

For verification purposes, we executed the generated 
keylogger for a period of 60 seconds and randomly 
pressed keys on the keyboard. In this setting we mea- 
sured no false positives and no false negatives at all. 
This results from significantly lower key rates than in the 
profiling phase. The table is not used by any process 
other than the spy and the victim process and the proba- 
bility that the array access happens exactly between the 
reload and the flush instruction is rather small, as we have 
longer idle periods than during the profiling phase. Thus, 
we are able to uniquely identify each key without errors. 

 
Attack on Instruction Executions.   The same attack 
can easily be performed on executed instructions. The 
source code for this example is shown in Listing 2. Each 
key is now processed in its own function, as defined by 
the CASE(X) macro. The functions are page aligned to 
avoid prefetcher activity. The NOP1024 macro generates 
1024 nop instructions, which is enough to avoid acciden- 
tal code prefetching of function code. 

Our measurements show that there is no difference 
between Cache Template Attacks on code and data ac- 
cesses. 

 
Performance Evaluation. To examine the perfor- 
mance limits of the exploitation phase of Cache Template 
Attacks, we evaluated the number of addresses which can 
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{ { } \ 

\ 
∗ ∗ 1 # d ef i  ne NOP1024  /  1024  t i m es asm (”  nop ”)  ;  / 

2 # d efi  ne  CASE (X)   case  X: 
3 ALIGN ( 0 x1000 )  void f ##X( ) NOP1024 ; 
4 f ##X( ) ;   break ; 
5 in t  main ( in t  argc ,  char argv ) 
6 while  ( 1)  
7 i n t  c = g e t c  ha r  ( ) ; / /  u n b u f f e  re d 
8 sw i tch ( c)   
9 CASE ( 0 ) ; 

10 / /   . . . 
11 CASE(128) ; 
12 }  }  } 

Listing 2: Victim program with long functions on Linux 

 

 
be accurately monitored simultaneously at different key 
rates. At a key rate of 50 keys per second, we man- 
aged to spy on 16000 addresses simultaneously on an 
Intel i5 Sandy Bridge CPU without any false positives or 
false negatives. The first errors occurred when monitor- 
ing 18000 addresses simultaneously. At a key rate of 250 
keys per second, which is the maximum on our system, 
we were able to spy on 4000 addresses simultaneously 
without any errors. The first errors occurred when moni- 
toring 5000 addresses simultaneously. In both cases, we 
monitor significantly more addresses than in any practi- 
cal cache attack today. 

However, monitoring that many addresses is only pos- 
sible if their position in virtual memory is such that the 
prefetcher remains inactive. Accessing several consec- 
utive addresses on the same page causes prefetching of 
more data, resulting in cache hits although no program 
accessed the data. The limiting effect of the prefetcher 
on the Flush+Reload attack has already been observed 
by Yarom and Benger [54]. Based on these observations, 
we discuss the possibility of using the prefetcher as an 
effective countermeasure against cache attacks in Sec- 
tion 6.3. 

 
5 Attacks on Real-World Applications 

In this section, we consider an attack scenario where an 
attacker is able to execute an attack tool on a targeted 
machine in unprivileged mode. By executing this at- 
tack tool, the attacker extracts the cache-activity profiles 
which are exploited subsequently. Afterwards, the at- 
tacker collects the secret information acquired during the 
exploitation phase. 

For this rather realistic and powerful scenario we 
present various case studies of attacks launched against 
real applications. We demonstrate the power of automat- 
ically launching cache attacks against any binary or li- 
brary. First, we launch two attacks on Linux user inter- 
faces, including GDK-based user interfaces, and an at- 
tack against a Windows user interface. In all attacks we 

simulate the user input in the profiling phase. Thus, the 
attack can be automated on the device under attack. To 
demonstrate the range of possible applications, we also 
present an automated attack on the T-table-based AES 
implementation of OpenSSL 1.0.2 [37]. 

 
 Attack on Linux User Interfaces 

There exists a variety of software-based side-channel at- 
tacks on user input data. These attacks either measure 
differences in the execution time of code in other pro- 
grams or libraries [48], approximate keypresses through 
CPU and cache activity [44], or exploit system ser- 
vices leaking user input data [56]. In particular, 
Zhang et al. [56] use information about other processes 
from procfs on Linux to measure inter-keystroke tim- 

ings and derive key sequences. Their proposed coun- 
termeasures can be implemented with low costs and 
prevent their attack completely. We, however, employ 
Cache Template Attacks to find and exploit leaking side- 
channel information in shared libraries automatically in 
order to spy on keyboard input. 

Given root access to the system, it is trivial to write 
a keylogger on Linux using /dev/input/event* de- 
vices. Furthermore, the xinput tool can also be used to 
write a keylogger on Linux, but root access is required to 
install it. However, using our approach of Cache Tem- 
plate Attacks only requires the unprivileged execution 
of untrusted code as well as the capability of opening 
the attacked binaries or shared libraries in a read-only 
shared memory. In the exploitation phase one round of 
Flush+Reload on a single address takes less than 100 
nanoseconds. If we measure the average latency between 
keypress and cache hit, we can determine the actual key- 
press timing up to a few hundred nanoseconds. Com- 
pared to the existing attacks mentioned above, our at- 
tack is significantly more accurate in terms of both event 
detection (detection rates near 100%) and timing devia- 
tions. 

In all attacks presented in this section we compute 
time-independent cache-hit ratios. 

 
Attack on the GDK Library. Launching the Cache 
Template profiling phase on different Linux applications 
revealed thousands of addresses in different libraries, bi- 
naries, and data files showing cache activity upon key- 
presses. Subsequently, we targeted different keypress 
events in order to find addresses distinguishing the differ- 
ent keys. Figure 3 shows the Cache Template of a mem- 
ory area in the GDK library libgdk-3.so.0.1000.8, 
a part of the GTK framework which is the default user- 
interface framework on many Linux distributions. 

Figure 3 shows several addresses that yield a cache 
hit with a high accuracy if and only if a certain key is 
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0x7c100 

0x7c140 
0x7c180 
0x7c1c0 
0x7c200 
0x7c240 

0x7c280 
0x7c340 
0x7c380 
0x7c3c0 
0x7c400 
0x7c440 

0x7c480 
0x7c4c0 
0x7c500 
0x7c540 

0x7c580 
0x7c5c0 
0x7c600 

0x7c640 
0x7c680 
0x7c6c0 
0x7c700 
0x7c740 
0x7c780 
0x7c7c0 
0x7c800 
0x7c840 

0x7c880 
0x7c8c0 
0x7c900 
0x7c940 
0x7c980 
0x7c9c0 
0x7ca00 
0x7cb80 
0x7cc40 
0x7cc80 
0x7ccc0 
0x7cd00 
0x7cd40 

KEY 
 

 
 

 

characters. The library performs a binary search on this 
array, which explains why we can identify certain keys 
accurately, namely the leaf nodes in the binary search. 

As the corresponding array is used for keyboard input 
in all GDK user-interface components, including pass- 
word fields, our spy tool works for all applications that 
use the GDK library. This observation allows us to use 
Cache Template Attacks to build powerful keyloggers 
for GDK-based user interfaces automatically. Even if 
we cannot distinguish all keys from each other, Cache 
Template Attacks allow us to significantly reduce the 
complexity of cracking a password. In this scenario, 
we are able to identify 3 keys reliably, as well as the 
total number of keypresses. Thus, in case of a lower- 
case password we can reduce the entropy per character 
from log2(26)= 4.7 to 4.0 bits. Attacking more than 
3 addresses in order to identify more keys adds a sig- 
nificant amount of noise to the results, as it triggers the 
prefetcher. First experiments demonstrated the feasibil- 
ity of attacking the lock screen of Linux distributions. 
However, further evaluation is necessary in order to reli- 
ably determine the effectiveness of this approach. 

Figure 3: Excerpt of the GDK Cache Template. Dark 
cells indicate key-address-pairs with high cache-hit ra- 
tios. 

 
pressed. For instance, every keypress on key n results in 
cache hit on address 0x7c800, whereas the same address 
reacts in only 0.5% of our tests on other keypresses. Fur- 
thermore, we found a high cache-hit ratio on some ad- 
dresses when a key is pressed (i.e., 0x6cd00 in libgdk), 
the mouse is moved (i.e., 0x28760 in libgdk) or a mod- 
ifier key is pressed (i.e., 0x72fc0 in libgdk). We also 
profiled the range of keys a–f but it is omitted from Fig- 
ure 3 because no high cache-hit ratios have been ob- 
served for the shown addresses. 

We use the spy tool described in Section 3.2 in order 
to spy on events based on the Cache Template. We are 
able to accurately determine the following sets of pressed 
keys:  i , j , n , q , v , l, w , u, z , g, h, k, t . That 
is, we cannot distinguish between keys in the same set, 
but keys in one set from keys in other sets. Similarly, we 
can deduce whether a key is contained in none of these 
sets. 

Not as part of our attack, but in order to understand 
how keyboard input is processed in the GDK library, we 
analyzed the binary and the source code. In general, 
we found out that most of the addresses revealed in the 
profiling phase point to code executed while processing 
keyboard input. The address range discussed in this sec- 
tion contains the array gdk_keysym_to_unicode_tab 
which is used to translate key symbols to unicode special 

Attack on GDK Key Remapping. If an attacker has 
additional knowledge about the attacked system or soft- 
ware, more efficient and more powerful attacks are pos- 
sible. Inspired by Tannous et al. [48] who performed a 
timing attack on GDK key remapping, we demonstrate a 
more powerful attack on the GDK library, by examining 
how the remapping of keys influences the sets of iden- 
tifiable keypresses. The remapping functionality uses a 
large key-translation table gdk_keys_by_keyval which 
spreads over more than four pages. 

Hence, we repeated the Cache Template Attack on the 
GDK library with a small modification. Before mea- 
suring cache activity for an address during an event, 
we remapped one key to the key code at that address, 
retrieved from the gdk_keys_by_keyval table. We 
found significant cache activity for some address and 
key-remapping combinations. 

When profiling each key remapping for d = 0.8 sec- 
onds, we measured cache activity in 52 cache-line-sized 
memory regions. In verification scans, we found 0.2- 
2.5% false positive cache hits in these memory regions. 
Thus, we have found another highly accurate side chan- 
nel for specific key remappings. The results are shown in 
the F-score graph in Figure 4. High values allow accu- 
rate detection of keypresses if the key is remapped to this 
address. Thus, we find more accurate results in terms of 
timing in our automated attack than Tannous et al. [48]. 

We can only attack 8 addresses in the profiled mem- 
ory area simultaneously, since it spreads over 4 pages 
and we can only monitor 2 or 3 addresses without trig- 
gering the prefetcher. Thus, we are able to remap any 8 
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Excerpt of the F-score plot for the address 

 Attacks on other Linux Applications 

We also found leakage of accurate keypress timings in 
other libraries, such as the ncurses library (i.e., off- 
set 0xbf90 in libncurses.so), and in files used to 
cache generated data related to user text input, such as 
/usr/lib/locale/locale-archive. The latter one is 
used to translate keypresses into the current locale. It is 
a generated file which differs on each system and which 
changes more frequently than the attacked libraries. In 

range of the gdk keys by keyval table.  High values 
reveal addresses that can be exploited. 

 
keys to these addresses and reliably distinguish them. In 
combination with the 3 addresses of our previous results, 
we are able to distinguish at least 11 keys and observe 
the timestamp of any keystroke in the system based on 
cache accesses simultaneously. 

It is also possible to remap more than one key to the 
same key code. Hence, it is possible to distinguish be- 
tween groups of keys. If we consider a lower-case pass- 
word again, we can now reduce the entropy per character 
from log2(26)= 4.7 to 1.4 bits. 

We also profiled keypresses on capslock and shift. Al- 
though we were able to log keypresses on both keys, we 
did not consider upper case or mixed case input. The 
exploitation phase automatically generates a log file con- 
taining the information observed through the cache side 
channel. However, interpretation of these results, such as 
deriving a program state from a sequence of events (shift 
key pressed or capslock active) and the influence of the 
program state on subsequent events is up to analysis of 
the results after the attack has been performed. 

Tannous et al. [48] also described a login-detection 
mechanism in order to avoid remapping keys unless the 
user types in a password field. The spy program simply 
watches /proc to see whether a login program is run- 
ning. Then the keys are remapped. As soon as the user 
pauses, the original key mappings are restored. The user 
will then notice a password mismatch, but the next pass- 
word entry will work as expected. 

Our completely automated password keylogger is a 
single binary which runs on the attacked system. It maps 
the GDK library into its own address space and performs 
the profiling phase. The profiling of each keypress re- 
quires the simulation of the keypress into a hidden win- 
dow. Furthermore, some events require the key remap- 
ping we just described. Finally, the keylogger switches 
into the exploit mode. As soon as a logon screen is de- 
tected, for instance, after the screensaver was active or 
the screen was locked, the keys are remapped and all key- 
presses are logged into a file accessible by the attacker. 
Thus, all steps from the deployment of the keylogger to 
the final log file are fully automated. 

consequence, it is not possible to perform an offline at- 
tack, i.e., to use a pre-generated Cache Template in the 
exploitation phase on another system. Still, our concept 
of Cache Template Attacks allows us to perform an on- 
line attack, as profiling is fully automated by generat- 
ing keystrokes through libxdo or comparable libraries. 
Thus, keystroke side channels are found within a few sec- 
onds of profiling. All keypress-timing side channels we 
found have a high accuracy and a timing deviation of less 
than 1 microsecond to the actual keypress. 

In order to demonstrate Cache Template Attacks on a 
low-frequency event which is only indirectly connected 
to keypresses, we attacked sshd, trying to detect when 
input is sent over an active ssh connection. The received 
characters are unrelated to the local user input. When 
profiling for a duration of d = 0.8 seconds per address, 
we found 428 addresses showing cache activity when 
a character was received. We verified these results for 
some addresses manually. None of these checked ad- 
dresses showed false positive hits within a verification 
period of 60 seconds. Thus, by exploiting the resulting 
Cache Template matrix, we are able to gain accurate tim- 
ings for the transmitted characters (significantly less than 
1 microsecond deviation to the transmission of the char- 
acter). These timings can be used to derive the transmit- 
ted letters as shown by Zhang et al. [56]. 

 
 Attack on Windows User Interfaces 

We also performed Cache Template Attacks on Win- 
dows applications. The attack works on Windows using 
MinGW identically to Linux. Even the implementation 
is the same, except for the keystroke simulation which 
is now performed using the Windows API instead of the 
libxdo library, and the file under attack is mapped using 
LoadLibrary instead of mmap. We performed our attack 
on Windows 7 and Windows 8.1 systems with the same 
results on three different platforms, namely Intel Core 
2 Duo, Intel i5 Sandy Bridge, and Intel i5 Ivy Bridge. 
As in the attacks on Linux user interfaces, address space 
layout randomization has been activated during both pro- 
filing and exploitation phase. 

In an automated attack, we found cache activity upon 
keypresses in different libraries with reasonable accu- 
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racy. For instance, the Windows 7 common control li- 
brary comctl32.dll can be used to detect keypresses 
on different addresses. Probing 0xc5c40 results in cache 
hits on every keypress and mouse click within text fields 
accurately. Running the generated keypress logger in a 
verification period of 60 seconds with keyboard input by 
a real user, we found only a single false positive event 
detection based on this address. Address 0xc6c00 reacts 
only on keypresses and not on mouse clicks, but yields 
more false positive cache hits in general. Again, we can 
apply the attack proposed by Zhang et al. [56] to recover 
typed words from inter-keystroke timings. 

We did not disassemble the shared library and there- 
fore do not know which function or data accesses cause 
the cache hit. The addresses were found by starting the 
Cache Template Attack with the same parameters as on 
Linux, but on a Windows shared library instead of a 
Linux shared library. As modern operating systems like 
Windows 7 and Windows 8.1 employ an immense num- 
ber of shared libraries, we profiled only a few of these 
libraries. Hence, further investigations might even re- 
veal addresses for a more accurate identification of key- 
presses. 

 
 Attack on a T-table-based AES 

Cache attacks have been shown to enable powerful at- 
tacks against cryptographic implementations. Thus, ap- 
propriate countermeasures have already been suggested 
for the case of AES [15, 25, 30, 43]. Nevertheless, in or- 
der to compare the presented approach of Cache Tem- 
plate Attacks to related attacks, we launched an ef- 
ficient and automated access-driven attack against the 
AES T-table implementation of OpenSSL 1.0.2, which 
is known to be insecure and susceptible to cache attacks 
[2, 4, 5, 16, 21, 22, 39, 53]. Recall that the T-tables are ac- 
cessed according to the plaintext p and the secret key k, 
i.e., Tj[pi     ki] with i      j mod 4 and 0     i < 16, dur- 
ing the first round of the AES encryption. For the sake of 
brevity, we omit the full details of an access-driven cache 
attack against AES and refer the interested reader to the 
work of Osvik et al. [39, 49]. 

 
Attack of Encryption Events. In a first step, we pro- 
filed the two events “no encryption” and “encryption 
with random key and random plaintext”. We profiled 
each cache-line-aligned address in the OpenSSL library 
during 100 encryptions. On our test system, one encryp- 
tion takes around 320 cycles, which is very fast compared 
to a latency of at least 200 cycles caused by a single cache 
miss. In order to make the results more deterministically 
reproducible, we measure whether a cache line was used 
only after the encryption has finished. Thus, the profiling 

phase does not run in parallel and only one cache hit or 
miss is measured per triggered event. 

This profiling step takes less than 200 seconds. We 
detected cache activity on 0.2%-0.3% of the addresses. 
Only 82 addresses showed a significant difference in 
cache activity depending on the event. For 18 of these 
addresses, the cache-hit ratio was 100% for the encryp- 
tion event. Thus, our generated spy tool is able to accu- 
rately detect whenever an encryption is performed. 

For the remaining 64 addresses the cache-hit ratio was 
around 92% for the encryption event. Thus, not each of 
these addresses is accessed in every encryption, depend- 
ing on key and plaintext. Since we attack a T-table-based 
AES implementation, we know that these 64 addresses 
must be the T-tables, which occupy 4 KB respectively 64 
cache lines. Although this information is not used in the 
first generated spy tool, it encourages performing a sec- 
ond attack to target specific key-byte values. 

 
Attack on Specific Key-Byte Values. Exploiting the 
knowledge that we attack a T-table implementation, we 
enhance the attack by profiling over different key-byte 
values for a fixed plaintext, i.e., the set of events consists 
of the different key-byte values. Our attack remains fully 
automated, as we change only the values with which the 
encryption is performed. The result is again a log file 
containing the accurate timestamp of each event moni- 
tored. The interpretation of the log file, of course, in- 
volves manual work and is specific to the targeted events, 
i.e., key bytes in this case. 

For each key byte ki, we profile only the upper 4 bits of 
ki as the lower 4 bits cannot be distinguished because of 
the cache-line size of 64 bytes. This means that we need 
to profile only 16 addresses for each key byte ki. Fur- 
thermore, on average 92% of these addresses are already 
in the cache and the Reload step of the Flush+Reload at- 
tack is unlikely to trigger the prefetcher. Thus, we can 
probe all addresses after a single encryption. Two pro- 
files for different values of k0 are shown in Figure 5. The 
two traces were generated using 1000 encryptions per 
key byte and address to show the pattern more clearly. 
According to Osvik et al. [39] and Spreitzer et al. [46] 
these plots (or patterns) reveal at least the upper 4 bits of 
a key byte and, hence, attacking the AES T-table imple- 
mentation works as expected. In our case, experiments 
showed that 1 to 10 encryptions per key byte are enough 
to infer these upper 4 bits correctly. 

In a T-table-based AES implementation, the index of 
the T-table is determined by pi ki. Therefore, the same 
profiles can be generated by iterating over the different 
plaintext byte values while encrypting with a fixed key. 
Osvik et al. [39] show a similar plot, generated using the 
Evict+Time attack. However, in our attack the profiles 
are aggregated into the Cache Template matrix, as de- 
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of cache template attacks for further investigations of 
vulnerabilities in already protected implementations. 

 
Trace-Driven Attack on AES. When attacking an in- 
secure implementation of a cryptographic algorithm, an 
attacker can often gain significantly more information if 

Figure 5: Excerpt of the Cache Template (address range 
of the first T-table). The plot is transposed to match [39]. 

In the left trace k0 = 0x00, in the right trace k0 = 0x51. 

 
scribed in Section 3.1. 

In the exploitation phase, the automatically generated 
spy tool monitors cache hits on the addresses from the 
Cache Template in order to determine secret key-byte 
values. We perform encryptions using chosen plaintexts. 
We attack the 16 key bytes ki sequentially. In each step 

i = 0 , . . . ,  15, the plaintext is random, except for the up- 
per 4 bits of pi, which are fixed to the same chosen value 
as in the profiling phase. Hence, the encryption is per- 
formed over a chosen plaintext. The spy tool triggers an 
encryption, detects when the encryption actually happens 
and after each encryption, reports the set of possible val- 
ues for the upper 4 bits of key byte ki. As soon as only 
one candidate for the upper 4 bits of key byte ki remains, 
we continue with the next key byte. 

Using Cache Template Attacks, we are able to infer 
64 bits of the secret key with only 16–160 encryptions in 
a chosen-plaintext attack. Compared to the work of Os- 
vik et al. [39] who require several hundred or thousands 
encryptions (depending on the measurement approach) 
targeting the L1 cache, and the work of Spreitzer and 
Plos [46] who require millions of encryptions targeting 
the L1 cache on the ARM platform, we clearly observe a 
significant performance improvement. More recent work 
shows that full key recovery is possible with less than 
30000 encryptions [17] using Flush+Reload. 

The benefit of our approach, compared to existing 
cache attacks against AES, is that our attack is fully auto- 
mated. Once the binary is deployed on the target system, 
it performs both profiling and exploitation phase auto- 
matically and finally returns a log file containing the key 
byte candidates to the attacker. Moreover, we do not need 
prior knowledge of the attacked system or the attacked 
executable or library. 

AES T-table implementations are already known to 
be insecure and countermeasures have already been in- 
tegrated, e.g., in the AES implementation of OpenSSL. 
Performing our attack on a non-T-table implementation 
(e.g., by employing AES-NI instructions) did not show 
key dependent information leakage, but still, we can ac- 
curately determine the start and end of the encryption 
through the cache behavior. However, we leave it as an 
interesting open issue to employ the presented approach 

it is possible to perform measurements during the en- 
cryption [2, 13], i.e., in case the exact trace of cache hits 
and cache misses can be observed. Even if we cannot in- 
crease the frequency of the Flush+Reload attack, we are 
able to slow down the encryption by constantly flush- 
ing the 18 addresses which showed cache activity in ev- 
ery profile. We managed to increase the encryption time 
from 320 cycles to 16000–20000 cycles. Thus, a more 
fine-grained trace of cache hits and cache misses can be 
obtained which might even allow the implementation of 
trace-driven cache attacks purely in software. 

 
6 Countermeasures 

We have demonstrated in Section 5 that Cache Template 
Attacks are applicable to real-world applications without 
knowledge of the system or the application. Therefore, 
we emphasize the need for research on effective coun- 
termeasures against cache attacks. In Section 6.1, we 
discuss several countermeasures which have been pro- 
posed so far. Subsequently, in Section 6.2, we discuss 
how Cache Template Attacks can be employed by de- 
velopers to detect and eliminate cache-based information 
leakage and also by users to detect and prevent cache 
attacks running actively on a system. Finally, in Sec- 
tion 6.3, we propose changes to the prefetcher to build a 
powerful countermeasure against cache attacks. 

 
 Discussion of Countermeasures 

Removal of the clflush Instruction is not Effective. 
The restriction of the clflush instruction has been sug- 
gested as a possible countermeasure against cache at- 
tacks in [54, 55, 58]. However, by adapting our spy tool 
to evict the cache line without using the clflush in- 
struction (Evict+Reload instead of Flush+Reload), we 
demonstrate that this countermeasure is not effective at 
all. Thereby, we show that cache attacks can be launched 
successfully even without the clflush instruction. 

Instead of using the clflush instruction, the eviction 
is done by accessing physically congruent addresses in 
a large array which is placed in large pages by the op- 
erating system. In order to compute physically congru- 
ent addresses we need to determine the lowest 18 bits of 
the physical address to attack, which can then be used to 
evict specific cache sets. 

The actual mapping of virtual to physical addresses 
can be retrieved from /proc/self/pagemap. Even if 
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such a mapping is not available, methods to find con- 
gruent addresses have been developed—simultaneously 
to this work—by Irazoqui et al. [20] by exploiting large 
pages, Oren et al. [38] by exploiting timing differences 
in JavaScript, and Liu et al. [32] by exploiting timing 
differences in native code. 

The removal of the clflush instruction has also been 
discussed as a countermeasure to protect against DRAM 
disturbance errors (denoted as rowhammer bug). These 
disturbance errors have been studied by Kim et al. [27] 
and, later on, exploited by Seaborn et al. [45] to gain ker- 
nel privileges. Several researchers have already claimed 
to be able to exploit the rowhammer bug without the 
clflush instruction [14], This can be done by exploit- 
ing the Sandy Bridge cache mapping function, which has 
been reverse engineered by Hund et al. [18], to find con- 
gruent addresses. 

Our eviction strategy only uses the lowest 18 bits and 
therefore, we need more than 12 accesses to evict a cache 
line. With 48 accessed addresses, we measured an evic- 
tion rate close to 100%. For performance reasons we 
use write accesses, as the CPU does not have to wait 
for data fetches from the physical memory. In contrast 
to the clflush instruction, which takes only 41 cycles, 
our eviction function takes 325 cycles. This is still fast 
enough for most Flush+Reload attacks. 

While clflush always evicts the cache line, our evic- 
tion rate is only near 100%. Therefore, false positive 
cache hits occur if the line has not been evicted. Us- 
ing Flush+Reload, there is a rather low probability for a 
memory access on the monitored address to happen ex- 
actly between the Reload step and the point where the 
clflush takes effect. This probability is much higher 
in the case of Evict+Reload, as the eviction step takes 8 
times longer than the clflush instruction. 

We compare the accuracy of Evict+Reload to 
Flush+Reload using previously found cache vulnerabil- 
ities. For instance, as described in Section 5.1, probing 
address 0x7c800 of libgdk-3.so.0.1000.8 allows us 
to detect keypresses on key n. The Flush+Reload spy 
tool detects on average 98% of the keypresses on key n 
with a 2% false positive rate (keypresses on other keys). 
Using Evict+Reload, we still detect 90% of the key- 
presses on key n with a 5% false positive rate. This 
clearly shows that the restriction of clflush is not suf- 
ficient to prevent this type of cache attack. 

 
Disable Cache-Line Sharing. One prerequisite of 
Flush+Reload attacks is shared memory. In cloud sce- 
narios, shared memory across virtual machine borders is 
established through page deduplication. Page dedupli- 
cation between virtual machines is commonly disabled 
in order to prevent more coarse-grained attacks like fin- 
gerprinting operating systems and files [40, 47] as well 

as Flush+Reload. Still, as shown by Irazoqui et al. [20], 
it is possible to use Prime+Probe as a fallback. How- 
ever, attacking low-frequency events like keypresses be- 
comes infeasible, because Prime+Probe is significantly 
more susceptible to noise. 

Flush+Reload can also be prevented on a system by 
preventing cache-line sharing, i.e., by disabling shared 
memory. Unfortunately, operating systems make heavy 
use of shared memory, and without modifying the operat- 
ing system it is not possible for a user program to prevent 
its own memory from being shared with an attacker, even 
in the case of static linkage as discussed in Section 2.2. 

With operating-system modifications, it would be pos- 
sible to disable shared memory in all cases where a vic- 
tim program cannot prevent an attack, i.e., shared pro- 
gram binaries, shared libraries, shared generated files 
(for instance, locale-archive). Furthermore, it would 
be possible to provide a system call to user programs to 
mark memory as “do-not-share.” 

A hardware-based approach is to change cache tags. 
Virtually tagged caches are either invalidated on context 
switches or the virtual tag is combined with an address 
space identifier. Therefore, shared memory is not shared 
in the cache. Thus, Flush+Reload is not possible on vir- 
tually tagged caches. 

We emphasize that as long as shared cache lines are 
available to an attacker, Flush+Reload or Evict+Reload 
cannot be prevented completely. 

 
Cache Set Associativity. Prime+Probe, Evict+Time 
and Evict+Reload exploit set-associative caches. In all 
three cases, it is necessary to fill all ways of a cache set, 
either for eviction or for the detection of evicted cache 
sets. Based on which cache set was reloaded (respec- 
tively evicted), secret information is deduced. Fully as- 
sociative caches have better security properties, as such 
information deduction is not possible and cache eviction 
can only be enforced by filling the whole cache. How- 
ever, a timing attack would still be possible, e.g., due 
to internal cache collisions [5] leading to different exe- 
cution times. As fully associative caches are impractical 
for larger caches, new cache architectures have been pro- 
posed to provide similar security properties [29, 51, 52]. 
However, even fully associative caches only prevent at- 
tacks which do not exploit cache-line sharing. Thus, a 
combination of countermeasures is necessary to prevent 
most types of cache attacks. 

 
 Proactive Prevention of Cache Attacks 

Instrumenting cache attacks to detect co-residency [57] 
with another virtual machine on the same physical ma- 
chine, or even to detect cache attacks [58] and cache- 
based side channels in general [11] has already been pro- 
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posed in the past. Moreover, Brumley and Hakala [7] 
even suggested that developers should use their attack 
technique to detect and eliminate cache vulnerabilities 
in their programs. Inspired by these works, we present 
defense mechanisms against cache attacks which can be 
improved by using Cache Template Attacks. 

 
Detect Cache Vulnerabilities as a Developer. Similar 
to Brumley and Hakala [7], we propose the employment 
of Cache Template Attacks to find cache-based vulner- 
abilities automatically. Compared to [7], Cache Tem- 
plate Attacks allow developers to detect potential cache 
side channels for specifically chosen events automati- 
cally, which can subsequently be fixed by the developer. 
A developer only needs to select the targeted events (e.g., 
keystrokes, window switches, or encryptions) and to trig- 
ger these events automatically during the profiling phase, 
which significantly eases the evaluation of cache side 
channels. Ultimately, our approach even allows devel- 
opers to find such cache vulnerabilities in third party li- 
braries. 

 
Detect and Impede Ongoing Attacks as a User. 
Zhang et al. [58] stated the possibility to detect cache 
attacks by performing a cache attack on one of the vul- 
nerable addresses or cache sets. We propose running a 
Cache Template Attack as a system service to detect code 
and data under attack. If Flush+Reload prevention is suf- 
ficient, we simply disable page sharing for all pages with 
cache lines under attack. Otherwise, we disable caching 
for these pages as proposed by Aciiçmez et al. [1] and, 
thus, prevent all cache attacks. Only the performance for 
critical code and data parts is reduced, as the cache is 
only disabled for specific pages in virtual memory. 

Furthermore, cache attacks can be impeded by per- 
forming additional memory accesses, unrelated to the se- 
cret information, or random cache flushes. Such obfus- 
cation methods on the attacker’s measurements have al- 
ready been proposed by Zhang et al. [59]. The idea of the 
proposed obfuscation technique is to generate random 
memory accesses, denoted as cache cleansing. How- 
ever, it does not address the shared last-level cache. In 
contrast, Cache Template Attacks can be used to iden- 
tify possible cache-based information leaks and then to 
specifically add noise to these specific locations by ac- 
cessing or flushing the corresponding cache lines. 

 
 Enhancing the Prefetcher 

During our experiments, we found that the prefetcher in- 
fluences the cache activity of certain access patterns dur- 
ing cache attacks, especially due to the spatial locality 
of addresses, as also observed in other work [16, 39, 54]. 

However, we want to discuss the prefetcher in more de- 
tail as it is crucial for the success of a cache attack. 

Although the profiling phase of Cache Template At- 
tacks is not restricted by the prefetcher, the spy pro- 
gram performing the exploitation phase might be unable 
to probe all leaking addresses simultaneously. For in- 
stance, we found 255 addresses leaking side-channel in- 
formation about keypresses in the GDK library but we 
were only able to probe 8 of them simultaneously in the 
exploitation phase, because the prefetcher loads multi- 
ple cache lines in advance and, thus, generates numerous 
false positive cache hits. 

According to the Intel 64 and IA-32 Architectures Op- 
timization Reference Manual [19], the prefetcher loads 
multiple memory addresses in advance if “two cache 
misses occur in the last level cache” and the correspond- 
ing memory accesses are within a specific range (the so- 
called trigger distance). Depending on the CPU model 
this range is either 256 or 512 bytes, but does not ex- 
ceed a page boundary of 4 KB. Due to this, we are able 
to probe at least 2 addresses per page. 

We suggest increasing the trigger distance of the 
prefetcher beyond the 4 KB page boundary if the corre- 
sponding page already exists in the translation lookaside 
buffer. The granularity of the attack will then be too high 
for many practical targets, especially attacks on executed 
instructions will then be prevented. 

As cache attacks constantly reaccess specific memory 
locations, another suggestion is to adapt the prefetcher 
to take temporal spatiality into consideration. If the 
prefetcher were to prefetch data based on that temporal 
distance, most existing attacks would be prevented. 

Just as we did in Section 4, an attacker might still be 
able to establish a communication channel targeted to 
circumvent the prefetcher. However, the presented coun- 
termeasures would prevent most cache attacks targeting 
real-world applications. 

 
7 Conclusion 

In this paper, we introduced Cache Template Attacks, 
a novel technique to find and exploit cache-based side 
channels easily. Although specific knowledge of the at- 
tacked machine and executed programs or libraries helps, 
it is not required for a successful attack. The attack is 
performed on closed-source and open-source binaries in 
exactly the same way. 

We studied various applications of Cache Template 
Attacks. Our results show that an attacker is able to in- 
fer highly accurate keystroke timings on Linux as well as 
Windows. For Linux distributions we even demonstrated 
a fully automatic keylogger that significantly reduces the 
entropy of passwords. Hence, we conclude that cache- 
based side-channel attacks are an even greater threat for 
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today’s computer architectures than assumed so far. In 
fact, even sensitive user input, like passwords, cannot be 
considered secure on machines employing CPU caches. 

We argue that fundamental concepts of computer ar- 
chitectures and operating systems enable the automatic 
exploitation of cache-based vulnerabilities. We observed 

that many of the existing countermeasures do not pre- 
vent such attacks as expected. Still, the combination of 
multiple countermeasures can effectively mitigate cache 
attacks. However, the fact that cache attacks can be 
launched automatically marks a change of perspective, 
from a more academic interest towards practical attacks, 
which can be launched by less sophisticated attackers. 
This shift emphasizes the need to develop and integrate 
effective countermeasures immediately. In particular, it 
is not sufficient to protect only specific cryptographic al- 
gorithms like AES. More general countermeasures will 
be necessary to counter the threat of automated cache at- 
tacks. 

 
8 Acknowledgments 

We would  like to   thank the   anonymous re- 
viewers and our  shepherd,  Ben  Ransford, 
for their  valuable comments and suggestions. 

The research leading to these results 
has received funding from the European 
Union’s Horizon 2020 research and inno- 
vation programme under grant agreement 
No 644052 (HECTOR). 

Furthermore, this work has been supported by the Aus- 
trian Research Promotion Agency (FFG) and the Styrian 
Business Promotion Agency (SFG) under grant number 
836628 (SeCoS). 

 

References 
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