
 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1712                                                                                       Copyright @ 2021 Authors  

Attacks on cross-tenant spatial multiplexing in PaaS clouds 
 

Ms.ANANYA PREETI PADMA*, Dr. RAMAKANTA BHOI 
Dept. OF Computer Science and Engineering, NIT , BBSR 

ananyapriti@thenalanda.com*,ramakantabhoi@thenalanda.com 
 

ABSTRACT 
In commercial Platform-as-a-Service (PaaS) clouds, we 
demonstrate our new attack methodology for carrying out 
cache-based side-channel assaults amongst tenants. Our 
system extends this work by utilising the Gullasch et al. 
FLUSH- RELOAD attack as a primitive within an automaton-
driven technique for tracing a victim's execution. We use 
our architecture to confirm tenant co-location before 
extracting information across tenant boundaries. Designers 
particularly show how to conduct attacks to steal user 
credentials, break SAML single sign-on, and acquire 
potentially sensitive application data (such as the quantity 
of products in a shopping cart). As far as we are aware, our 
attacks are the first granular, cross-tenant, side-channel 
attacks that have been successfully tested on modern 
commercial clouds, whether PaaS-based or not. 

 

Categories and Subject Descriptors 
D.4.6 [OPERATING SYSTEMS]: Security and Protec- 
tion—Information flow controls 

 

General Terms 
Security 

 

Keywords 
Cloud security; side-channel attacks; cache-based side chan- 
nels; Platform-as-a-Service 

 

1. INTRODUCTION 
Public Platform-as-a-Service (PaaS) clouds are an impor- 

tant segment of the cloud market, being projected for com- 
pound annual growth of almost 30% through 2017 [20] and 
“on track to emerge as the key enabling technology for inno- 
vation inside and outside enterprise IT” [23]. For our pur- 
poses here, a PaaS cloud permits tenants to deploy tasks 

 
 

Permission to make digital or hard copies of part or all of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage, and that copies bear this notice and the full ci- 

tation on the first page. Copyrights for third-party components of this work must be 

honored. For all other uses, contact the owner/author(s). Copyright is held by the 

author/owner(s). 

CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA. 

ACM 978-1-4503-2957-6/14/11. 

http://dx.doi.org/10.1145/2660267.2660356. 

in the form of interpreted source (e.g., PHP, Ruby, Node.js, 
Java)  or application  executables that are then executed in 
a provider-managed host OS shared with other customers’ 
applications. As such, a PaaS cloud often leverages OS- 
based techniques such as Linux containers to isolate ten- 
ants, in contrast to hypervisor-based techniques common in 
Infrastructure-as-a-Service (IaaS) clouds. 

A continuing, if thus far largely hypothetical, threat to 
cloud tenant security is failures of isolation due to side- 
channel information leakage. A small but growing handful 
of works have explored side channels in settings character- 
istic of IaaS clouds, to which tenants deploy tasks in the 
form of virtual machines (VMs). Demonstrated attacks in- 
clude side channels by which an attacker VM can extract 
coarse load measurements of a victim VM with which it is 
co-located [32]; identify pages it shares with a co-located vic- 
tim VM, allowing it to detect victim VM applications, down- 
loaded files [33] and its operating system (OS) [29]; and even 
exfiltrate a victim VM’s private decryption key [40]. How- 
ever, only the first of these attacks was demonstrated on a 
public cloud, with the others being demonstrated in lab set- 
tings. To the best of our knowledge, no side-channel attack 
capable of extracting granular information from a victim has 
been demonstrated in the wild. 

In this paper, we initiate the study of cross-tenant side- 
channel attacks specifically in PaaS  clouds  and,  in doing 
so, provide the first demonstration of granular, cross-tenant 
side channels in commercial clouds of any sort. Existing 
side-channel attacks mountable by one process on another 
running on the same OS, particularly those that leverage 
processor caches (e.g., [28, 30, 25, 34, 14, 38]), seem well 
suited to performing attacks across boundries between ten- 
ant instances1 in PaaS deployments. This is largely true in 
our experience, though directly leveraging these attacks in 
PaaS settings is not as straightforward as one might think. 
One reason is that even identifying suitable targets to at- 
tack in a PaaS deployment requires some thought.   After 
all, cryptographic keys that commonly form their most nat- 
ural targets are largely absent in typical PaaS environments 
where cryptographic protections (e.g., storage encryption, or 
application of TLS encryption to network traffic) are com- 

 
1While “instance” typically refers to an instantiated VM in 
an IaaS setting, here we borrow the term for the PaaS set- 
ting, to refer more generically to a collection of running com- 
putations on one physical machine that are associated with 
the same tenant and should be isolated from other tenants. 

http://dx.doi.org/10.1145/2660267.2660356


 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1713                                                                                       Copyright @ 2021 Authors  

monly provided as a service by the cloud operator, often on a 
different computer than those used to host tenant instances. 

In this paper we report on our investigation of cache-based 

PaaS cloud URL (http://...) Isolation 

AppFog www.appfog.com User 
Azure azure.microsoft.com VM 

side channels in PaaS clouds that, among other things, iden- 
Baidu App Engine developer.baidu. 

com/en 
Container 

tifies several novel targets (in the context of cross-tenant 
side-channel attacks) for PaaS environments: 

1. We show how an attacker instance can infer aspects of 
a victim web application’s responses to clients’ service 
requests. In particular, we show that an attacker can 

Cloud Foundry cloudfoundry.org User 
DotCloud www.dotcloud.com Container 
Elastic Beanstalk aws.amazon.com/ VM 

elasticbeanstalk/ 
Engine Yard www.engineyard.com VM 
Heroku www.heroku.com Container 

reliably determine the number of distinct items in an au- 
thenticated user’s shopping cart on an e-commerce site 
(the victim instance) running the popular Magento e- 

HP Cloud Applica- 
tion PaaS 

www.hpcloud.com/ 
products-services/ 
application-paas 

Container 

commerce application. 

2. We show how an attacker instance can hijack a user ac- 
count on a web site (the victim instance) by predicting 
the pseudorandom number it embeds in a password reset 
link. We specifically demonstrate this attack against the 
PHP pseudorandom number generator that the site uses. 

3. We show how an attacker instance can monitor the vic- 
tim so as to obtain a padding oracle to break XML en- 
cryption schemes. In particular, we demonstrate a Ble- 
ichenbacher attack [6] against SimpleSAMLphp, an open- 
source SAML-based authentication application that im- 
plements PKCS#1 v1.5 RSA encryption in a manner re- 
sistant to these attacks via other vectors (but not via our 
side-channel attacks). 

We stress, moreover, that we have successfully mounted 
each of these attacks in commercial PaaS clouds (though ob- 
viously against victims that we deployed ourselves). More- 
over,  as a side effect of doing so,  we have also addressed 
how to achieve co-location of an attacker instance with a 
victim instance in  these  PaaS  clouds.  To  our  knowledge, 
our attacks are thus the first granular, cross-tenant attacks 
demonstrated on commercial clouds, PaaS or otherwise. 

A key ingredient in our attacks is a framework we develop 
through which the attacker instance can trace a victim’s ex- 
ecution paths inside shared executables. Starting with the 
control-flow graph (CFG) of an executable shared with the 
victim, our framework consists of building an attack non- 
deterministic finite automaton (attack NFA) that prescribes 
the memory chunks (see Sec. 3.1) that the attack instance 
should monitor over time (using a known cache-based side 
channel [14, 38]) in order to trace the victim’s execution 
path in the CFG. This general framework can then be used 
to characterize the victim’s execution for specific attacks, 
such as the exact number of times a certain execution path 
segment was traversed in a short interval (in the first at- 
tack above); the precise time at which certain path segments 
were traversed by the victim (as in the second attack); or 
the direction taken in a specific branch of interest (in the 
third attack). We believe the attack NFA framework that 
we introduce here will be similarly useful in subsequent work 
on both evaluating and defending against cross-tenant side- 
channel attacks. 

To summarize, then, the contributions of this paper are 
threefold: (i) a general framework for expressing and guiding 
cross-tenant side-channel attacks leveraging shared executa- 
bles; (ii) identification of novel and important targets for 
side-channel attacks in PaaS environments; and (iii) demon- 
stration of attacks against these targets in commercial PaaS 
clouds. Sec. 2 provides background on PaaS clouds and 
common isolation techniques they employ and specifies the 

Joyent SmartOS www.joyent.com VM 
OpenShift www.openshift.com Container 
WSO2 wso2.com/cloud Runtime 

 
 

Table 1: Example PaaS isolation techniques 
 
 

threat model we assume in our work. Sec. 3 describes our 
attack framework. Sec. 4 discusses our strategies for achiev- 
ing and confirming co-location of attacker instances with 
victims. Sec. 5–7 then detail our three attack demonstra- 
tions outlined above. We discuss ethical considerations, ex- 
tensions of the attacks, and potential countermeasures in 
Sec. 8 and conclude in Sec. 9. 

 

2. BACKGROUND 
Cloud computing systems are often categorized as either 

IaaS, PaaS, or Software-as-a-Service (SaaS). IaaS clouds en- 
able users to launch virtual machines that they control on 
the provider’s infrastructure, and provide access to vari- 
ous low-level resources including storage  and networking. 
A canonical public PaaS cloud allows customers to upload 
interpreted source code (e.g.,  PHP,  Ruby,  Node.js,  Java) 
or even application executables, which are then run in a 
provider-managed host operating system (OS). This OS may 
itself be running within a guest VM on a public IaaS plat- 
form such as Amazon EC2. The host OS facilitates data 
storage, monitoring and logging, and other value-adds that 
enable customers to quickly provision applications. 

A canonical PaaS use case is dynamic web hosting, where 
the customer provides scripts or applications defining the 
webpage (i.e., PHP scripts or similar) and a MySQL schema, 
while the cloud provides integration of middleware to facili- 
tate data storage, performance monitoring and mobile inte- 
gration if desired. The convenience and flexibility that PaaS 
provides to customers, together with the fact that mature 
IaaS clouds enable quick time-to-market for a new PaaS sys- 
tem, has lead to an explosion in the number of offerings. 

 PaaS Tenant Isolation 
In order to increase server utilization and reduce operat- 

ing cost, PaaS systems are usually multi-tenant, meaning 
they run multiple customers’ instances on the same operat- 
ing system. As such, isolation between tenants is essential  
for the security of PaaS clouds. In Table 1 we summarize 
the isolation mechanisms used in a variety of PaaS systems, 
and describe these models in more detail below. 

Runtime-based isolation. Some PaaS clouds host appli- 
cations owned by multiple tenants in the same process and 
isolate them with application runtimes. Multiple tenants 

http://www.appfog.com/
http://www.dotcloud.com/
http://www.engineyard.com/
http://www.heroku.com/
http://www.hpcloud.com/
http://www.joyent.com/
http://www.openshift.com/


 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1714                                                                                       Copyright @ 2021 Authors  

therefore may share, e.g., the same JVM environment, and 
be isolated only by JVM runtime security mechanisms. 

User-based isolation. A more widely used isolation tech- 
nique is traditional user-based isolation within the host OS. 
Each hosted application runs as a non-privileged user  on 
the OS, and the instance is a set of processes run by that 
user. Basic OS-facilitated memory protection prevents il- 
legal memory accesses across instance boundaries, and cor- 
rectly configured discretionary access control (DAC) in Unix- 
like systems prevents cross-tenant file accesses. 

Container-based isolation. The main limitation of user- 
based isolation is the unrestricted use of computer resources 
by individual instances. This has been relatively recently 
addressed with the advent of Linux containers, as imple- 
mented  by  Linux-VServer  (linux-vserver.org),  OpenVZ 
(openvz.org),  and  LXC  (linuxcontainers.org).   The  last 
has been merged into mainstream Linux kernels. A con- 
tainer is a group of processes that are isolated from other 
groups via distinct kernel namespaces and resource alloca- 
tion quotas (so-called control groups or cgroups). A pop- 
ular open-source project, Docker, which has been adopted 
by several PaaS offerings, is built atop LXC to facilitate the 
management of Linux containers. 

VM-based isolation. Some PaaS clouds give each cus- 
tomer instance a separate IaaS VM instance, thereby lever- 
aging the isolation offered by modern virtualization. 

The attacks we demonstrate in this paper were performed 
on clouds offering container-based isolation, but as they ex- 
ploit features common to both container-based and user- 
based isolation, we believe they are equally applicable to 
clouds protected by user-based isolation. 

 Threat model 
We consider attacks by the PaaS provider (or other ma- 

licious insiders) as out of  scope.  The same trust extends to 
any underlying IaaS provider.  Should the IaaS cloud  be pub- 
lic (e.g., EC2) then its malicious IaaS customers represent a 
threat to PaaS customers, but not one that we explore fur- 
ther. Rather we focus on other malicious customers of the 
PaaS cloud, and container-based isolation in particular. 

Thus both the adversaries and the victims in our threat 
model are users of a PaaS system. An adversary seeks to (i) 
arrange for a malicious instance it controls to be scheduled 
to run within a different container on the same host OS as 
the target victim and (ii) extract confidential information 
from the target victim using this vantage point. 

 

3. ATTACK FRAMEWORK 
In this section, we present an attack framework that en- 

ables an adversary to conduct a cache-based attack to track 
the execution path of a victim and, in doing so, to extract a 
secret of interest  from  the  victim.  We  will  first  describe 
the FLUSH-RELOAD-based side channels exploited in this 
study (Sec. 3.1), and then develop an attack  nondeterminis- 
tic finite automaton or attack NFA (Sec. 3.2–3.3) from the 
control-flow graph (CFG) of an executable shared with the 
victim. We defer the actual demonstration of security  at- 
tacks to later sections. 

 Side Channels via Flush-Reload 
We leverage a type of cache-based side channel that was 

first reported by Gullasch et al. [14], who demonstrated its 

use by an attack process to extract Advanced Encryption 
Standard (AES) keys from a victim process when both were 
running within  the  same  OS. The  attack  was  studied  on 
a single-core processor and exploits the adversary’s process’ 
ability to evict data in physical memory pages it shares with 
the victim process from the CPU cache (e.g., via the instruc- 
tion clflush2).  The technique was later extended by Yarom 
and Falkner to multi-core systems with a shared last-level 
cache [38]. They refer to their attack as FLUSH-RELOAD. In 
this work, we further extend the use of the FLUSH-RELOAD 
side channels to more general attack scenarios. 

Basic Flush-Reload. The basic building block of a FLUSH- 
RELOAD attack is as follows. A chunk is a cacheline-sized, 
aligned region in the physical memory that is mapped into 
the adversary’s address space.  For example, if a cacheline 
is of size 64B, then each address that is a multiple of 64B 
defines the chunk starting at that address. 

• FLUSH: The adversary flushes chunks containing specific 
instructions located in a memory page it shares with the 
victim out of the entire cache hierarchy (including the 
shared last-level  cache)  using  the clflush  instruction. 

• FLUSH-RELOAD interval: The adversary waits for a pre- 
specified interval while the last-level cache is utilized by 
the victim running on another CPU core. 

• RELOAD: The adversary times the reload of the same 
chunks into the processor. A faster reload suggests these 
chunks were in the last-level cache and so were executed 
by the victim during the FLUSH-RELOAD interval; a slower 
reload suggests otherwise. 

We refer to the chunks being FLUSH-RELOADed by the ad- 
versary as being monitored, since FLUSH-RELOAD essentially 
monitors access to data in the chunk. FLUSHing a chunk via 
clflush,  and  so  monitoring  that  chunk,  can  be  done  with- 
out knowing the physical address of the chunk, since clflush 
takes the chunk’s virtual address (in this case, in the adver- 
sary’s address space) as its operand. We call a faster reload 
during the RELOAD phase an observed event or observation. 
We also adopt concepts  from  statistical  classification  and 
use the term false negative to refer to missed observations 
of the victim’s access to the monitored chunk and false pos- 
itives to refer to observed events that are caused by reasons 
other than the victim’s access to the monitored chunk. 

Flush-Reload Protocols. We define a FLUSH-RELOAD 
protocol, in which the adversary process monitors a list of 
chunks simultaneously and repeatedly until instructed oth- 
erwise. It will first try to RELOAD the first chunk, record the 
reload time and FLUSH it immediately afterwards. Then it 
will repeat these steps on the second chunk, the third, and 
so on, until the last chunk in the list.  Then the adversary 
will wait for a carefully calculated time period before start- 
ing over from the first chunk, so that the interval between 
the FLUSH and RELOAD of the same chunk is of a target 
duration.3 From the RELOAD of the first chunk to the end 
of the waiting period is called one Flush-Reload cycle. An il- 
lustration of the FLUSH-RELOAD protocol is shown in Fig. 1. 

 
2The  clflush  instruction  takes  a  virtual  address  as  the 
operand and will flush all cachelines with the correspond- 
ing physical address out of the entire cache hierarchy. 
3Variation in the duration on the order of one or two hun- 
dred CPU cycles may occur as the reload of a chunk does 
not take constant time. 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1715                                                                                       Copyright @ 2021 Authors  

 

Flushing 

chunk 1 

Flushing 

chunk 2 In light of this intended meaning of the attack NFA, the 
Reloading 

chunk 1 

Reloading 

chunk 2 

 

Idle looping transition function should satisfy certain constraints. 

• Observability: If (q, (c, ℓ, u), q′) ∈ δ, then c ∈ mon(q). 
Flush-Reload Interval 

Flush-Reload Cycle 

Figure 1: An example of a Flush-Reload protocol in 
which two chunks are monitored at the same time. 
Gray rectangles are Reloads of two chunks and dark 
squares are immediate Flushes of the prior Reloads. 

 
 

 From CFGs to Attack NFAs 
In this section we provide a framework to leverage FLUSH- 

RELOAD attacks as a primitive in a larger attack strategy to 
trace the execution path of a victim instance during (at least 
part of) its execution. Specifically, we develop attack NFAs 
that prescribe the order in which different chunks should be 
monitored using FLUSH-RELOAD attacks, based on what has 
been learned so far. 

The development of an attack NFA to attack a target 
victim begins with a control-flow graph (CFG) [1] of the 
executable4 shared  with  the  victim.  As  usual,  each  node 
of the CFG is a basic block of instructions, and an edge 
from one basic block to another indicates that the latter can 
immediately follow the former in execution. Let B denote 
the set of basic blocks of the victim instance, and let E 
denote the directed edges of its CFG. 

When the shared executable is loaded, its organization in 

memory determines a function BBToChunks : B → 2C that 
describes how each basic block shared  with  the victim  (i.e., 
in the shared executable) is stored in one or more chunks 
mapped into the adversary instance’s virtual memory.  Here, 

C is  the set of all  chunks mapped into the adversary’s vir- 
tual memory and occupied by the shared executable, and 2C 

denotes the power set of C. That is, each basic block in B is 
mapped to one or more chunks, by BBToChunks. Although 
the chunks to which each basic block is mapped are usually 
contiguous in memory, this might not be true when those 
chunks span the end of a memory page. 

Like a regular NFA, the attack NFA is defined as a tu- 
ple (Q, Σ, δ, q0 , F ), where Q is a set of states, Σ is a set of 
symbols, δ : Q × Σ → Q is a transition function, q0 is the 
initial NFA state, and F  ⊆ Q is a set of accepting  states. 
To each state q ∈ Q is associated a set of chunks, denoted 
mon(q) ⊆ C, that contains the chunks the adversary will 
monitor while in state q.  Note that mon(q) might be the 
same for multiple states q. 

The symbols Σ consumed by the NFA is the set Σ = C × 
N×N where N is the set of natural numbers. Specifically, the 
meaning of the transition (q, (c, ℓ, u), q′) ∈ δ is: while in state 
q and so monitoring the chunks mon(q), if the adversary 
detects the victim’s use of chunk c within the interval [ℓ, u] 
(in units of FLUSH-RELOAD cycles since entering q), then the 
adversary transitions to q′ and begins monitoring the chunks 
mon(q′).  We allow ℓ to be zero;  detecting the victim’s use of 
c in zero FLUSH-RELOAD cycles since entering state q means 
that c was detected in the same FLUSH-RELOAD cycle that 
caused state q to be entered. 

 

4We use the term “executable” to refer to both executable 
files and shared libraries in this paper. 

Otherwise, an adversary in state q will not observe the 

victim using c. If in addition (q′, (c′, 0, u′), q′′) ∈ δ, then 

mon(q′)  ⊆ mon(q), since for transition (q′,  (c′,  0,  u′), 
q′′) to become enabled with no FLUSH-RELOAD cycles 
after transitioning to q′, c′ must be monitored in q (as 
must other chunks included in mon(q′) due to recursive 
application of this rule to additional “downstream” states 
like q′′). 

• Feasibility: To each state q there corresponds a basic 
block b such that for each transition (q, (c, ℓ, u), q′) ∈ δ, 
there is a (possibly empty) path in the CFG from b to a 
basic block  b′  (corresponding to q′) that can be traversed 
in no fewer than ℓ and no more than u FLUSH-RELOAD 

cycles  and  such  that  c  ∈ BBToChunks(b′).  Intuitively, 
it is this execution path that the adversary detects in 
transitioning from state q to q′. 

In addition, in practice it is important to design the attack 
NFA so that the number of monitored chunks in any state is 
constrained, since monitoring many chunks simultaneously 
poses difficulties. 

A transition is taken out of a state at the first FLUSH- 
RELOAD cycle that enables a transition.  Still,  it  is  possi- 
ble for multiple transitions to become enabled in the same 
FLUSH-RELOAD cycle, in which case an arbitrary enabled 
transition is taken. In this respect, the automaton is nonde- 
terministic. 

The designated initial state q0 represents the shared exe- 
cutable’s entry point(s) of interest to the adversary. That is, 

mon(q0 )∩BBToChunks(b) ∅ for each basic block b that the 
adversary wants to detect initially. The set F of accepting 
states is chosen by the adversary to  reflect  having tracked 
the execution of the victim sufficiently far to permit his in- 
ference of the targeted information about the victim with 
sufficient confidence. 

After the attack NFA is constructed, the adversary may 
employ it to reconstruct the victim’s execution path by si- 
multaneously (i) triggering the victim’s execution by send- 
ing a request to victim’s web application interface, and (ii)  
inducing its co-located attacker application to start monitor- 
ing mon(q0 ).  If the  NFA transitions to an  accepting state, 
the adversary knows the execution path of interest is taken 
by the victim. We have found that in practice, a well de- 
signed NFA usually leads to successful identification of an 
execution path of the victim application. 

 Practical Construction of Attack NFAs 
In this section we discuss how an adversary can construct 

attack NFAs in practice. 

 Basic Strategy 

In PaaS clouds an application usually consists of a set of 
scripts written in scripting languages that manage dynamic 
web content, a set of shared libraries that implement the 
runtime of the programming language or any other support- 
ing functionality (e.g., cryptography, database access), and 
a web server executable that serves the web requests and 
interacts with the scripting language runtime. 

It is not necessary to construct the attack NFA from a 
full CFG of the victim application. If the source code of the 
shared executables of interest is unavailable to the adversary, 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1716                                                                                       Copyright @ 2021 Authors  

he can make progress on the attack with the following steps: 
(1) disassembling these shared executables and constructing 
partial CFGs from the results; (2) manually analyzing these 
partial CFGs and selecting blocks along the execution paths 
of interest for which chunks should be monitored; and (3) 
constructing the attack NFA with the help of online training, 
in which the adversary monitors all chunks of interest at 
once and triggers the victim’s activity that he would like to  
capture by submitting appropriate requests. During phase 
(3), the FLUSH-RELOAD protocol will report a sequence of 
observed events on the monitored chunks. The temporal 
order of these events suggests the NFA states and chunks to 
monitor in each, and the relative timestamps can help train 
the ℓ and u values for each transition. Multiple training 
trials will help refine the constructed attack NFA. 

However, adversaries usually face a more favorable sce- 
nario in  practice.  Source  code  of  the  victim  application 
is available to the adversary in many cases:  Since most 
PaaS clouds are built based on Linux distributions, most 
web servers, application runtimes and supporting libraries 
are open-source. Moreover, about 37% of the top 10 million 
websites use a third-party content management system such 
as WordPress, Drupal, or Magento [37], the source code of 
which is either open or obtainable with a fee. 

If the adversary has the source code of the shared executa- 
bles as well as the scripts for managing dynamic web content, 
the above attack steps can be facilitated with the additional 
information. For instance, step (1) can be replaced by per- 
forming static control-flow analysis on the source code, and 
step (2) and (3) can  be  assisted  by  replicating  the  same 
PaaS environment offline and tracking the victim applica- 
tion’s control flow  dynamically.  For  example,  the  adver- 
sary may run the  entire  web  application  in  Valgrind  [24] 
and trigger various victim activities with manufactured web 
requests, recording the control flow that results from each. 
However, even so, the training step (3) is still necessary to 
determine the ℓ and u values for the transitions. 

Although we have developed some software tools to facil- 
itate attack NFA construction, constructing an attack NFA 
with or without source code is still mostly a manual process 
and depends in large part on the attack goals — in particu- 
lar, which execution paths in the victim the adversary needs 
to detect. In Sec. 5–7, we will give several examples of how 
to construct attack NFAs for different types of attacks. 

 Reducing Side-Channel Noise 

One challenge that we have overlooked so far is noise in 
the FLUSH-RELOAD side channel. Here, “noise” refers to false 
positives and false negatives in the RELOAD phase. Com- 
pared with the PRIME-PROBE attacks used in many previ- 
ous works (e.g., [28, 30, 25, 34, 40]), FLUSH-RELOAD attacks 
involve relatively less noise, since the adversary is able to 
tell whether the victim accessed the data in the chunk the 
adversary is monitoring, versus simply some data mapped to 
the same cache set. Nevertheless, the technique still suffers 
from many sources of noise in practice. 

Sources of noise. We discuss, in turn, false negative noise 
due to race conditions and unobserved duplicate accesses, 
and then false positive noise due to false sharing of chunks, 
hardware cache prefetching, and background activities from 
other processes sharing the same memory pages. These 
sources of noise affect the granularity and reliability of the 
attacks that we will develop in subsequent sections. 

A race condition here refers to the situation where two 
memory loads of the same chunk are issued from two CPU 
cores roughly at the same time. In such cases, the outcome 
of the RELOAD step can be unpredictable. The access of the 
shared chunk by the victim may be missed by the adversary 
if it overlaps with the adversary’s memory load. Because the 
adversary increases the risk of such an overlap as it shortens 
its FLUSH-RELOAD interval, the adversary is limited in how 
far it can shrink that interval. 

Another source of noise is the victim itself—a victim’s first 
access of a chunk can be missed by FLUSH-RELOAD monitor- 
ing if it accesses the chunk a second time before the RELOAD 
of the adversary. We call this an unobserved duplicate access. 
This type of noise is particularly significant when applying 
the attack framework to count the repeated use of the same 
chunk, which will be discussed in our attack scenarios. 

False sharing usually refers to a cache usage pattern in 
distributed, coherent cache systems that degrades the per- 
formance of the cache [7]. Here we refer to false sharing of 
a cacheline to refer to cases in which two separate program 
components share the same chunk and hence the FLUSH- 
RELOAD monitoring of one component  may  be  misled  by 
the execution of another.  For example,  the memory  layout 
of a function rarely aligns perfectly within chunks, and the 
beginning and the end of a function usually share the same 
chunks with other functions. 

Depending on the hardware implementation, data cache 
prefetching may load more than one consecutive chunk into 
the cache upon a cache miss. This behavior can result in 
false positives, since observed events may be caused by data 
prefetching. 

As multiple processes in the operating system may share 
the same executables, and so the same memory pages that 
contain executable code, activities from processes other than 
the victim may trigger false positives in the RELOAD phase. 
Especially in  PaaS  cloud settings,  tens or  even hundreds 
of applications may share the same set of executables, and 
careful use of the FLUSH-RELOAD side channel is required to 
reduce such background noise. 

Overcoming noise. We have found that several design 
principles help to overcome the above sources of noise. 

 
 

• Select an appropriate FLUSH-RELOAD interval. A shorter 
interval will increase the chance of race conditions, and 
longer intervals will incur more unobserved duplicate ac- 
cesses. As such, in our case studies (Sec. 5–7) we deter- 
mined the length of the interval empirically to minimize 
false negatives, which resulted in a FLUSH-RELOAD inter- 
val of about 1µs in each case. 

• Avoid monitoring chunks that correspond to frequently 
used basic blocks in the CFG, to reduce false positives 
due to background noise. For instance, the wrapper func- 
tions  of  system  calls  in  libc  are  inevitably  shared  and 
used by multiple processes concurrently, and therefore 
will frequently induce noise in the FLUSH-RELOAD chan- 
nel. It is better to monitor entries in the procedure link- 
age tables (PLT) of other libraries that call these func- 
tions, instead, as they tend to be less frequently used. 

• When the same chunk contains the end of one basic 
block and the beginning of another, avoid monitoring this 
chunk if possible, due to false positives resulting from the 
false sharing. 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1717                                                                                       Copyright @ 2021 Authors  

• Use the timing constraints, ℓ and u, of the transitions to 
reduce false positives. While false positives may occur 
due to false sharing, cache prefetching, and background 
noise, the timing constraints of a transition can often 
rule out these false observations for not falling into the 
specified interval [ℓ, u]. 

 
4. CO-LOCATION IN PAAS 

To exploit side channels in PaaS environments, an adver- 
sary must first somehow achieve co-location of a malicious 
instance on the same OS as a target. Ristenpart et al. [32] 
explored co-location vulnerabilities in the setting of IaaS 
clouds. To the best of our knowledge, no one has inves- 
tigated co-location in PaaS settings.  We therefore provide 
a preliminary empirical study of the ability to co-locate an 
attacker instance with a victim instance in modern public 
PaaS clouds, leveraging our proposed attack framework to 
detect success. 

Co-location attacks consist of two steps. First, the adver- 
sary employs some strategy for launching (typically a large 
number of) instances on the cloud service.   Second,  each 
of these instances attempts to perform co-location detec- 
tion. For the first step, we explore only the simplest strat- 
egy in which we repeatedly launch instances that check for 
co-location until success is achieved. 

Co-location detection. For the second step, we use a 
FLUSH-RELOAD side channel to detect whether any of the 
instances co-locates with the victim instance. To detect co- 
location, the adversary sends an HTTP query to the victim 
instance and instructs each of the attacker instances to si- 
multaneously monitor a certain execution path using the 
techniques proposed in Sec. 3. If the execution path is de- 
tected, the adversary will have some confidence that the 
detecting attacker instance is co-located with the victim. 
However, this approach may have false positives, in which 
not-co-located instances were reported as co-located due to 
activities of other tenants sharing the same OS, and false 
negatives, in which co-located instances were not reported 
so. In order to increase the confidence, two strategies can 
be taken: (1) induce and monitor for rare events to reduce 
false positives; or (2) use multiple trials to reduce both false 
positives and false negatives. 

The execution path to be monitored may vary. In our ex- 
periments, we considered a victim instance that ran a popu- 
lar PHP e-commerce application, Magento. To differentiate 
the query sent by the adversary from background noise, we 
simply used a relatively unusual query with an associated 
uncommon execution path. By inspecting the source code 
of the Magento application, facilitated by dynamic analysis 
using  Valgrind,  we  found  the  functions  xmlXPathNodeSet- 
Sort()  in  libxml2.so  and  php_session_start()  in  either 
libphp5.so  or php5-fpm  (depending on the version of  PHP 
used by the cloud) are called sequentially during a (failed) 
login attempt. We confirmed with dynamic analysis of other 
types of queries that the execution paths that traverse both 
functions are uncommon. Therefore, we constructed an at- 
tack NFA as shown in Fig. 2. In this figure, for example, c2 
corresponds  to  a  chunk  in  php_session_start(),  and  the 
number of FLUSH-RELOAD periods allowed to transition out 

of the state q in which BBToChunks(q) = {c2} is any in the 
range [1, T ], where T  is  the maximum FLUSH-RELOAD cy- 
cles before the attack NFA stops accepting new inputs. In 

 

 
 

 
Figure 2: The attack NFA used for detection of co- 
location with PaaS Magento e-commerce instances. 
Initial state q0 indicated by “Start” and accepting 
states indicated with double ovals. T is the maxi- 
mum Flush-Reload cycles without transitioning be- 
fore the NFA stops accepting new inputs. 

 
 

our experiments, T corresponded to one or two seconds of 
wall clock time. One can of course adapt the above strategy 
easily to targets beyond Magento. 

We observed in earlier experiments that some cloud ser- 
vices tend to schedule applications with different runtimes 
(e.g., PHP versus Ruby) on different machines. Fortunately 
(for an adversary) it is easy to choose the same runtime as 
the victim should it be known to the adversary, which we did 
in all of our experiments. If it is not known, the adversary 
can simply repeat the co-location attack for each runtime as 
there are only a handful in any given cloud. 

Co-location validation. To obtain ground truth for eval- 
uating efficacy, we took advantage of the fact that during 
our experiments we controlled both the attacker and victim 
instances. In particular, we augmented the above procedure 
to also have both attack instances and the target victim es- 
tablish a TCP connection with an external server under our 
control. (Most clouds have their firewalls configured to allow 
outbound traffic.) This revealed the IP addresses associated 
with each instance; if two instances shared the same IP ad- 
dress they were hosted on the same (virtual) server. It is 
worth noting that a Network Address Translation (NAT) 
configuration in the cloud provider’s network would hinder  
this approach. However, we did not observe this problem in 
our experiments. We also note that this co-location check 
could potentially be used in cases in which real adversaries 
can obtain the IP address of the target, and so this might be 
directly useful by real adversaries. However, in many cases 
clients do not directly connect to PaaS instances, hitting a 
load balancer or HTTPS endpoint first. Thus we only used 
the IP comparison approach to validate that the previously 
described side-channel based co-location check worked. 

Co-location experiments. We provide some initial proof- 
of-concept experiments regarding the ability of an adversary 
to obtain co-location with a single victim. We do so for two 
popular public PaaS services: DotCloud and OpenShift. 

The client control interfaces are different in the two ser- 
vices. In OpenShift, a target victim instance was launched 
and after a certain amount of time (typically on the order of 
a few hours, though times varied), the adversary launched 
attack instances one-at-a-time (with a 30-second interval to 
reduce the stress of the experiments on the cloud fabric) 
until one obtained co-location with the victim as indicated 
by the attack NFA. In DotCloud, the experiments were con- 
ducted similarly, except that the control interface enabled 
us to launch attack instances ten-at-a-time via static scaling 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1718                                                                                       Copyright @ 2021 Authors  

(vs. dynamic scaling in OpenShift which prevents doing so). 
We repeated this process three times for each cloud. We re- 
port in Table 2 the number of instances that the adversary 
launched before a successful co-location. As can be seen, 
every trial succeeded in every cloud, providing strong evi- 
dence that an adversary is very likely to be able to obtain co-
location with a  target.  (Indeed,  in  the  course  of  writ- ing 
this paper, we never were unable to achieve co-residency 
with our victim instance in these clouds.)  The  number of 
trials required, however, varied greatly. Even in the worst 
observed case, with 120 instances in OpenShift, co-location 
was obtained after 3.2 hours and at a total cost of zero US 
dollars, as we did not exceed the limits of the free tier. 

 
  

1st 
Trials 

2nd 
 

3rd 
Miss 
FP 

Detection 
FN 

DotCloud ≤ 10 ≤ 10 ≤ 10 0.00 0.03 
OpenShift 98 120 5 0.00 0.49 

 
Table 2: Number of sequentially launched instances 
before co-location. 

 

We used this experimental data to test the accuracy of 
our co-location detection attack NFA. Specifically, we ran 
for each cloud the co-location detection 100 times using two 
instances which were co-located (as per IP address checks) 
and 100 times on instances which were not co-located (as 
per IP address checks). The detection rates are also shown 
in Table 2: FP indicates the rate of false positives, and FN 
indicates the rate of false negatives. We believe the high 
false negative rate in OpenShift was due to CPU resource 
contention, as the applications were run on a two-core VM 
sharing CPUs with hundreds of processes. We defer further 
discussion on this issue to Sec. 8.3. Nevertheless, the re- 
sult indicates the rare execution path represented in Fig. 2 
successfully reduced background noise; repeating the co- 
location test five times resulted in a false negative rate of 

.28 ≈ (.49)5. 

 

5. CASE STUDY 1: INFERRING SENSITIVE 
USER DATA 

In this section and the two that follow, we present three 
examples in the form of case studies that demonstrate how 
an adversary can apply our proposed framework to accom- 
plish a variety of real-world attacks. Our experimental en- 
vironment was common to all three studies. 

Experimental environment. Our evaluations were con- 
ducted in a public PaaS cloud, DotCloud. We will discuss 
the ethical considerations surrounding our experiments in 
Sec. 8.1. The software and hardware stack in DotCloud 
was out of our control and was not officially reported by 
the provider. By observing data extracted from procfs, a 
pseudo filesystem presenting system information, and data 
available from the PaaS control fabric, however, we believe 
the applications in our experiment were run on a VM with 
four virtual CPUs operated by Amazon EC2 in us-east-1a 
datacenter. The physical CPU was a 2.4GHz Intel Xeon pro- 
cessor E5-2665, which has 8 cores sharing a 20MB last-level 
cache. Moreover, we believe the operating systems that sup- 
ported the applications were Ubuntu 10.04.4 LTS on Linux 
kernels version 2.6.38. The tenants were isolated with Linux 
containers. 

In all three case studies, we created two accounts us- 
ing different email addresses and user information in Dot- 
Cloud, designating one of them as the victim account and 
the other as the attacker account. We believe the victim and 
attacker accounts were treated as two separate, mutually- 
distrusting accounts by the cloud provider. Since the vic- 
tims were PHP applications in our case studies, all attacker 
applications were designed to operate on the same runtimes 
to facilitate their co-location with the victim, which was 
achieved  as  described  in  Sec. 4.    DotCloud  used  php-fpm 
(version 5.4.6), which interacted with the Nginx web server 
(http://nginx.org) and processed PHP requests.  In all ex- 
periments, the FLUSH-RELOAD cycle was set to be 2400 clock 
cycles, corresponding to about one microsecond in real time. 

 Attack Background 
Our first case study explores a relatively simple attack, a 

good starting point for end-to-end illustration of our tech- 
niques. We show how our proposed attack framework per- 
mits inference of the responses of a victim web application 
to client requests. Specifically, an adversary may combine 
what is known as a cross-site request (CSR) with the FLUSH- 
RELOAD side channel to infer the number of distinct items 
in a user’s shopping cart on an e-commerce server. 

There have been various related timing attacks demon- 
strated on web privacy, e.g., [13,  22].   Particularly similar 
to our case study here is a CSR-based attack described by 
Bortz et al. [8] that likewise infers the number of distinct 
items in a user’s shopping cart. As their attack relies on the 
timing of request fulfillment, they propose and implement a 
countermeasure that enforces uniform server response tim- 
ing. The attack we present here depends instead on execu- 
tion tracking via an attack NFA, and thus defeats timing- 
side-channel countermeasures of this kind. 

Cross-site requests. The target of  the adversary  in  this 
case study is, specifically, a user that is authenticated to 
a victim e-commerce site. We presume, however, that the 
adversary cannot compromise the credentials of the user for 
the victim site, and only makes use of the side channel to ob- 
serve data retrieved by the user. A passive adversary might 
be unable to determine the identities of users accessing the 
victim site.  We consider an alternative strategy in which 
the adversary prompts user retrieval of the target data by 
means of a cross-site request. 

CSRs are HTML requests made to a third-party resource, 
that is, one hosted by a domain other than that serving 
the HTML. While there are legitimate uses for such indi- 
rection, it can also serve as a basis for requests that make 
improper use of a user’s credentials, as in our attack here. A 
CSR requires that the adversary lure the user to a site that 
serves HTML crafted by the adversary to redirect the user’s  
browser  to  the  victim’s  e-commerce  site,  e.g.,  <img  src  = 
"http://victim-site.com/index.php/checkout/cart/">. 
If a user Alice has been previously authenticated to the 

domain  www.victim-site.com,  then  her  browser  will  often 
obtain and cache credentials for the domain, such as cook- 
ies, and automatically re-authenticate on subsequent vis- 
its.   Thus,  in  our  attack,  www.victim-site.com  will  see  an 
authenticated request originating from Alice’s browser, un- 
aware that the request was triggered by an adversary. 

Web applications may include protections against mali- 
cious CSRs, such as requiring explicit user authorization of 
resource requests or inserting session-specific random syn- 

http://victim-site.com/index.php/checkout/cart/
http://www.victim-site.com/
http://www.victim-site.com/


 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1719                                                                                       Copyright @ 2021 Authors  

 

 
 

 
Figure 3: Attack NFA for case study in Sec. 5. Ini- 
tial state q0 indicated by “Start” and accepting states 
indicated with double ovals. T is the maximum 
Flush-Reload cycles without transitioning before the 
NFA stops accepting new inputs. 

 
 

chronizer tokens in HTML forms and links. Often these pro- 
tections are confined, however, to what are called cross-site 
request forgery (CSRF) attacks, which cause state changes 
(known as “side-effects”) in the server. The CSR we exploit 
for our attack here has no side effects, and will thus be al- 
lowed by most victim servers. 

 Evaluation in Public PaaS 
We empirically evaluated our proposed attack in Dot- 

Cloud against the Magento e-commerce application (version 
1.8, the latest version as of this writing). This is a popular 
open source e-commerce application, used by roughly 1% or 
about 200,000 of the top 10 million websites ranked by Alexa 
(http://www.alexa.com)  [37].  We reiterate  that our goal  is 
for an attacker instance to reliably determine the number 
of distinct items in an authenticated user’s shopping cart 
on the e-commerce site of the victim. Our attack cannot 
determine the quantity count for a given item. 

We assume, as noted above, that the adversary can lure 
an authenticated user of the victim Magento website to an 
HTML page hosted in its own webserver, thereby triggering 
a CSR in which the user requests her shopping cart on the 
victim site. We simulated the user on Google Chrome (v34). 
We expect the attack to work on other browsers that support 
a similar range of cross-origin requests. 

Attack details and results: The attack NFA we con- 
structed in this example is highly dependent on the specifics 
of the Magento web application. We analyzed the applica- 
tion with Valgrind. We observed that a Zend opcode handler 
(which we call handler() for convenience5), which is imple- 
mented  in  the  executable  php5-fpm,  is  invoked  every  time 
an item in the shopping cart is displayed. 

To count the number of items in a shopping cart, there- 
fore, it suffices for the adversary to count the number of invo- 
cations of the handler() function using the FLUSH-RELOAD 
side channel. In our experiments, an interval of at least 20 
FLUSH-RELOAD cycles elapsed between the display of two 
distinct items. We took this interval length to be a lower 
bound  on  the  time  between  calls  to  handler()  within  the 
NFA we constructed for the attack, depicted in Fig. 3. 

The evaluation was performed on DotCloud as follows. 
The victim user placed m distinct items in  her shopping 

cart, for m ∈ {0, 1, 2, 3, 4, 5, 6}. We repeated our experiment 
10 times for each value of m. The number of successes for 

 
 

5As only the virtual address  of  the handler was  required 
to construct the attack NFA, we were able to perform the 
attack without studying the Zend source code. Therefore, 
the name of the function, which is hidden in the result of an 
objdump,  remains  unknown to  us. 

each number m of distinct items, that is, the frequency with 
which the adversary correctly determined m from a single 
trial, is shown in Table 3. Also shown is that when the ad- 
versary inferred m incorrectly, its inference was nevertheless 
very close to correct. 

 

Items detected in cart 
0 1 2 3 4 5 6 7 

0 10 
1 10 
2 9   1 
3 10 
4 1 9 
5 1 9 
6 1 8   1 

 

Table 3: Item count inferences by the adversary. 
Each table entry indicates the number of experi- 
ments yielding a given (true count, inferred count) 
pair over 10 trials per row. Entries on the diagonal, 
which predominate, correspond to correct inference. 

 
 

6. CASE STUDY 2: PASSWORD-RESET AT- 
TACKS 

In this second case study, we show how to employ our 
attack framework to compromise the pseudorandom num- 
ber generators (PRNGs) used by many web applications in 
authenticating password reset requests. An adversary can 
exploit this ability to reset the passwords for and thus ob- 
tain control of the accounts of arbitrarily selected users. 

Our attack targets the PRNG present in certain program- 
ming language runtimes (e.g., PHP), which relies upon sys- 
tem time (e.g., gettimeofday()) as a source of seed entropy. 
With a malicious application that is co-located with the vic- 
tim application, the adversary is able to detect system calls 
such  as  gettimeofday(),  reconstruct  the  internal  state  of 
the PRNG, and thereby reproduce its entire output. 

The ability to mount password-reset attacks is one con- 
sequence of this PRNG vulnerability. Such attacks are of 
particular concern because an adversary can trigger a pass- 
word reset on a web application for a user with knowledge 
of the user’s account name or email address alone. To au- 
thenticate the user, a web application will typically use a 
PRNG to generate a random string R, and then embed this 
string in the URL of a password reset link sent to the user’s 
registered email address. By learning the state of the web 
application’s PRNG, a co-located attacker instance can re- 
produce the password reset token R, reset the password be- 
fore the user does, and hijack the user’s account. We stress  
that the adversary does not need access to the user’s email  
to accomplish this attack. In this section, we demonstrate 
such a password-reset attack against PHP-based web appli- 
cations in public clouds. 

Weaknesses in PHP PRNGs have been previously reported 
(e.g., [12, 17]). A recent study by Argyros and Kiayias [3] 
gave several attacks, one of which involves recovery of the 
seed values of the PHP system’s PRNGs for password reset 
and so has the same goal as the attack in our own case study. 
Their attacks (which are against victims presenting a much 
smaller search space than ours, see [3, Sec. 6.2]), however, 
require sending repeated requests to the victim server, which 

It
e

m
s 

in
 c

a
rt

 (
m

) 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1720                                                                                       Copyright @ 2021 Authors  

 
 
 

Figure 4: The call graph of password reset token 
generation in PHP applications. 

 
 

may take several minutes and may result in attack detection. 
In comparison, after a setup phase requiring a small brute- 
force attack (220 offline trials), our attack requires at most 
four online queries to compromise a user account. It is thus 
almost instantaneous and scales easily to a large number of 
accounts. 

 Background on PRNG in PHP 
The PHP runtime provides several functions by which 

applications can obtain or generate (pseudo)random num- 
bers. For instance, during the process of password reset 
token generation,  most PHP applications call APIs such 
as  microtime(),  mt_rand(),  and  uniqid().   Internally,  the 
microtime()  function  calls  gettimeofday()  to  obtain  the 
current system time in the form of the number of seconds 
and microseconds since the Unix epoch (0:00:00 1 January 
1970  UTC). The  mt_rand()  function,  which is the interface 
to the PHP internal Mersenne Twister generator, automat- 
ically  initializes  its  own  internal  state,  if  mt_srand()  has 
not yet been invoked, with a random seed generated using 
functions time(), php_combined_lcg(), and getpid().  The 
time() function merely returns the number of seconds since 
the Unix epoch, and therefore has low entropy. The func- 
tion  php_combined_lcg()  combines  two  linear  congruential 

generators (with prime periods 231−85 and 231−249) to gen- 
erate a long-period pseudorandom sequence (the product of 
the  primes).   The  initialization  of  php_combined_lcg()  de- 
pends on the lcg_seed() function, which generates random 
seeds  by  calling  getpid()  once  and  gettimeofday()  twice. 
These function calls and dependencies are shown in Fig. 4. 
While the range of options for seeding the PRNG in PHP 
systems may seem convoluted, as Fig. 4 shows, the only 

sources  of  entropy for  the PRNG seed are gettimeofday(), 
time(),  and  getpid().    By  monitoring  invocations  of  the 
gettimeofday()  function,  the  adversary  can  immediately 
issue another call to gettimeofday() once it is called by the 
victim. As the adversary shares the OS with the victim web 
application, the result of the adversary’s invocation of get- 
timeofday() will be very close to, if not exactly the same as, 
that returned to the victim application. The same is (even 
more) true of  time().  As such, the only input to the victim 
PRNG that may be unknown to the adversary is the result 
of  getpid(),  which may  assume  any  of  216 values. 

An adversary can initiate a password reset for its own ac- 
count with the victim web application. As the adversary re- 
ceives the corresponding secret string R, it can guess the pid 

and verify its correctness against R. Subsequent password 
reset attacks issued from the same connection will be served 
by the same process. The adversary therefore resolves vir- 
tually all entropy in the initial state of the PHP application. 
By  continuously  monitoring  the  invocations  of  mt_rand() 
and  php_combined_lcg(),  the  adversary  can  keep  track  of 
the evolution of the PRNG and guess all the random num- 
bers generated. 

As described above, it is critical that the adversary mon- 
itors the initialization process of the PRNG, which takes 
place only once in the lifetime of a server process. A very 
common  configuration  (see  www.apache.org  and  www.php. 
net for more information about PHP web server configura- 
tions) is to have one process, either an Apache process or 
a standalone PHP process, to serve each new request. As 
such, it is possible for an adversary to mount an active at- 
tack in which it triggers the PRNG initialization process for 
observation. To do so, the adversary can saturate existing 
server processes and force the victim application to instan- 
tiate new processes to serve subsequent requests. 

 Evaluation in Public PaaS 
As in our previous attack, we experimented in DotCloud 

with the Magento eCommerce application (version 1.8). Not 
only are e-commerce applications very popular, and Ma- 
gento especially so as mentioned above, but they are likely 
targets because of the severity of the password resetting at- 
tacks against them. Our investigation of the source code 
of other web applications reveals that a few more widely 
used PHP applications are susceptible to such attacks as 
well,  such  as  the  latest  version  of  WordPress  (http://www. 
wordpress.com) that is reportedly used by 21.9% of the top 
10 million websites. 

By default, a Magento application launches two instances, 
a www instance and a db instance, running on separate ma- 
chines.  In this experiment, the parameters in php-fpm.conf 
were set so that the FastCGI processes were created and ter- 
minated dynamically and only a small number of processes 
were kept when idle, which are typical settings in many web 
hosting configurations. The proposed attack is simple in this 
case, as the requests are likely to be served by newly cre- 
ated  php-fpm  processes.  However,  if  the  PHP  is  configured 
to maintain a static set of FastCGI processes, the adversary 
needs  to  crash  the  php-fpm  process  to  create  a  fresh  one, 
which could be achieved by various means [2]. 

Attack details  and  results:  The strategy we employ is 
for the adversary to create enough HTTP “keep-alive” con- 
nections  to  force  the  creation  of  a  new  php-fpm  process; 
then within the same connection, the adversary sends two 
password-reset requests—one request for an account under 
the adversary’s control, another for the victim’s account. As 
the first request results in email being sent to the account un- 
der the adversary’s control, the adversary can use the URL  
(and embedded secret R), together with the timing informa- 
tion collected from the side channel, to recover the pid of the 
new  php-fpm  process.   Then  the  password  reset  token  gen- 
erated by the second request becomes entirely predictable. 
The adversary maintains a local copy of the PRNG modified 
to inject results collected from the side channel instead of 
those from real system calls. 

As shown in Fig. 5, five code chunks were monitored: one 
chunk from each of the three functions php_gettimeofday(), 
lcg_seed(),  and  uniqid(),  which  calls  the  entry  point  of 

http://www.apache.org/
http://www/


 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1721                                                                                       Copyright @ 2021 Authors  

 

 
 

 
Figure 5: Attack NFA for case study in Sec. 6. Ini- 
tial state q0 indicated by “Start” and accepting states 
indicated with double ovals. T is the maximum 
Flush-Reload cycles without transitioning before the 
NFA stops accepting new inputs. 

 

 
gettimeofday()  in  the  procedure  linkage  table  (PLT);  the 
first  chunk  of  the  function  php_combined_lcg();   and  the 
chunks  that  contain  the  entry  point  of  gettimeofday()  in 
the PLT. A complete execution path of the password reset 
action that initializes the PRNG in the PHP application is 

c2 → c1 → c2 → c1 → c3 → c1 → c4 → c1 → c5 (indices as 
shown in Fig. 5). The second password reset action follows 

the path c3 → c1 → c4 → c1. The attack NFA is shown in 
Fig. 5. 

In our experiments, the adversary and victim measure- 
ments of  gettimeofday() sometimes differed by one bit; the 
response time (about 0.3µs) of the system call may at most 
cause a single microsecond discrepancy. Thus, to recover the 
pid  upon  initialization  of  the  PRNG  the  adversary  needed 
to perform a (trivial) offline brute-force guessing attack in 

a  search  space  of  size  220 = 216 × 24 (space  216 for  the  pid 
and 24 for  four  invocations  of  gettimeofday()). 

Once the adversary recovers the pid, a password-reset at- 
tack against a victim requires only two invocations of get- 
timeofday(), and thus, in our experiments, an online attack 
against a (tiny) space of size 4 = 22. We emphasize that 
because the adversary is performing password reset and not 
password guessing, there is no account lockdown in response 
to an incorrect guess. So the adversary in our experiments 
could quickly guess the correct embedded secret R in the 
URL of the password link sent to the victim and then reset 
the victim’s password. 

 
 

 

7. CASE STUDY 3: SAML-BASED SINGLE 
SIGN-ON ATTACKS 

In this final case study, we use our side-channel attack 
framework to instantiate a padding error oracle sufficient for 
mounting a Bleichenbacher attack [6] against PKCS#1 v1.5 
RSA encryption as used in XML. Bleichenbacher attacks al- 
low the decryption of a target RSA ciphertext (although not 
key recovery). While this class of attacks has been known 
since 1998 and the insecurity of XML encryption in the face 
of a kind of Bleichenbacher attack was shown by Jager et 

al. in 2012 [16], implementations of PKCS#1 v1.5 persist in 
deployments and, instead of moving on to inherently more 
secure encryption, practitioners have deployed a sequence of 
countermeasures that prevent each attack. Current imple- 
mentations are not exploitable by prior attacks, but our new 
attack circumvents all the existing countermeasures to (yet 
again) break XML encryption. We emphasize that the main 
takeaway is not that PKCS#1 v1.5 is inherently broken (as 
already known), but rather that our new side-channel attack 
framework and PaaS environments provide new opportuni- 
ties for adversaries. 

 

 Bleichenbacher Attacks 
PKCS#1 specifies an algorithm for encryption using RSA. 

Recall that with RSA, one generates a key pair by choosing 
a modulus N = pq for primes p, q and exponents  e, d  for 

which ed ≡ 1 mod φ(N); the public key is then (N, e) and 
secret key is (N, d). Let n be the length of N in bytes. With 
the PKCS#1 v1.5 padding scheme, one encrypts a message 

M  of  size  m bytes with  m < n − 11.  Letting r = n − m − 
3, a byte string P of length r is generated in which each 

byte is randomly selected from {0, 1}8 \ {0}.  Letting X  = 
00 ǁ 02 ǁ P ǁ 00 ǁ M , the ciphertext is then C = Xe mod N. 

To decrypt, one computes X = Cd mod N and then checks 
the padding. A padding error occurs if the first two bytes of 

X are not 00 ǁ 02, there exists a 00 byte among the first 11 
bytes, or there does not exist a 00 byte at all after the first 
two bytes. Decryption fails in such a case. 

Bleichenbacher [6] showed how to exploit decryption im- 
plementations that notify the sender of a ciphertext when 
a padding error occurs. Given a challenge ciphertext C∗ 
encrypting some  unknown message M ,  the adversary sends 
a sequence of adaptively chosen ciphertexts to the oracle, 
using the response to learn whether the padding is correct 
or not. Bleichenbacher attacks were first used against XML 
encryption by Jager et al. [16], with improvements shortly 
after by Bardou et al. [5]. Below we use the latter’s experi- 
mental results to estimate timings of the full attack. 

Modern implementations attempt to defend against Ble- 
ichenbacher attacks by uniform error reporting, in which 
padding errors are not reported differently from other er- 
rors, and by ensuring that decryption runs in essentially the 
same time when padding errors occur as when not. We will 
show, however, that our side-channel attack framework can 
be used in PaaS type settings to re-enable Bleichenbacher 
attacks despite such countermeasures. 

 

 Evaluation in a Public PaaS 
We demonstrate this attack in DotCloud. The target of 

the attack is an active open source project, SimpleSAMLphp 
(version  1.12,  http://simplesamlphp.org/),  which  imple- 
ments a SAML-based authentication application in PHP 
that can be used as either a service provider or an identity 
provider. It is worth noting that recent SimpleSAMLphp 
implementations (>v1.9.1) have provided defenses against 
the traditional Bleichenbacher attack (see changelog v1.9.1) 
by generating uniform error messages and eliminating timing 
differences due to invalid padding in session-key decryption. 
As we show in this section, however, these defenses do not 
prevent our attack. As we also explain, a recent change in 
v1.10 of SimpleSAMLphp to a better padding scheme (RSA- 
OAEP) does not prevent our attack either, as it is possible 

http://simplesamlphp.org/)


 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1722                                                                                       Copyright @ 2021 Authors  

 
 

 

 

 

Figure 7: Attack NFA for case study in Sec. 7. Ini- 
tial state q0 indicated by “Start” and accepting states 
indicated with double ovals. T is the maximum 
Flush-Reload cycles without transitioning before the 
NFA stops accepting new inputs. 

 

Figure 6: The targeted SAML 2.0 protocol. 
 
 

to force SimpleSAMLphp to roll back to use PKCS#1 v1.5 
instead as long as it is not explicitly disallowed. 

A set of protocol bindings [26] and profiles [27] are defined 
in the SAML 2.0 specification. We investigated the default 
protocol bindings implemented in SimpleSAMLphp for the 
web browser SSO profile. As shown in Fig. 6, a web browser 
acting as a user agent interacts with the service provider 
(SP) to access resources with the identify provider (IdP) for 
authentication. Upon receiving a resource access request, 
the SP issues an <AuthnRequest> message via HTTP redi- 
rect binding. The message in XML format is uncompressed 
and then base64-encoded in the redirect URL query string. 
After authenticating the user’s identity, the IdP will return a 
SAML response message via HTTP POST binding, in which 
a signed and encrypted XML file is base64-encoded as a 
POST parameter which is then sent by the user agent to 
the service provider using the HTTP POST method. 

The padding oracle. In the SAML 2.0 core specification, 
XML encryption and signing work as follows.  The message 
is first signed, and then encrypted under a symmetric ses- 
sion key. The session key is in turn encrypted. This means 
that the XML signature is only validated after performing 
the RSA decryption. While the default padding for encryp- 
tion is RSA-OEAP, because the padding type is specified 
in the assertion itself, it is possible to modify the assertion 
and force the service provider to roll back to PKCS#1 v1.5 
padding. The server generates an error whether or not the 
PKCS padding is correct, to eliminate timing channels. But 
we will now show how to use the side-channel attack to dif- 
ferentiate between code paths associated with padding errors 
and non-errors, enabling a Bleichenbacher-style attack. 

Attack details and results. The victim account operated 
a PHP application integrated with the latest stable version 
of SimpleSAMLphp. The PaaS environment ran OpenSSL 
version 0.9.8k (which we could not change) and was invoked 
by the victim application. As such, the adversary monitored 
the shared library libcrypto.so, a component of OpenSSL, 
and specifically the chunks associated with the basic blocks 
of function RSA_padding_check_PKCS1_type_2()  that inter- 
nally reports a padding error by calling ERR_put_error(). 
As the padding check procedure is only used during the RSA 
decryption, other operations do not invoke these functions 
and it is thus sufficient to monitor only the first chunk of 
each of the two functions. In practice, though, we found it 
helped to monitor the first two chunks of the function to 

increase the chance of capturing the events. The adversary 
repeated step 5 in Fig. 6 with manipulated ciphertexts and 
while applying the side-channel attack framework to detect 
the occurrence of padding errors. 

The attack NFA is  shown  in  Fig. 7.  We  continuously 
sent 10,000 requests with conformant padding and 10,000 
requests with non-conformant padding, and report the rate 
of acceptance by the NFA. The results are shown in Table 4. 
The average time for making one request and padding error 
detection in this experiment was 0.544 seconds. Optimized 
attack software could achieve a much higher request rate. 

The results indicate that we only had one-sided errors: an 
execution path accepted by the attack NFA correlated with 
a non-conformant padding with 100% accuracy. Therefore, 
the best strategy for the adversary  is to  send  k  requests 
to the padding oracle for each padding, and stop once an 
execution is accepted by the attack NFA and consider it to 
be non-conformant padding. If none of the k requests are 
accepted by the NFA, then no padding error occurred. 

This approach will yield no false positives (i.e., false ap- 
pearances of non-conformant padding). Given the error rate 
of 12% and assuming errors are independent of ciphertext 
values, the probability of a false negative (i.e., failure to ob- 
serve non-conformant padding) in this procedure is (.12)k. 

Bardou et al. [5] estimated that their modified Bleichen- 
bacher attack against 2048-bit RSA keys could require about 
335,065 queries. We take (.12)k to be an upper bound on the 
probability of a false negative for non-conformant padding 
across k queries.   Thus for all queries, an error bound is 
335, 065(.12)k ; a choice of  k = 7  yields an  error  probability 

of less than 1% for 335, 065 × 7 = 2, 345, 455 total queries. 
This is about the same number of queries as the original 
Bleichenbacher attack, and significantly better than, for ex- 
ample, the same estimate of Jager et al. [16] that would 
require about 85 million queries and only works against old 
versions of SimpleSAMLphp. 

 
Attack NFA 

 
Non-conformant 

Conformant 

Table 4: Confusion matrix for padding error detec- 
tion. The adversary has only one-sided errors, 12% 
of the time failing to observe a padding error. 

1. Request target resource 

 
(Discover IdP) 

 
2. HTTP Redirect Binding 

(SAML request encoded into 

Location header) 

5. HTTP POST Binding 

(Submits form in HTTP POST to SP) 

 

6. Redirect to target resource 

User Agent 
Service Provider 

(SP) 

 
 
 
 
 
 

 
3. HTTP Redirect Binding 

(SAML request redirected to Idp) 

 
(User Login) 

 
4. HTTP POST Binding 

(SAML response returned in XHTML 

form targeted at SP) 

Identity Provider 

(IdP) 

P
a

d
d

in
g

 

Accepted Rejected 
8800 1200 

(88%) (12%) 
0 10000 

(0%) (100%) 

 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1723                                                                                       Copyright @ 2021 Authors  

8. DISCUSSION 

 Ethical Considerations 
The experiments discussed in Sec. 4–7 were run on pro- 

duction PaaS platforms. As such, our experiments were de- 
signed to conform with PaaS provider acceptable use, the 
law, and proper ethics. 

Our attacks only targeted tenants running accounts that 
we setup and controlled, and no information about other 
customers was ever collected in our experiments. Our at- 
tacker instances did not conduct FLUSH-RELOAD attacks in- 
discriminately, but rather these were carefully timed to coin- 
cide with requests that we initiated to our victim instances. 
In this way, we limited the risk of our attacker instances 
observing activities of tenants other than our own. 

It is possible that another tenant’s programs made use of 
the same shared executable as our attacker and victim, in 
which case there is a concern that other tenants might expe- 
rience degraded memory hierarchy performance as compared 
to running while co-located with different tenants. More- 
over, the acceptable use policies of the clouds on which we 
demonstrated our attacks include general requirements that 
we not interfere with other users’ enjoyment of their services, 
which could be interpreted to preclude our demonstrations 
if they slowed down other tenants substantially as a side ef- 
fect. We therefore designed our experiments so that they 
do not cause undue harm and, specifically, do not degrade 
performance of such bystanders significantly more than their 
performance could be degraded by other workloads. 

To ensure no undue harm, we ran local micro benchmarks 
to evaluate the possible overhead observed by a bystander 
due to our attacks. For example, to gain confidence that the 
attack of Sec. 6 would introduce minimal overhead on a by- 
stander, in one container we constructed an attacker appli- 
cation that, in each FLUSH-RELOAD cycle, monitored every 
chunk monitored in any state of the attack NFA of Fig. 5. 
The “bystander” in another container ran a web server host- 
ing a dynamic web page that was artificially constructed to 
touch (i.e., execute some instruction in) every chunk moni- 
tored by the adversary before returning. We forced the at- 
tacker application and the bystander to share the last level 
cache in all experiments. 

We configured a separate machine in the same LAN to rep- 
resent a client that repeatedly issued HTTP requests (in the 
same HTTP session) to the dynamic web page served by the 
bystander. To measure the bystander’s performance degra- 
dation resulting from the attacker application’s activity, we 
instrumented the client with httperf and apachebench. In 
the absence of the attacker application, the client received 
responses with an average latency of .306ms, and the through- 
put of the bystander was 461 requests per second. With the 
attacker application active, the results were nearly identical: 
an average latency of .307ms and, again, 461 requests per 
second. Given the conservative nature of these experiments 
(with the attacker application monitoring more chunks than 
in the actual attack, and the bystander touching all of them 
per request), we concluded that our attack demonstrations 
posed negligible risk to bystanders. 

Finally, we attempted to inform affected parties well in ad- 
vance of publicly disclosing the vulnerabilities documented 
here. Specifically, we disclosed our findings to selected cloud 
operators and software vendors directly, and to the CERT 
(http://cert.org) for dissemination more broadly, starting 

roughly six months prior to publication. Some vendors have 
made changes to address these issues; e.g., SimpleSAMLphp 
will blacklist PKCS#1 v1.5 by default in version 1.13.0 [10]. 

 
 Extending the Attacks 

Attacks in IaaS clouds.  We  believe  our  NFA-based  at- 
tack framework can work in IaaS clouds as well, as long as 
memory de-duplication is enabled and memory pages that 
contain executables are shared between tenants. For in- 
stance, Irazoqui et al. [15] utilized a similar FLUSH-RELOAD 
side channel (a special case of our NFA-based framework) 
in a cross-VM context to break AES keys. However, to the 
best of our knowledge, memory deduplication across VMs is 
not commonly used in many IaaS clouds (e.g., EC2), which 
limits the applicability of the FLUSH-RELOAD side-channel 
attack in those settings. 

Multiple victim copies. Multiple copies of the same vic- 
tim application may co-exist behind a load balancer to in- 
crease the throughput and reliability of the services. In such 
cases, beyond the steps described in this paper, the adver- 
sary needs to further determine whether the requests sent to 
the web server are served by the instance that is co-located 
with his attacker instance. Such hurdles can be overcome by 
issuing multiple requests concurrently or co-locating multi- 
ple attacker applications with the victim replicas. 

Other attack targets. The NFA-based attack framework 
proposed in this paper provides a general control-flow anal- 
ysis approach to side-channel observations. We stress its 
application extends beyond the three examples discussed in 
the paper. For instance, we believe the latest version (v3.2.8 
as of this writing) of the GnuTLS libraries are subject to 
plaintext-recovery attacks as the co-located adversary can 
employ the attack framework to construct a padding ora- 
cle which reveals the correctness of the CBC mode padding 
during symmetric key decryption processes. We also believe 
that an adversary may FLUSH-RELOAD a shared MySQL 
client library to monitor the victim’s SQL query execution 
(e.g.,  invocation  of  mysql_error()  and  a  few  other  func- 
tions), thus facilitating blind SQL injection attacks. 

 
 Countermeasures 

A key question for future research is how to design ef- 
fective defenses against the attacks enabled within our pro- 
posed framework. Various countermeasures to cache-based 
side channels (not necessarily FLUSH-RELOAD channels) have 
been proposed in IaaS cloud contexts [31, 4, 36, 18, 41, 19, 
35]. However, none of these is applicable to our attacks. We 
briefly discuss some other possible defenses for our setting. 

Mitigating   side   channels    through    program    analysis. 
A general countermeasure to control-flow side channels, pro- 
posed by Molnar et al. [21] and further explored by Coppens 
et al. [9], involves the automatic detection of such side chan- 
nels in source code and their remediation by means of generic 
source-to-source translation. This approach would thwart 
the attacks we describe here but does incur significant over- 
head. A complementary approach involves static analysis of 
binaries to measure their vulnerability to cache-based side 
channels [11]; this approach yields only an approximation of 
the degree of vulnerability of an application, and no coun- 
termeasure. 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1724                                                                                       Copyright @ 2021 Authors  

Disabling the clflush instruction.  It is tempting to dis- 
able clflush instructions altogether in PaaS applications to 
prevent side-channel attacks.  However, as clflush is a non- 
privileged instruction, trapping its execution to mitigate its 
effect in the privileged software layer, i.e., operating sys- 
tem, is difficult without hardware modification. An alterna- 
tive solution is to sandbox PaaS applications and specifically 
disallow  the  use  of  clflush  in  the  application  code.   Still, 
the adversary might be able to accomplish the effects of a 
clflush  by other  means  akin to  a  PRIME-PROBE protocol. 

Increasing background noise with more applications. 
Increasing the number of applications sharing the last-level 
caches increases background noise in two ways. First, if 
more processes share the monitored executables, false posi- 
tive noise increases.  Second, as more processes are queued 
by the CPU scheduler, the last-level caches are less likely to 
be shared by the attacker and the victim at the same time. 
However, the security provided by this approach  is  weak 
in practice, unless the number of applications is artificially 
sustained even when there is less real demand. 

Disallowing resource sharing. The most general coun- 
termeasure for any side-channel attack is to prevent sharing 
of the exploited resource. In our setting, this would mean 
disallowing sharing of memory pages that serve as FLUSH- 
RELOAD attack vectors.   An extreme realization  would be 
a prohibition on sharing any memory pages among different 
users, for instance by duplicating binary files for each user in 
the OS. Such a defense, however, would increase the memory 
footprint of each tenant, decreasing the number of tenants 
that a PaaS provider could provision on a (virtual) machine 
and reducing machine utilization and service-provider profit. 
Selective memory sharing promises a more cost-effective ap- 
proach; sharing of memory pages specifically carrying vul- 
nerable code might then be disallowed. We leave the chal- 
lenges of identifying, annotating, and protecting such code, 
as well as the development of alternative defenses, as inter- 
esting lines of future research. 

Detecting Flush-Reload attacks. An interesting side 
observation from the experiments conducted in Sec. 8.1 is 
that the minimal performance degradation induced by the 
attacks in this paper offers little hope for detecting these at- 
tacks. That is, prior studies suggest that cross-tenant side- 
channel attacks in cloud settings can induce significant per- 
formance degradation in victim workloads, as was the case 
in, e.g., the attacks demonstrated by Zhang et al. [40]. It 
is possible, therefore, that the attacks of Zhang et al. might 
be detected by monitoring the performance of the victim 
application. While our results here do not conclusively rule 
out the use of victim application performance monitoring to 
detect the attacks in this paper, they also do not offer much 
promise for doing so. 

However, it might be possible to employ the same type of 
side-channel analysis to detect FLUSH-RELOAD attacks, sim- 
ilar to the ideas of HomeAlone [39]. That is, a victim might 
be able to infer the presence of an adversary by means of 
performing FLUSH-RELOAD monitoring of the cache to de- 
tect the FLUSH-RELOAD pattern induced by an adversary’s 
likely choice of NFA. We leave the implementation of this 
defense as future work. 

9. CONCLUSION 
We have proposed a general automaton-driven framework 

to mount cache-based side-channel attacks and demonstrated 
its potency specifically in PaaS environments. Our three 
case studies demonstrate that an attacker co-located with a 
victim can learn sensitive user data, such as the number of 
distinct items in a shopping cart; perform password-reset at- 
tacks against  arbitrary users;  and break XML encryption in 
a SAML-based authentication application. The attacks we 
illustrate are especially significant in some cases in that they 
bypass existing or proposed side-channel countermeasures. 
Our shopping-cart attack is immune to defenses proposed 
for analogous, timing-based side-channel attacks. Our study 
of RSA private-key decryption re-enables the classic Ble- 
ichenbacher padding-oracle attack despite widely deployed 
countermeasures against remote adversaries. 

In sum, we believe our work presents: (1) the first ex- 
ploration of cache-based side-channel attacks specifically in 
PaaS environments, and (2) the first report of granular, 
cross-tenant, side-channel attacks successfully mounted in 
any existing commercial cloud, PaaS or otherwise, against 
state-of-the-art applications. 

 

Acknowledgments 
This work was supported in part by NSF grants 1065134, 
1253870, 1330308, and 1330599, as well as a Google Ph.D. 
Fellowship for Yinqian Zhang. 

 

10. REFERENCES 
[1] F. E. Allen. Control flow analysis. SIGPLAN Not., 

5(7):1–19, July 1970. 

[2] I. Alshanetsky. Top 10 ways to crash PHP. 
http://ilia.ws/archives/5_Top_10_ways_to_ 
crash_PHP.html.  Accessed:  2014-08-17. 

[3] B. Argyros and A. Kiayias. I forgot your password: 
Randomness attacks against PHP applications. In 21st 
USENIX Security Symposium, 2012. 

[4] A. Aviram, S. Hu, B. Ford, and R. Gummadi. 
Determinating timing channels in compute clouds. In 
2010 ACM workshop on Cloud computing security 
workshop, pages 103–108, 2010. 

[5] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, 
G. Steel, and J.-K. Tsay. Efficient padding oracle 
attacks on cryptographic hardware. In Advances in 
Cryptology — CRYPTO 2012, pages 608–625. 2012. 

[6] D. Bleichenbacher. Chosen ciphertext attacks against 
protocols based on the RSA encryption standard 
PKCS#1. In Advances in Cryptology — CRYPTO 
’98, pages 1–12, 1998. 

[7] W. J. Bolosky and M. L. Scott. False sharing and its 
effect on shared memory performance. In 4th USENIX 
Symposium on Experiences with Distributed and 
Multiprocessor Systems, 1993. 

[8] A. Bortz and D. Boneh. Exposing private information 
by timing web applications. In 16th International 
Conference on World Wide Web, pages 621–628, 2007. 

[9] B. Coppens, I. Verbauwhede, K. De Bosschere, and 
B. De Sutter. Practical mitigations for timing-based 
side-channel attacks on modern x86 processors. In 
IEEE Symposium on Security and Privacy, pages 45–
60, 2009. 

http://ilia.ws/archives/5_Top_10_ways_to_


 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1725                                                                                       Copyright @ 2021 Authors  

[10] J. P. Crespo. Personal communication, June 2014. 

[11] G.  Doychev, D.  Feld,  B.  Köpf,  and L.  Mauborgne. 
CacheAudit: A tool for the static analysis of cache 
side channels. In USENIX Security Symposium, 2013. 

[12] S. Esser. Lesser known security problems in PHP 
applications. In Zend Conference, 2008. 

[13] E. W. Felten and M. A. Schneider. Timing attacks on 
web privacy. In 7th ACM Conference on Computer 
and Communications Security, pages 25–32, 2000. 

[14] D. Gullasch, E. Bangerter, and S. Krenn. Cache games 
– bringing access-based cache attacks on AES to 
practice. In 2011 IEEE Symposium on Security & 
Privacy, pages 490–505, 2011. 

[15] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. 
Wait a minute! A fast, cross-VM attack on AES. 
Cryptology ePrint Archive, 2014. 

[16] T. Jager, S. Schinzel, and J. Somorovsky. 
Bleichenbacher’s attack strikes again: breaking 
PKCS#1 v1.5 in XML encryption. In Computer 
Security — ESORICS 2012, pages 752–769. 2012. 

[17] S. Kamkar. phpwn: Attacking sessions and 
pseudo-random numbers in PHP. In Blackhat USA, 
2010. 

[18] T. Kim, M. Peinado, and G. Mainar-Ruiz. 
STEALTHMEM: system-level protection against 
cache-based side channel attacks in the cloud. In 21st 
USENIX Security Symposium, 2012. 

[19] P. Li, D. Gao, and M. K. Reiter. Mitigating 
access-driven timing channels in clouds using 
StopWatch. In 43rd IEEE/IFIP International 
Conference on Dependable Systems and Networks, 
pages 1–12, June 2013. 

[20] R. P. Mahowald, C. W. Olofson, M.-C. Ballou, 
M. Fleming, and A. Hilwa. Worldwide competitive 
public Platform as a Service 2013-2017 forecast (Doc 
243315). IDC Inc., November 2013. 

[21] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. 
The program counter security model: Automatic 
detection and removal of control-flow side channel 
attacks. In Information Security and Cryptology, pages 
156–168, 2005. 

[22] Y. Nagami, D. Miyamoto, H. Hazeyama, and 
Y. Kadobayashi. An independent evaluation of web 
timing attack and its countermeasure. In 3rd 
International Conference on Availability, Reliability 
and Security, pages 1319–1324, 2008. 

[23] Y. V. Natis. Gartner research highlights Platform as a 
Service (ID: G00259659). Gartner Inc., 3 February 
2014. 

[24] N. Nethercote and J. Seward. Valgrind: A framework 
for heavyweight dynamic binary instrumentation. 
SIGPLAN Not., 42(6):89–100, June 2007. 

[25] M. Neve and J.-P. Seifert. Advances on access-driven 
cache attacks on AES. In Selected Areas in 
Cryptography, 13th International Workshop, SAC 
2006, pages 147–162, August 2006. 

[26] OASIS. Bindings for the OASIS Security Assertion 
Markup Language (SAML) V2.0. 
http://docs.oasis-open.org/security/saml/v2.0/ 
saml-bindings-2.0-os.pdf. 

[27] OASIS. Profiles for the OASIS Security Assertion 
Markup Language (SAML) V2.0. 
http://docs.oasis-open.org/security/saml/v2.0/ 
saml-profiles-2.0-os.pdf. 

[28] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks 
and countermeasures: the case of AES. In Topics in 
Cryptology – CT-RSA 2006, pages 1–20. 
Springer-Verlag, 2005. 

[29] R. Owens and W. Wang. Non-interactive OS 
fingerprinting through memory de-duplication 
technique in virtual machines. In 30th IEEE 
International Conference on Performance, Computing 
and Communications, pages 1–8, November 2011. 

[30] C. Percival. Cache missing for fun and profit. In 
BSDCon 2005, 2005. 

[31] H. Raj, R. Nathuji, A.  Singh,  and  P.  England. 
Resource management for isolation enhanced cloud 
services. In 2009 ACM workshop on Cloud computing 
security, pages 77–84, 2009. 

[32] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. 
Hey, you, get off of my cloud: Exploring information 
leakage in third-party compute clouds. In 16th ACM 
Conference on Computer and Communications 
Security, pages 199–212, 2009. 

[33] K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Memory 
deduplication as a threat to the guest OS. In 4th 
European Workshop on System Security, April 2011. 

[34] E. Tromer, D.  A. Osvik, and  A.  Shamir. Efficient 
cache attacks on AES, and countermeasures. Journal 
of Cryptology, 23(1):37–71, 2010. 

[35] V. Varadarajan, T. Ristenpart, and M. Swift. 
Scheduler-based defenses against cross-VM 
side-channels. In 23st USENIX Security Symposium, 
2014. 

[36] B. C. Vattikonda, S. Das, and H. Shacham. 
Eliminating fine grained timers in Xen. In 3rd ACM 
workshop on Cloud computing security workshop, 
pages 41–46, 2011. 

[37] W3Techs. Usage of content management systems for 
websites.  http://w3techs.com/technologies/ 
overview/content_management/all. 

[38] Y. Yarom and K. Falkner. Flush+Reload: a high 
resolution, low noise, L3 cache side-channel attack. 
http://eprint.iacr.org/2013/448,  2013. 

[39] Y. Zhang, A. Juels, A. Oprea, and M.K. Reiter. 
HomeAlone: Co-residency detection in the cloud via 
side-channel analysis. In IEEE Symposium on Security 
and Privacy, pages 313–328, 2011. 

[40] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. 
Cross-VM side channels and their use to extract 
private keys. In 2012 ACM Conference on Computer 
and Communications Security, pages 305–316, 2012. 

[41] Y. Zhang and M.  K. Reiter.  Düppel:  retrofitting 
commodity operating systems to mitigate cache side 
channels in the cloud. In 2013 ACM Conference on 
Computer and Communications Security, pages 
827–838, 2013. 

http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://w3techs.com/technologies/
http://eprint.iacr.org/2013/448

