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Abstract. A number of effective side-channel attack techniques have been 

developed recently based on the data-dependent behaviour of microprocessor 

cache memory. The majority of suggested defence measures are software-based, 

and they mostly serve to make it harder for attackers to launch attacks rather than 

completely stopping them. In this research, we explore the usage of hardware-

assisted defence using a congurable cache architecture. We offer the chance for 

greater speed as well as security by exposing the cache to the processor and 

allowing it to be dynamically configured to match the requirements of a given 

application. 

 

1 Introduction 

 
State of the art cryptanalysis has conventionally resided in the realm of mathe- maticians 

who seek techniques to unravel the hard problems on which modern cryptosystems are 

based. Side-channel analysis moves the art of cryptanalysis from the mathematical domain 

into the practical domain of implementation. By considering the implementation of 

cryptosystems rather than purely their spec- i cation, researchers have found they  can  

mount  attacks which  are of  low cost in terms of time and equipment and are highly 

successful in extracting useful results. 

Side-channel attacks are based on the assumption that one can observe an algorithm 

being executed on a processing device and infer details about the internal state of 

computation from the features that occur. Such observation is typically performed by passive 

monitoring execution features such as timing vari- ations [15], power consumption [16] or 

electromagnetic emission [1, 2]. Attacks usually consist of  a  collection  phase which  provides 

the  attacker with  pro les of execution, and an analysis phase which recovers the secret 

information from the pro les. Considering power consumption as the collection medium for 

exam- ple, attack methods can be split into two main classes. Simple power analysis (SPA) is 

where the  attacker is  given only one pro le and is required to recover the secret information 

by focusing mainly on the operation being executed. In contrast, di erential power analysis 

(DPA) uses statistical methods to form a correlation between a number of pro les and the 

secret information by focusing 
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mainly on the data items being processed. Both these techniques present a clear danger to 

security sensitive applications, especially since attacks can be mounted with low cost, 

commodity signal processing equipment. 

As understanding side-channel attack and defence has evolved, new methods of inferring 

secret information from execution pro les have emerged. One such method is monitoring the 

data dependent behaviour of the processor memory hierarchy and, in particular, any cache 

memories present. The concept of using cache behaviour as a side-channel was  rst mooted 

by Kocher [15] who noted the e ect of memory access on execution time, and then Kelsey et 

al. [12] who pre- dicted that the  timing dependent  behaviour of S-Box access in Blow sh, 

CAST and Khufu could leak information to an attacker. This was followed with more 

concrete attacks on DES by Page [21], who assumed cache behaviour would be visible in a 

pro le of power consumption, and Tsunoo et al. [28, 27] who simply required that an 

attacker timed the cipher over many executions. Further break- throughs were made by 

Bertoni et al. [4] and Bernstein [3] who applied power and timing analysis attacks to AES. 

The former work shows cache behaviour is ob- servable in a power trace, the latter shows 

that attacks can be mounted remotely; both further magnify the danger of cache attacks in an 

operational context. Fi- nally and most recently, Percival [22] demonstrated an attack 

against CRT based RSA utilising the Hyper-Threading capability of Intel Pentium 4 

processors but essentially relying on cache behaviour as a means of leaking information. 

Subse- quently, such  inter-process attacks have been  extensively investigated by  Osvik et 

al. [19]. 

In this paper we investigate the use of partitioned cache architecture as an aid to 

defending against cache based side-channel attack. Such designs dynamically split the cache 

memory into protected regions. As a result, the level of cache in- terference is drastically 

reduced and the cache can be con gured speci cally for an application rather than 

optimising for the average case. Traditionally, such partitioned caches have been proposed 

as ideal for embedded and media proces- sors due to their size, performance and power 

characteristics. This alone provides a compelling reason for their use in the same 

computational environments which are most vulnerable to conventional side-channel style 

attacks. However, features such as dynamic con guration of the address translation function  

and  protec- tion or locking of data in the cache also provide a number of opportunities for 

countermeasure against both pro le and timing driven cache based side-channel attacks. To 

restrict our focus, we primarily consider block ciphers, and access through the cache to S-

box style tables, since the majority of attacks exist in this context. Further, we concentrate 

only on data  caches by  assuming instruction and data access is segregated. We try to take a 

processor agnostic approach by leaving open several implementation choices which do not 

otherwise e ect our work. 

The paper is organised as follows. In Section 2 we give an introduction to cache 

partitioning before describing the experimental cache architecture used subsequently. In 

Section 3 we recap on cache based side-channel attack meth- ods; we describe proposals for 

software based countermeasures before outlining 
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(a) A conventional memory hierarchy. 

 

 

(b) A partitioned cache. 

 
 

Fig. 1. Using lters to describe conventional and partitioned cache hierarchies. 

 

 

how partitioned caches can be utilised to provide hardware based alternatives. Finally, we 

present some concluding remarks and areas for further work in Sec- tion 4. 

 

2 Caches and Cache Partitioning 
 

A cache is a small area of fast RAM and associated control logic which is placed between 

the processor and main memory; for an in depth description of cache design and 

operation see [9, Chapter 5]. The area of RAM is typically organised as a number of cache 

lines, each of which comprise a number of sub-words that are used to store contiguous 

addresses from main memory. Since the cache is smaller than main memory, it stores a 

sub-set of the memory content. As a result of locality in the incoming address stream, the 

cache reduces the load on the rest of the memory hierarchy by holding the current working 

set of data and instructions. Accesses that are serviced by the cache are termed cache-hits 

and are completed very quickly; accesses that are not held by the cache are termed cache-

misses and take much longer to complete since main memory must be accessed. Since 

locality guarantees we should get more cache-hits than cache- misses, performance of the 

average case application is improved. However, given that many addresses in memory can 

map to the same location in the cache, data items can compete for space and evict each 

other; this is termed cache interference or contention. 

As an aid to understanding complex cache designs, Weikle et al. [30] use the concept 

of optical lters as a metaphor for how such systems operate. As shown in Figure 2a, 

each level of the memory hierarchy acts as a lter which translates a input stream of 

memory references into an output stream that is 
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dependent on the properties of that level. Utilising the concepts of temporal and 

spacial locality, the hope is to combine these lters so that they remove as many 

references as possible, reduce the load on slower parts of the memory hierarchy and 

maximise performance. One draw back of  this  approach is  that the references for all data 

objects in all running processes are conglomerated into one monolithic stream. The 

memory hierarchy must be optimised for the average case program and can thus fall foul 

of interference patterns as a result. Although speci c designs di er slightly, a  partition  cache 

is  a  direct-mapped style cache that can be dynamically partitioned  into  protected  regions 

by  the use of specialised cache management instructions. By modifying the instruction set 

architecture (ISA) and tagging memory accesses with partition identi ers, each access is 

hashed into a partition dedicated to dealing with it. Phrased using the metaphor of 

caches as lters, the idea of a partitioned cache is to act as a refraction lens or prism 

by separating the stream of input references into a number of sub-streams; see Figure 2b. 

A coarse grained example of this technique in action is where a segregated, Harvard 

style instruction and data cache architecture is used. Although on a smaller and less con 

gurable scale, this choice performs the same function as cache partitioning by splitting 

the 

reference stream into instruction and data streams. 

The decision of how to split  the  resources into instruction  and  data caches in a 

Harvard style architecture is performed at design-time by optimisation for an average case 

which is unlikely to suit all application programs. Unlike con- ventional caches, the 

partitioned cache is visible to software running on the host processor. This allows one to 

utilise the cache management instructions and load/store mechanism to allocate partitions of 

the cache to speci c data objects and streams of instructions so as to control persistence and 

eliminate interference at run-time. Typically, one would expect such cache management 

instructions to only be available when the processor is in  protected mode and  hence 

managed by the operating system;  this ensures user processes cannot  examine or alter each 

others cache con guration. For example, the act of one process accessing a partition owned 

by another would result in an exception. 

 

 Previous Work 

Enforcing segregation of processes cache content from each other is not a new idea. The 

cheapest way to implement such a scheme, and one typically used to improve 

performance, is by using software based layout rules to place instructions and data in the 

process image so they do not interfere with each other in the cache. For example, among 

a vast amount of work in the area Mueller [18] presents a software based partitioning 

method for direct-mapped caches with applications in real-time computing, while Calder et 

al. [5, 8] provide further mechanisms for cache conscious layout. Alternatively, one can 

consider allowing control of the cache by exposing it to the programmer; one might view 

this as a less general form of scratch-pad memory. For example, Wagner [29] allows the 

programmer to control the address translation mechanism to facilitate cache conscious loop 

blocking in kernels such as matrix multiplication. Zhang et al. [31] 
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Fig. 2. A block diagram describing a partitioned cache. 

 

 

describe a cache with con gurable levels of associativity that be controlled by the 

programmer. 

Perhaps the rst hardware assisted cache partitioning designs were presented by Juan et 

al. [11] and Gonzalez et al. [6] in the context of high performance computing. As 

interest in the area has increased, further designs have included those of Page [20] and 

Irwin [10], who focus on multi-threaded architectures and compiler directed partitioning; 

Ranganathan et al. [24], who focus on use in media applications; and both Kim et al. [13] 

and Petrov and Orailoglu [23], who focus on low-power implementations. Although 

implementing such a device is clearly a problem in conventional commodity processors, 

within domain-speci c and high-volume markets as is the case with embedded processors, it 

has already been investigated. For example, a precursor to the SH5 was produced by ST 

Microelectronics that utilised a degree of cache partitioning detailed in later patents on 

partitioning hardware [25]. This media-oriented processor used a xed number of partitions to 

segregate memory accesses produced by di erent system constituents. 

 
 Cache Design 

Assuming a RISC style processor architecture, Figure 2.2 describes the opera- tion of a 

simple partitioned cache. From here on we assume each cache line is 
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composed from a number of sub-words that are each one byte, that is 8-bits, in size and the 

memory system is byte addressed; clearly this might di er depend- ing on the  exact  

architecture. A  conventional, direct-mapped  storage structure is coupled with a second 

structure which houses the cache con guration. Each access to the cache is tagged with a 

partition identi er which is used to access this con guration data. The resulting information 

is used by the address trans- lation function to map the address into the correct line and sub-

word the storage structure. One of the perceived disadvantages of this design is the  potential  

for an increased critical path length as a result of the extra look-up into the  cache con 

guration. In processor designs that use a high clock speed, this is certainly a problem. 

However, aside from simply accommodating this increase with a slower clock speed we can 

somewhat reduce the overhead in a pipelined design. De- pending on the processor 

architecture, the partition identi er could be either a register or immediate operand; in 

either case we can are-fetch the associated con guration data in the decode phase and hide 

the cost of the extra look-up. 

We augment this basic design with three features which further enhance the degree of 

con gurability, and hence exibility, of the cache: 

 

{  Firstly, we include  the concept  of strided cache lines. Instead of  sub-words in a cache 

line being contiguous addresses in memory, they are permitted to be spaced apart by 

a xed distance; this distance is the stride which can be  con gured  on  a  per-partition  

basis. The  bene t  of  strided  cache  lines is realised, for example, during execution of 

media applications who often access image data in this manner: the resulting cache 

behaviour exhibits less interference and higher performance as a result of catering for 

it. 

{ Next we introduce the concept of adaptive line size; see for example the work of Tang et 

al. [26]. Essentially, we allow each partition to be con gured so that the line size, and 

hence size of transfer between the cache and memory, can be set at run-time. This is 

implemented by de ning a xed physical line size and allowing a virtual line to span a 

number of physical lines. A cache- hit is serviced in the same way normal; a cache-miss 

causes an entire virtual line to be retrieved from memory. 

{ Finally we de ne a mask, or o set value for each partition which acts to per- turb the 

address translation. This essentially allows the address translation to be randomised 

on a per-partition basis and is similar in concept to work on XOR based placement 

strategies; see for example the work of Gonzalez et al. [7]. Adding the mask to the 

original address allows virtual movement of addresses in memory with respect to 

cache operation but without the cost of actually moving them. Clearly this perturbed 

address is only used for cache operation: when addressing memory during loads and 

stores the cache uses the original address. 

 

Given  an  access  to  address  A0     using  partition  P ,  the  cache   rst  retrieves  the con 

guration data yielding: 

 

{  Pstart, the line at which the partition begins. 
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{ Ppsize, the number of physical lines in the partition. 

{ Pvsize, the number of physical lines per virtual line. 

{ Pstride, the stride between sub-words in the partition. 

{ Pmask, the address perturbation mask for the partition. 
 

We assume that there are Clines  cache lines in total and that each line has Cwords sub-words 

in it. The address is perturbed using the mask to give A = A0 +P          . From this, the 

address translation function computes the physical line and sub- word, denoted by Apline 

and Apword, as follows: 
 

Apline     = ((A   lsb(Pstride))=Cwords) mod Psize Apword  = 

(A   lsb(Pstride)) mod Cwords 

 

The required data is therefore located in line Pstart +Apline at sub-word Apword. The 

virtual line, denoted by Avline, associated with Apline can be calculated as 
 

Avline  = Apline =Pvsize: 
 

Note that in the above lsb(x) returns the position of the least signi cant bit of x, x y denotes 

a logical left shift of x by y bits, and all division is integer division. Indeed, we required that 

Pstride, Ppsize, Pvsize  and Cwords  be powers-of-two so the scheme is realistically 

implementable. 

As  an  example,  consider  a  cache  with  Clines   =  128  and  Cwords   =  4.  We create a 

partition P in this cache and con gure it with Pstart = 8, Ppsize = 4, Pvsize = 2, Pstride =  2 

and Pmask = 0. Addresses 0; 2; 4;:: :  ; 18 map into the cache structure as follows: 

A0    = 0 A = 0 A = 8 A = 0  ! Miss 

A0    = 2 A = 2 A = 8 A = 1  !   Hit 

A0    = 4  A = 4  Aline = 8  Aword = 2  ! Hit 

A0    = 6  A = 6  Aline = 8  Aword = 3  ! Hit 

A0    = 8  A = 8  Aline = 9  Aword = 0  ! Hit 

A0    = 10 A = 10 Aline = 9  Aword = 1  ! Hit 

A0    = 12 A = 12 Aline = 9  Aword = 2  ! Hit 

Aword = 3 ! Hit Aword = 0 ! 

Miss Aword = 1  ! Hit 
 

Notice that our performance is good; the strided cache lines are increasing the density of 

used data. This, coupled with the fact that our partition is protected from address streams 

that access other objects, means both spacial and temporal locality have a better chance of 

being capitalised on. Useful data is likely to be more persistent due to the lack of 

interference; any pre-fetching will be more accurate as a result. Also notice that as a 

result of our virtual line size, we remove the miss that address 8 would have otherwise 

caused: when the miss from address 0 occurred, we fetched lines 8 and 9 rather than just 

8. This sequence is dependent on the mask however, for example setting Pmask = 4 

produces 

A0    = 14 A = 14 Aline = 9  

A0    = 16 A = 16 Aline = 10 

A0    = 18 A = 18 Aline = 10 
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line word 

line word 

di erent usage of lines: 

A0    = 0 A = 4 A = 8 A = 2  ! Miss 

A0    = 2 A = 6 A = 8 A = 3  !   Hit 

A0    = 4  A = 8  Aline = 9  Aword = 0  ! Hit 

A0    = 6  A = 10 Aline = 9  Aword = 1  ! Hit 

A0    = 8  A = 12 Aline = 9  Aword = 2  ! Hit 

Aword = 3 ! Hit Aword = 0 ! 

Miss Aword = 1  ! Hit 

A0    = 16 A = 20 Aline = 10 Aword = 2  ! Hit 

A0    = 18 A = 22 Aline = 10 Aword = 3  ! Hit 

 

 ISA Design 

Equipping a processor with partitioned cache hardware demands changes to the ISA so that 

the  cache is a  visible part of  the  architecture. These  changes need to include how partition 

identi ers are passed to the memory hierarchy with normal loads and stores, and include 

extra instructions which manage the cache con guration. 

Passing the partition identi er to the memory hierarchy can be achieved in several ways: 

by adding an extra register or immediate operand to instructions; via a dedicated register 

which speci es the active partition; or even by using out- of-band address bits to specify the 

partition. For our purposes, the mechanism is irrelevant: we simply assume the partition 

identi er is an extra operation to each load and store instruction. We also assume only a 

basic of cache management interface which must be exposed somehow as instructions: 
 

{ ADDPAR pid, start, psize, vsize, stride, mask 

Add a partition with identi er pid to the con guration, allocating it psize physical 

lines starting at line start. Also set the virtual line size of the partition to vsize 

and the stride and mask values to stride and mask respectively. 

{ DELPAR pid 

Delete the partition with identi er pid from the con guration. 

{ INVPAR pid 

Flush the partition with identi er pid so that any data stored in it is evicted and 

potentially written back to the next level of the memory hierarchy. 

 

3 Cache Based Side-Channel Attacks 
 

Consider a theoretical block cipher EK which encrypts plaintexts using the key K and uses 

a single S-box S during execution. We assume that all memory access during execution is 

due to the S-box; this is a vast simpli cation but somewhat reasonably from the point of 

view of block ciphers since most of the working data set can be held in registers. Say there 

are two accesses to the S-box, S[i] and 

A0    = 10 A = 14 Aline = 9  

A0    = 12 A = 16 Aline = 10 

A0    = 14 A = 18 Aline = 10 
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S[j], using indices i and j to provoke access to addresses Ai  and Aj  in memory. These 

accesses will usually have little or no locality since by design, the indicies will be randomly 

distributed throughout the S-box. 

As a simple example attack, if the cache is initially empty and the second access 

results in a cache-hit, we can deduce that up to the bits that select the sub-word Ai = Aj 

and hence i = j. Typically, i and j are computed using the secret information K and a 

plaintext P , for example from the result of a key addition. Roughly speaking, the attacker 

can use the details of the cipher and a number of collected relationships to recover K 

using an adaptive plaintext attack. 

 

 Attack Methods 
 

Trace based methods assume that the attacker, by observing a side-channel such as a 

power consumption, is able to recover traces of cache behaviour. One might view this as 

analogous to an SPA style attack: each access the executing algorithm makes to memory 

will be visible in  the  trace as either a cache-hit or cache-miss depending on how the 

cache serviced the access. For example, denoting a cache-hit by H and a cache-miss by 

M , the trace 
 

MMHMHH : : : 
 

tells the attacker that accesses one and two were cache-misses while access three was a 

cache-hit and so on. After matching features in the trace to operations in the algorithm, the 

the required relationships between indices can be recovered and hence o er a point of 

attack [21, 4]. 

Timing based methods use a more statistical, DPA style approach to attack. Since they 

require a much easier form of monitoring, simple timing of the algo- rithm rather than a pro 

le of power consumption, are more realistically mounted both locally and remotely. 

Essentially, such attacks work by assuming more cache-hits means shorter execution time; 

hence shorter execution time means it is more probable that indices used for any given S-

box access are the same. Given this correlation and numerous plaintexts which provoke a 

short execution time, the attacker can form probabilistic relationships between the 

indices. In the same sense as above, if the indices are derived from secret information, the 

skew in probability gives a point of attack [28, 27, 3]. 

 

 Defence Methods 
 

Since security in some applications is a high priority, the above attack methods have 

naturally provoked several countermeasures; see the work of Bernstein [3] and Osvik et al. 

[19] for a number of for an extensive and modern approaches. Given that instrumenting new 

a cache architecture can be an expensive and disruptive task, such countermeasures have 

typically been software based. One option is implement the block cipher such that the 

execution is somehow constant in terms of cache behaviour: 
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{ Most drastically, one can consider turning o the cache for S-box access, essentially 

employing cache-bypass to always load data directly from mem- ory. By eliminating 

the potential for cache-hits and cache-misses we reduce performance signi cantly but 

ensure that each access takes the same length of time. 

{ For small S-boxes, we can consider pre-fetching or warming their content into the cache 

before execution begins. This essentially makes all S-box accesses cache-hits and hence 

constant time. However, this is only true if the S-box content is never evicted by other 

data or instructions and the S-box ts entirely into the cache: neither of these 

assumptions are guaranteed and hence the method can only be described as 

statistically sound. 

{ As proposed by Bernstein [3] and many others, a good approach is to avoid S-box tables 

altogether and use some form of computed non-linear trans- formation instead. This not 

only o ers greater assurance of constant time access, but allows the potential for parallel 

execution of such transforma- tions which are denied by the need for sequential memory 

access. As an example, one might consider the transformations described by Klimov and 

Shamir [14]. 
 

Alternatively, one can randomise execution in order to at least partly mask features in 

any collected side-channel pro le: 
 

{ In  the  most simple  case, one  can  randomly insert  dummy  load operations in the 

execution so that the execution time is randomised to some extent. Realistically, this 

method is not sound since the  randomisation is  simply noise that can be statistically 

removed. Additionally, since extra operations need to be serviced, the overall average 

execution time might increase by an unattractive factor. However, the approach has 

some value when considering attacks which operate on behaviour traces rather than 

timing information: with enough dummy loads inserted one cannot be sure if a given 

cache-hit or cache-miss is produced by real or faked execution. 

{ In a similar vein, random reordering of memory accesses will reduce the correlation 

between a captured behaviour trace or execution timing and the input and algorithm. 

This can be achieved, for example, by using a non- deterministic processor 

architecture [17] but must be careful not to introduce potential hazards from the 

reordering. 

{ Alternatively, one can insert actual random delays in the execution to ran- domise the 

overall execution time. This su ers from the same drawbacks of inserting random load 

operations in the sense that the statistical noise can be removed and will potentially 

increases the average execution time. 

 

 Using a Partitioned Cache 
 

The bene ts of adding a partitioned cache to devices which are vulnerable to side- channel 

attack are two-fold. Firstly, embedded processors at the heart of such devices are 

typically constrained in both computational and storage ability. Any 
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method of masking such de ciency is hence valuable; the proposed architecture has a 

number of well studied advantages in terms of size, performance and power characteristics, 

particularly when operating with small, kernel sized applications. 

More importantly in terms  of  the  current  work,  one  would  hope  to  use the high 

degree of  exibility and con gurability to combat side-channel attacks against more 

conventional designs. With this in mind, and although a perfect defence mechanism is 

somewhat unrealistic, we propose three areas in which a partitioned cache can at least 

improve on current cache designs: 

Remark 1. Since a partitioned cache segregates the cache behaviour of one pro- cess from 

another, it seems to totally prevent inter-process style attacks such as that of Percival. 

This is essentially achieved by removing the cache as a shared resource: although the 

cache hardware is still shared, access by a process to partitions of another process is 

invalid. Further, the segregation mechanism pre- vents intra-process interference in the 

sense that if one has enough space to store the S-box entirely in the cache, partitioning o 

ers a mechanism to lock it once pre-loaded. This o ers a similar method of defence as 

some existing processors already provide, but in a more exible format. 

Segregation has a secondary bene t in that it is no longer possible to forcibly 

 ush the cache, of for example S-box data, by churning through large dummy arrays. 

Some attacks require the cache to be initially empty with respect to such data. This ushing 

technique is denied them by a partitioned cache, although simply powering down the 

device is clearly still possible. 

Remark 2. The authors of several cache based attacks have noted that with longer cache 

lines, attack is more diÆcult. This is intuitively easy to see: with longer lines more bits 

will be used to determine the sub-word and hence one can infer less information about 

addresses that provoke a given cache miss and resulting fetch operation. 

The use of virtual line sizes within our design allows one to con gure the fetch size, and 

hence in some sense the line size, on a per-partition basis. Hence, by allowing larger 

fetch sizes for partitions that store S-box data, we can make the attackers task much 

harder. Our design has the marked bene t that since each partition is independently con 

gurable, one can select large fetch sizes where required but revert to normal sizes where 

not. Therefore, one need not pay any price by optimising for the average case: the 

partitions owned by each process can match the exact requirements. 

Some unanswered issues arising from this fact are how long the cache lines must be 

before an attack is infeasible and how the length of the lines e ects the hit-ratio for a 

partition containing S-box data. 

Remark 3. Using a perturbation mask, our design essentially allows any address to map to 

any line and sub-word in the cache depending on the mask value. Selecting a random 

mask prior to execution hence introduces a level of non- determinism in the cache 

operation. Although the number of cache-hits and cache-misses is not necessarily 

altered, the examples in Section 2.2 show that the order or such features and the 

addresses that provoke them does change. 
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This non-determinism is probably not enough to prevent attacks which can 

 lter out  such noise  statistically.  However, if  one  is  willing  to  pay  the  price of  ushing 

and re-con guring a partition, it seems useful in decorrelating the results of one execution 

from another. As natural consequence, one would expect a trade-o between the increase in 

workload for the attacker and the algorithm performance. As above, a key unanswered issue 

is where this trade-o lies and whether it can be acceptable from both performance and 

security perspectives. 

 

 

4 Conclusion 

 
 

Instrumenting a new cache architecture, especially one which changes the way caches are 

viewed by the processor, is an architecturally disruptive process. However, altering 

standardised cryptographic primitives is also a disruptive and unattractive option. In order 

to provide sound defence against cache based at- tack methods at least one of these options 

seems a vital step. Such defence methods are ultimately going to be a trade-o  between  cost, 

in  terms of either time or space, and security: one cannot hope to utilise conventionally 

designed caches, get conventional performance and still be secure. In high volume markets 

where bespoke processor designs are permitted, we posit that using a novel cache 

architecture produces a number of bene ts. 

Beyond the well known size, performance and power characteristics, we have 

investigated how a partitioned cache can assist in providing defences against side- channel 

attack methods. Use a partitioned cache architecture, and in doing so exposing the cache to 

the processor, o ers a number of advantages in this respect. Optimising for the average case 

application will inherently produce problems; allowing application speci c con guration o 

ers a better  degree of  control over the cache behaviour. Likewise, treating the cache as a 

shared resource between potentially adversarial processes is awed in a secure context; 

partitioning allows a  exible means of segregating the cache so this danger is removed. 

Although there is unlikely to be one single mechanism that o ers defence against all cache 

based attacks, the proposed architecture seems to go some way toward helping and o ers 

some attractive options for embedded processor designs. 

There are many areas in which this work could be extended Firstly and most importantly, 

we need to experimentally investigate the  observations from Sec- tion 3.3. This includes veri 

cation that our proposed architecture does not intro- duce new vulnerabilities not yet 

considered. For example by essentially making the cache behaviour more deterministic by 

decreasing interference, it is possible we have made attacks easier by simplifying many of 

the attackers assumptions. It also seems vital to investigate the physical implementation of 

such cache ar- chitecture: size and cost are clearly as important as security in terms of 

realistic deployment. It would be additionally interesting to see if such a device could be 

implemented using modern, side-channel resistant technologies such as dual-rail logic. 
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