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Abstract 
 

 

Aims 

Mapping vegetation through remotely sensed images involves var-

iousconsiderations,processesandtechniques.Increasingavail-ability of 

remotely sensed images due to the rapid advancementof remote sensing 

technology expands the horizon of our choicesof imagery sources. 

Various sources of imagery are known for theirdifferences in spectral, 

spatial, radioactive and temporal character-istics and thus are suitable for 

different purposes of 

vegetationmapping.Generally,itneedstodevelopavegetationclassificationat 

first for classifying and mapping vegetation cover from remotesensed 

images either at a community level or species level. 

Then,correlationsofthevegetationtypes(communitiesorspecies)within 

this classification system with discernible spectral charac-teristics of 

remote sensed imagery have to be identified. Thesespectral classes of 

the imagery are finally translated into the veg-etation types in the image 

interpretation process, which is 

alsocalledimageprocessing.Thispaperpresentsanoverviewofhow to use 

remote sensing imagery to classify and map vegetationcover. 

Methods 

Specifically,thispaperfocusesonthecomparisonsofpopularremotesensing 

sensors, commonly adopted image processing methods 

andprevailingclassificationaccuracyassessments. 

Importantfindings 

Thebasicconcepts,availableimagerysourcesandclassificationtech-

niquesofremotesensingimageryrelatedtovegetationmappingwereintroduced, 

analyzed and compared. The advantages and limitationsof using remote 

sensing imagery for vegetation cover mapping 

wereprovidedtoiteratetheimportanceofthoroughunderstandingofthere-lated 

concepts and careful design of the technical procedures, 

whichcanbeutilizedtostudyvegetationcoverfromremotesensedimages. 
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Introduction 

Assessing and monitoring the state of the earth surface is a 

keyrequirement for global change research (Committee on 

GlobalChangeResearch,NationalResearchCouncil,1999;Junge

tal.2006;Lambinetal.2001).Classifyingandmappingvegetation

isanimportanttechnicaltaskformanagingnaturalresourcesasveg

etationprovidesabaseforalllivingbeingsandplaysanessentialrol

einaffectingglobalclimatechange,suchasinflu-encing 

terrestrial CO2 (Xiao et al. 2004). Vegetation 

mappingalsopresentsvaluableinformationforunderstandingthe

nat-ural and man-made environments through quantifying 

vege-

tationcoverfromlocaltoglobalscalesatagiventimepointorover a 

continuous period. It is critical to obtain current states 

ofvegetation cover in order to initiate vegetation protection 

andrestorationprograms(Egbertetal.2002;Heetal.2005).Agood 

 

caseisdemonstratedbytheGAPAnalysisProgramsponsoredby 

US Geological Survey that aims at better conserving 

plantcommunities (http://gapanalysis.nbii.gov/). Strong 

preferencehas been given to acquire updated data on 

vegetation coverchanges regularly or annually so as to better 

assess the envi-ronmentandecosystem(Knightetal.2006). 

Traditionalmethods(e.g.fieldsurveys,literaturereviews,map 

interpretation and collateral and ancillary data 

analysis),however,arenoteffectivetoacquirevegetationcoversbe-

cause they are time consuming, date lagged and often too ex-

pensive. Thetechnologyofremote sensing  offers a practicaland 

economical means to study vegetation cover changes, es-

pecially over large areas (Langley et al. 2001; Nordberg 

andEvertson 2003). Because of the potential capacity for 

system-atic observations at various scales, remote sensing 

technologyextendspossibledataarchivesfrompresenttimetoover 

 

http://gapanalysis.nbii.gov/
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severaldecadesback.Forthisadvantage,enormouseffortshave been 

made by researchers and application specialists todelineate 

vegetation cover from local scale to global scale 

byapplyingremotesensingimagery.Forexample,theInterna-tional 

Geosphere–Biosphere Program pioneered a global landcover 

mapping in the development of the Global Land 

CoverCharacterization (GLCC) Database that was based on 1-

km Ad-

vancedVeryHighResolutionRadiometer(AVHRR)in1992(http://e

dcsns17.cr.usgs.gov/glcc/).Similarly,incollaborationwith over 30 

research teams from around the world, the JointResearch 

Institute in Italy implemented a similar project, 

theGlobalLandCover2000(GLC2000),in  1999  to  map  

globalland coverand built upthe  VEGA2000  dataset by 

extractingthedatafrom1-kmSPOT4-

VEGETATIONimagery(http://www-gvm.jrc.it/glc2000/). Two 

years later, US NASA releasedthe database of global MODIS 

land cover based on monthlycomposites from Terra MODIS 

Levels 2 and 3 data 

betweenJanuaryandDecember2001(http://duckwater.bu.edu/lc/m

od12q1.html).Themappingapproachesaswellastheirstrengths and 

weaknesses of the above global land cover prod-ucts were 

highlighted by Jung et al. (2006). At a smaller scale,thePan-

EuropeanLandCoverMonitoringproject,aimedatestablishing a 1-

km Pan-European Land   Cover   Database(Fig. 1), was 

initialized in 1996 to build a land cover databasecovering the 

entire European continent through the integra-tive use of 

multiple spectral–temporal NOAA–AVHRR 

satelliteimageryandancillarydata(Rounsevelletal.2006). 

Besides these datasets at the global and continental 

scales,there have been numerous efforts taken over regional or 

na-tional extents to map vegetation. An example is the USGS–

NPSVegetation Mapping, a collaborative program between the 

U.S.Geological Survey and the National Park Service, which  

beganin 1994 with the aim to produce detailed and 

computerizedmapsofthevegetationfor;250nationalparksacrosst

he 

UnitedStatesbyprocessingAirborneVisibleandInfraredIm-

agingSpectrometer(AVIRIS)imageryalongwithgroundsam-

pling references. Remote sensing technology not only can 

beapplied to map vegetation covers over land areas but also 

inunderwaterareaswithfocusonmappingsubmergentaquaticveg

etation(SAV),whichisregardedasapowerfulindicatorofenviron

mental conditions in both marine and fresh water eco-

systems(Lathropetal.2006;Wolteretal.2005). 

Wewillsynthesizeinthispaperacomprehensivereviewonhowt

heremotesensingtechnologyisutilizedtoclassifyandmapvegetatio

n cover. A survey of remote sensing sensors as well astheir 

suitability in vegetation mapping will be presented in 

nextsection. Image preprocessing and image classification 

methodscommonlyadoptedinextractingvegetationinformationf

romremotesensedimages(includinghyperspectralimageryappli

cationand data fusion) willbe illustrated in‘Vegetationex-

traction from remote sensing imagery’. Classification 

resultevaluation (or accuracy assessment) will be discussed in 

‘Resultevaluation’.   

Limitationsofusingimagerytomapvegetationcov-

ersandrelateddiscussionswillbeconcludedinthefinalsection. 

 

Remotesensingsensors 

A remote sensing sensor is a key device that captures 

dataabout an object or scene remotely. Since objects 

(includingvegetation) have their unique spectral features 

(reflectanceor emission regions), they can be identified from 

remote sens-

ingimageryaccordingtotheiruniquespectralcharacteristics.A 

good case in vegetation mapping by using remote 

sensingtechnologyisthespectralradiancesintheredandnear-

infra-red regions, in addition to others. The radiances in 

theseregionscouldbeincorporatedintothespectralvegetationin-

dices (VI) that are directly related to the intercepted fraction 

ofphotosyntheticallyactiveradiation(Asraretal.1984;Galio 

 

 
 

Figure1Pan-EuropeanLandCoverMonitoring1kmpan-EuropeanlandcoverderivedfromNOAA–AVHRRsatelliteimagery(fromhttp://www.geo-

informatie.nl/projects/pelcom/public/index.htm).Acolourversionofthisfigureisavailableonlineassupplementarydata. 

http://edcsns17.cr.usgs.gov/glcc
http://edcsns17.cr.usgs.gov/glcc
http://www-gvm.jrc.it/glc2000
http://www-gvm.jrc.it/glc2000
http://duckwater.bu.edu/lc/mod12q1.html
http://duckwater.bu.edu/lc/mod12q1.html
http://www.geo-informatie.nl/projects/pelcom/public/index.htm
http://www.geo-informatie.nl/projects/pelcom/public/index.htm
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etal.1985).Thespectralsignaturesofphotosyntheticallyandnon-

photosynthetically active vegetation showed obvious dif-

ferenceandcouldbeutilizedtoestimateforagequantityandquality

ofgrassprairie(Fig.2)(Beerietal.2007). 

Over the past half century, remote sensing imagery has 

beenacquired by a range of airborne and space-borne sensors 

frommultispectralsensorstohyperspectralsensorswithwave-

lengths ranging from visible to microwave, with spatial reso-

lutionsrangingfromsub-metertokilometersand 

withtemporalfrequenciesrangingfrom30minto weeks ormonths. 

The rough guidelines for definitions of spatial resolu-

tionmaybedefinedasfollowing(Navulur2006):(i)loworcoarse 

resolution is defined as pixels with ground sampling dis-

tance(GSD)of30morgreater,(ii)mediumresolutionisGSDin the 

range of 2.0–30 m, (iii) high resolution is GSD 0.5–2.0 m,and 

(iv) very high resolution is pixel sizes <0.5 m GSD. 

Sincedifferent sensors have different spatial, temporal, spectral 

andradiometric characteristics, the selection of appropriate 

sensorsis veryimportant for mapping vegetationcover.  The 

selectionof images acquired by adequate sensors is largely 

determinedby four related factors: (i) the mapping objective, (ii) 

the cost 

ofimages,(iii)theclimateconditions(especiallyatmosphericconditi

ons) and (iv) the technical issues for image interpreta-tion. First, 

the mapping objective concerns what is to be map-

pedandwhatmappingaccuracyisexpected.  In  general,images 

with low resolutions may be adopted only when 

thehighlevelofvegetation  classes  are  to  be  identified,  

whiletheimageswithrelativelyhigherresolutionsareusedforfine-

detailedclassificationsofvegetation.Second,remotesensing 

imagery may be very expensive and the cost of imag-ery is 

definitely a consideration when choosing imagery. Fromthe 

mapping scale point of view, vegetation mapping at a 

smallscaleusuallyrequireshigh-resolutionimages,whilelow-

resolutionimages  are used  for a  large-scale  mapping.  Third,it 

raises the issue of the feasibility of using data from 

differentsources to obtain a cloud-free image series over an 

extendedperiodof  time  (Soudaniet  al.  2006).Lastly,some  

technical 

 

 
Figure 2 typical spectral signatures of photosynthetically active 

andnon-photosyntheticallyactivevegetation(Beerietal.,2007). 

specifics need to be taken into account regarding image qual-ity, 

preprocessing and interpretation when choosing 

suitablecandidatesofsensors.  In  the  field  of  vegetation  

mapping,the most commonly  applied sensors include Landsat 

(mainlyTMandETM+),SPOT,MODIS,NOAA–

AVHRR,IKONOSand 

QuickBird. The characteristics of these sensors are 

summarizedinTable1anddescribedbelow. 
 

LandsatTMandETM+ 

TheLandsatmighthavethelongesthistoryandwidestuseformonit

oringtheearthfromspace.SincethefirstLandsatsatel-

litewaslaunchedin1972,aseriesofmoresophisticatedmul-

tispectral imaging sensors, named TM—Thematic 

Mapper,havebeenaddedrangingfromLandsats4(1982),5(1984)

, 

6 (1993,launchfailed)to7 (1999)(Enhanced ThematicMap-

perPlus,ETM+).TheLandsatTMandETM+ 

imagingsensorshavearchivedmillionsofimageswithanearlycon

tinuousre-cord of global land surface data since its inception. 

Landsat pro-videsmediumto coarsespatial resolutionimages. For 

example,LandsatETM+imageryhasaspatialresolutionof30mforth

emultispectralbandsand60mforthethermalinfraredband.Lands

at products have been applied in vegetation 

mappingmainlyatregionalscales.SinceLandsathasalonghistory

ofdataset,itisveryhelpfultomaplong-termvegetationcoverand 

study the spatiotemporalvegetation changes. For exam-

ple,nearly20-yearcontinuousLandsatTM/ETM+imagedata-

sets(19images)coveringwesternOregonwereusedtodetectandchar

acterizecontinuouschangesinearlyforestsuccession(Schroederetal

.2006).LandsatTMimages,stridingalongpe-

riodoftimefrom1986to2002,wereusedtoconductquan-

titativeanalysesofwetlandlandscapepatternsandtheirdynamicc

hangesintheestuaryoftheMinjiangRiver(Zhengetal.2006).Beca

useofthedifferentcharacteristicsofspectralsensors(i.e.TMandET

M+)intheLandsatimageseries,itisnecessarytocorrectthespectralr

eflectancebetweenimagesac-

quiredbythosesensors.Thisisespeciallynecessaryinlong-term 

vegetation cover monitoring research where both 

LandsatTMandETM+imagesareused.Moranetal.(2001)proposed

anempiricallineapproachforreflectancefactorretrievalfromLan

dsat-5TMandLandsat-

7ETM+.Thecorrespondenceanalysismethodbasedonthespectr

altransformationofindi-

vidualdateimagesintoacomponentspacewasappliedtotwomulti-

temporal Landsat images of Raleigh, North Carolina 

forlanduseandlandcoverchangedetection(Cakiretal.2006).Due

tothelimitationofspatialresolution,Landsatproductsareusually

usedtomapvegetationatcommunitylevel.Itisachallengingtask to 

use Landsat imagesformapping at 

specieslevel,especiallyinaheterogeneousenvironment.Howeve

r,whenintegratingwithotherancillarydata,itbecomespossibletoma

pspecies.Anexampleofaspecieslevelofvegetationclassification

wasimplementedintheAmanosMountainsregionofsoutherncen

tralTurkeyusingLandsatimages,com-

binedwiththeenvironmentalvariablesandforestmanage-

mentmaps,toproduceregionalscalevegetationmapswith 

anoverallhighaccuracy(DomaxcandSüzen2006). 



Dogo Rangsang Research Journal                                             UGC Care Group I Journal 

ISSN : 2347-7180                                                                        Vol-08 Issue-14 No. 04: 2021  

 

Page | 740                                                                                       Copyright @ 2021 Authors 

Table1mainfeaturesofimageproductsfromthedifferentsensors 

Products(sensors)   Features Vegetationmappingapplications
a
 

 

LandsatTM
 Mediumtocoarsespatialresolutionwithmultispectraldat
a(120mforthermalinfraredbandand30mformultispectralbands)fro
mLandsat4and5(1982topresent).Eachscenecovers anarea 
of1853185km.Temporalresolutionis16 days. 

 

Regionalscalemapping,usuallycapableofmappingvegetationatco
mmunitylevel. 

Landsat 
ETM+(Landsa
t7) 

Mediumtocoarsespatialresolution  with  multispectral  
data(15mforpanchromaticband,60mforthermalinfraredand30mform
ultispectralbands)(1999topresent).Eachscenecoversanareaof185k
m3185km.Temporalresolutionis16days. 

Regionalscalemapping,usuallycapableofmappingvegetationatcomm
unitylevelorsomedominantspeciescanbepossiblydiscriminated. 

SPOT Afullrangeofmediumspatialresolutionsfrom20mdownto 
2.5m,andSPOTVGTwithcoarsespatialresolutionof1km.Eac
hscenecovers60360kmforHRV/HRVIR/HRGand10003100
0km(or200032000km)forVGT.SPOT1,2,3, 4 and 5 were 
launched in the year of 1986, 1990, 
1993,1998and2002,respectively.SPOT1and3arenotprovidingd
atanow. 

MODIS Lowspatialresolution(250–
1000m)andmultispectraldatafromtheTerraSatellite(2000topresent
)andAquaSatellite(2002topresent).Revisitintervalisaround1–
2days.Suitableforvegetationmappingatalargescale.Theswathis23
30km(crosstrack)by10km(alongtrackatnadir). 

AVHRR 1-
kmGSDwithmultispectraldatafromtheNOAAsatelliteseries(1980t
opresent).Theapproximatescenesizeis240036400km 

 
IKONOS It collects high-resolution imagery at 1 m (panchromatic) and4 

m (multispectral bands, including red, green, blue and 
nearinfrared)resolution.Therevisitrateis3–5days(off-nadir). 

Thesinglesceneis11311km. 

QuickBird High resolution (2.4–0.6 m) and panchromatic and 
multispectralimageryfromaconstellationofspacecraft.Singlescene
areais 
16.5316.5km.Revisitfrequencyisaround1–
3.5daysdependingonlatitude. 

ASTER Mediumspatialresolution(15–
90m)imagewith14spectralbandsfromtheTerraSatellite(2000to
present).Visibletonear-
infraredbandshaveaspatialresolutionof15m,30mforshortwavei
nfraredbandsand90mforthermalinfraredbands. 

AVIRIS
 Airbornesensorcollectingimageswith224spectralban
dsfromvisible,nearinfraredtoshortwaveinfrared.Dependingonth
esatelliteplatformsandlatitudeofdatacollected,thespatialresoluti
onrangesfrommeterstodozensofmetersand 

theswathrangesfromseveralkilometerstodozensofkilometers. 

Hyperion
 Itcollectshyperspectralimagewith220bandsrangingf
romvisibletoshortwaveinfrared.Thespatialresolutionis30m.Da
taavailablesince2003. 

Regionalscaleusuallycapableofmappingvegetationatcommuni
tylevelorspecieslevelorglobal/national/regionalscale(fromVG
T)mappinglandcovertypes(i.e.urbanarea,classesofvegetation,
waterarea,etc.). 

 

 

 

Mappingatglobal,continentalornationalscale.Suitableformapping
landcovertypes(i.e.urbanarea,classes  
ofvegetation,waterarea,etc.). 

 

 

Global,continentalornationalscalemapping.Suitableformappingl
andcovertypes(i.e.urbanarea,classesofvegetation,waterarea,etc.). 

Localtoregionalscalevegetationmappingatspeciesorcommunitylevel
orcanbeusedtovalidateotherclassificationresult. 

 
Localtoregionalscalevegetationmappingatspeciesorcommunityl
evel orused 
tovalidatevegetationcoverextractedfromotherimages. 

 
Regionaltonationalscalevegetationmappingatspeciesorcommunityle
vel. 

 

 

 

Atlocaltoregionalscaleusuallycapableofmappingvegetationatcommu
nitylevelorspecieslevel.Asimagesarecarriedoutasone-
timeoperations,dataare 
notreadilyavailableasitisobtainedonan‘asneeds’basis. 

 
Atregionalscalecapableofmappingvegetationatcommunitylevelorsp
ecieslevel. 

 
 

aManysensorsprovideimageryforproducingVI(e.g.NDVI)thatiscalculatedfromthebandsinthevisibleandnear-infraredregions. 
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In addition to the limitation caused by the medium 

spatialresolution of Landsat imagery, the relatively low 

temporal res-olution might also restrict its application in 

vegetation map-ping. Landsat satellites are popular and sun 

synchronous. 

Ittakes;16daysforthesatellitestorevisitthelastlocation.Thisim

posesaproblemforvegetationmappingusingLandsatim-

ageryespeciallywhentheinterestofperiod(IOP)fallsina rainy 

season, during which heavy cloud greatly 

decreasestheimagequality.SinceIOPusuallyhaslimitedtime

window,itisveryimportanttotakethemappingpurposeaswella

sthelocal climate and topography conditions into account 

for theselectionofimagerysource. SPOT 

TheimagesacquiredbySPOTEarthObservationSatellitesareus

eful for studying, monitoring, forecasting and managing nat-

uralresourcesandhumanactivities.FiveSPOTsatelliteshavebee

n launched so far, from SPOT 1 to SPOT 5 in the year 

of1986,1990,1993,1998and2002,respectively.SPOTimagery

comes in a full range of resolutions from 1 km global 

scale(SPOT vegetation imagery) down to 2.5 m local scale. 

TwoHRV (High Resolution Visible) imaging instruments on 

SPOT1, 2 and 3 and the corresponding instruments of 

HRVIR (HighResolution Visible and Infrared) on SPOT 4 

and HRG 

(HighResolutionGeometry)onSPOT5scanineitherpanchroma

tic 

ormultispectralmodes.Inaddition,SPOT4and5alsohavea 

second imaging instrument referred to as SPOT 

vegetation(VGT) instrument that collects data at a spatial 

resolution 

of1kmandatemporalresolutionof1day.SPOTimages,partic-

ularly SPOT VGT, are very useful for observing and 

analyzingthe evolution of land surfaces and understanding land 

changesover large areas. Because of the multiple sensor 

instrumentsand the revisit frequencies, SPOT satellites are 

capable ofobtaining an image of any place on earth every day 

and havingan advantage of mapping vegetation at flexible 

scales (re-gional,national,continentalorglobal). 

Huang and Siegert (2006) studied the desertification pro-

cessesbyusingtimeseriesofSPOTVGTimagesandproducedalan

dcovermapwithaspecialemphasisonthedetectionofsparse 

vegetation in north China. A classification system 

fordifferentlandcovertypeswithaspecialemphasisonthesparseveg

etation cover was developed to resolve problems related tothe 

seasonal changes and the highly variable natural condi-tions. 

As Huang and Siegert (2006) noted, SPOT VGT 

imageryisveryusefultodetectlarge-

scaledynamicsofenvironmentalchanges due to the wide swath 

and sensitivity of the images tovegetation growth. From multi-

temporal SPOT4 VGT sensordata,Wangetal.(2006)builtatwo-

levellandcoverclassifica-tion system for identifying Poyang 

Lake Basin’s land coverclusters. At continental scale, Cabral et 

al. (2006) built a datasetof monthly composite images 

composed of daily SPOT 

VGTimagesanddevelopedamethodsuitableforproducingaland

cover map of southern hemisphere Africa at a spatial resolu-

tion of 1 km. In addition, SPOT imagery is also effective 

inmonitoring the distribution and growth of particular 

plants.For example, SPOT4 VGT was used to produce a 

vegetationmap and predict the distribution of nest-site habitats 

of 

easternNewZealandfalcons(Falconovaeseelandiae)inOtago(Math

ieuetal.2006).Togetmoreaccuratemapping,SPOTimagescanbeinte

grated with other remote sensing images. Millward et 

al.(2006) used medium-resolution satellite imagery to 

determinethechangesinthelandscapeofthecoastalzonenearSanya

inHainan Province, China. After a search for suitable satellite im-

agery, they found that an effective way to identify the 

changeswas to integrate data from different sensors (TM and 

ETM+images, in addition to SPOT 2 HRV images). 

Furthermore,SPOTimagerycanbeevenutilizedtomodelbiochem

icalpro-

cesses.Churkinaetal.(2005)performedananalysisofannualnetec

osystemexchangeandthelengthofthecarbonuptakeperiod using 

the enhanced vegetation index (EVI) of SPOT4VGT. 

MODIS 

MODIS  (Moderate  Resolution  Imaging  Spectroradiometer)  isa 

key instrument on aboard of the Terra (EOS AM) and Aqua(EOS 

PM) satellites. Terra MODIS and  Aqua MODIS  togetherare 

able to view the entire earth’s surface every 1–2 days. 

ThegatheredimagesfromMODIS,including  36  spectral  

bandswith spatial resolutions ranging from 250 to 1 km, are 

mainlyappliedtomapvegetationdynamicsandprocessesatalarge 

scale. Due to the coarse spatial resolution, vegetation mappingat 

a local scale or regional scale is not recommended. 

However,image fusion by combining multiple imagery types 

can possi-bly lead to better mapping results. Knight et al. 

(2006) exam-

inedthepotentialforclassifyingvegetationphenology-basedland 

cover over Albemarle-Pamlico estuarine system 

usingMODIS-NDVI 250 m 16-day composite data. They 

concludedthat a significant value could be added to MODIS 

imagerythroughcombiningandcomparingthemulti-

temporalobser-

vationswithsimilarclassificationsgeneratedfrommuchhigherspa

tialresolutiondata. 
 

AVHRR 

Carried aboard the NOAA’s Polar Orbiting Environmental Sat-

elliteseries, the AVHRRsensoris  a broadband, 4-  

(AVHRR/1),5-(AVHRR/2)or  6-  (AVHRR/3)  channel  

scanning  

radiometerinthevisible,nearinfraredandthermalinfraredportionsof

theelectromagneticspectrum.AVHRRimage datahave 

twospatialresolutions:;1.1kmforlocalareacoverage(LAC)and 

5 km for global area coverage (GAC). They are both 

widelyusedtostudyandmonitorvegetationconditionsinecosys-

tems, including forests, tundra, grasslands, agricultural 

lands,landcovermappingandproductionoflarge-

scalemapsforthesesubjects.Oneoftheobvious  advantages  of  

AVHRR  isthe low cost and the high probability of obtaining a 

cloud-freeview of the land surface. GLCC, as mentioned 

previously, wasproducedbasedonAVHRRimagedata.Aglobal8-

kmfrac-tional vegetation cover dataset for 1982–2000 was also 

derivedfromtheNOAA–AVHRRLandPathfindernormalized  

differ-encevegetationindex(NDVI)data(ZengandRao2003). 

BecauseAVHRRhasanimagearchive  with  long  

history(eversince1978whenthefirstAVHRRwas  launched),  it  

isvery useful to study long-term changes of vegetation. In 

thestudy of the natural ecosystems of the Northeast Region of 
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Bra-zil (NEB) where they experienced persistent drought 

episodesand environmental degradation recently, Barbosa et al. 

(2006)examined the spatial heterogeneity and temporal 

dynamics oftheNEBusinga20-year(1982–

2001)timeseriesofNDVIobservationsderivedfrom 

AVHRRinstrument. Otherstudiesconducted using AVHRR 

include Julien et al. (2006), Gonzalez-Alonso et al. (2004) and 

Al-Bakri and Taylor (2003). Because 

ofthecoarsespatialresolution,AVHRRissuitablefora  large-

scalemapping.Atacontinentalscale,Mayauxetal.(1998)mapped 

thevegetation cover of CentralAfrica by using theAVHRR 

LACand GAC data. Han etal. (2005) used  AVHRR 

datatocalculatethedailyNDVI.Inthesimilarway,Maselli  

andChiesi (2006) used AVHRR data to study Mediterranean 

forestproductivitybasedontheproductionofNDVI. 

AVHRRimagerysufferscertainlimitationsincalibration,geome

try, orbital drift, limited spectral coverage and variationsin 

spectral coverage especially in the early period of applica-tions. 

Its utility has been restricted because its use often intro-

ducessubstantialerrorsatvariousstagesofprocessingandanalysis.

Nevertheless,manyprojects  (including  GLCC)  aim-ingat 

mapping vegetationcoversat continental toglobal scales 

havebeen carriedout  using AVHRR  for years  simply 

becauseofitslowcostandeasyaccess. 
 

IKONOS 

IKONOS is a commercial sun-synchronous earth 

observationsatellite launched in 1999 and was the first to 

collect publiclyavailable high-resolution imagery at 1 and 4 m 

resolution. Ithas two imagery sensors, multispectral and 

panchromatic.Panchromatic sensor collects image at 1 m 

while the multi-spectral bands (including blue, green, red and 

near infrared)have a spatial resolution at 4 m. Both sensors 

have a swathwidth of 11 km and 3–5 days of revisit interval. 

The IKONOSobservations are at a spatial scale equivalent to 

field measure-ments typically carried out in ecological and 

land cover re-search.As such, the IKONOS observations may 

serve asa source of ‘virtual’ ground measurements for the lower 

spatialresolution,globalobservatories(Gowardetal.2003).Ideall

y,IKONOS can be used to map vegetation cover at a local scale 

orvalidate vegetation cover classified from other remote 

sensingimages(Gowardetal.2003). 
 

QuickBird 

Similar to IKONOS, QuickBird offers highly accurate and 

evenhigherresolutionimagerywithpanchromaticimageryat60–

70cmresolutionandmultispectralimageryat2.4and 

2.8 m resolutions. It is the only spacecraft able to offer sub-

meter resolution imagery so far. QuickBird’s global 

collectionsof images greatly facilitate applications ranging from 

land andasset management to ecology modeling (including 

vegetationmapping). QuickBird images are usually used to study 

specialtopics in relatively small areas (or at a local scale) since it 

isimpracticaltoapplyQuickBird  imagery  for  applications  

inlarge area due to its high cost and rigid technical 

parameters.Wolter et al. (2005) used QuickBirdimagery to map 

SAV atthree sites across the Great Lakes and proved that 

QuickBirdsensor data were very useful for classifying SAV. 

Coops et 

al.(2006)evaluatedtheapplicabilityofQuickBirdmultispectralimag

eryindetecting,mappingandmonitoringtheforestrydamagescausedb

ybeetles.TheresultssuggestedthatQuickBirdimagery particularly 

had a valuable role to play in 

identifyingtreecrownswithredattackdamages.SimilartoIKONOS,i

mages from QuickBirdcanbe used  to map  vegetation  

coveratalocalscaleorusedforvalidationpurpose. 

Besides aforementioned sensors, there are many others. 

Forexample, Advanced Spaceborne Thermal Emission and 

Reflec-tion Radiometer (ASTER) is an imaging instrument 

flying onTerra. ASTER has been used to obtain detailed maps 

of 

landsurface,reflectanceandelevationinthestudyofhabitatpatterns

(Tuttleetal.2006).Thetransmittedchargecoupledde-

viceandinfraredmultispectralscanneronaboardofChinese–

Brazilian Earth Resources Satellites, a cooperative 

programbetweenChinaandBrazil,acquireimageswithspatialreso

lu-tion from 20 to 256 m (Epiphanio 2005; Ponzoni et al. 

2006).Whilemostsensorsaforementionedcollectmultispectralim

ageswithdozensofspectral bands,hyperspectralimageryacquired 

by some other sensors may have hundreds of spectralbands. Note 

that the principle for mapping vegetation coverfrom remote 

sensing images relies on the unique spectral fea-tures of different 

vegetation types. Thus, hyperspectral imag-ery contains more 

vegetation information and can be used formore accurate 

vegetation mapping. AVIRIS, for example, col-

lectsimageswith224spectralbands. 

 

Vegetationextractionfromremotesens

ingimagery 

Vegetation extraction from remote sensing imagery is the pro-

cess of extracting vegetation information by interpreting sat-

elliteimagesbasedonthe  interpretation  elements  such  asthe 

image color, texture, tone, pattern and association infor-mation, 

etc. Diverse methods have been developed to do this.Those 

methods can be broadly grouped either as supervised 

orasunsuperviseddependingonwhetherornot  true  grounddata 

are inputted as references. General steps involved in veg-etation 

mapping include image preprocessing and image clas-sification. 

Image preprocessing deals with all preparatory 

stepsnecessarytoimprovethequalityof  original  images,  

whichthenresultsintheassignmentofeachpixelofthescenetoone of 

the vegetation groups defined in a vegetation classifi-cation 

system or a membership matrix of the vegetation 

groupsiffuzzyclassificationisadopted. 

Imagepreprocessing 

Preprocessing of satellite images prior to vegetation extractionis 

essential to remove noise and increase the interpretability 

ofimage data. This is particularly true when a time series of 

im-agery is used or when an area is encompassed by many 

imagessince it is essentially important to make these images 

compat-ible spatially and spectrally. The ideal result of image 

prepro-cessing is that all images after image preprocessing 

shouldappear as if they were acquired from the same sensor 

(Hallet al. 1991). Botanist and ecologist should keep in mind 

thatwhile image preprocessing is the prerequisite for 

vegetationextraction from remote sensing images, the 

preprocessing pro-cedures listed below may not be always 

needed because someof these preprocessing procedures may 
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have been done by im-

agedistributionagencies.Thus,itisrecommendedtoconsultwith 

the image distributor and get to know at what level 

theimagery is (usually including level 0, 1A, 1B, 2A, 2B, 

3A, 3Bwith image quality gradually increased) before 

imagery pur-chase. For example, for most sensors, level 3A 

means thatradiometric correction, geometric correction and 

orthorectifi-cation have been processed for the images. Image 

preprocess-

ingcommonlycomprisesaseriesofoperations,includingbutnot 

limited to bad lines replacement, radiometric 

correction,geometric correction, image enhancement and 

masking 

(e.g.forclouds,water,irrelevantfeatures)althoughvariationsma

yexistforimagesacquiredbydifferentsensors. 

Bad line replacement is to determine the overall quality 

oftheimages(e.g.missingdatalines)throughvisually 

previewing the images band-by-band. The visual review 

isusuallydoneatfullextentswhileattentionisfocusedoniden-

tifyinglinesorblocksofmissingdataineachbandforfurtherrepairi

ng. Image line replacement is a procedure that fills inmissing 

lines with the line above, below or with an averageofthetwo. 

Radiometriccorrectionofremotesensingdatanormallyinvolves 

the process of correcting radiometric errors or distor-tions of 

digital images to improve the fidelity of the brightnessvalues. 

Factors such as seasonal phenology, ground 

conditionsandatmosphericconditionscancontributetovariabilityin

multi-temporalspectralresponsesthatmayhavelittletodowiththe 

remote sensed objects themselves 

(SongandWoodcock2003).Itismandatorytodifferentiate  real  

changes  fromnoises through radiometric correction in cases 

where the spec-tral signals are not sufficiently strong to 

minimize the effects ofthese complicating factors. Several 

methods are available tomake radioactive corrections. Some of 

them are based on com-plex mathematical models that describe 

the main interactionsinvolved. However, the values of certain 

parameters (i.e. 

theatmosphericcomposition)mustbeknownbeforeapplyingthem.

Otherradiometriccorrection  methods  are  based  onthe 

observations of reference targets (e.g. water or desert 

land)whose radiometry is known. Whatever radiometric 

correctionmethodsare,theycanbeclassifiedintotwotypes:absolute

andrelativecorrection(Cohenetal.2003;Coppinetal.2004;Duet al. 

2002; Elvidge et al. 1995). The absolute radiometric cor-rection 

is aimed toward extracting the absolute reflectance ofscene 

objects at the surface of the earth, requiring the input 

ofsimultaneousatmosphericpropertiesandsensorcalibration,whic

haredifficulttoacquire  in  many  cases  (Chen  et  al.2005; Du  et 

al. 2002;  Song et al. 2001).  On the  other hand,the relative 

radiometric correction is aimed toward reducingatmospheric and 

other unexpected variations among multipleimages by adjusting 

the radiometric properties of target imagesto match a base image 

(Hall et al. 1991), which proves to beeasiertoapply.Schroederet  

al.  (2006)  and  Chen  et  al.(2005) extensively compared the 

effectiveness of the absoluteradiometric correction methods (6S 

model, MDDV model andDOS model) and the relative 

radiometric correction 

methods(MADmodelandPIFmodel)andillustratedtheprosandcons

ofeachmodel. 

Geometriccorrectionisaimedtoavoidgeometricdistortions 

from a distorted image and is achieved by establishing the re-

lationship between the image coordinate system and the geo-

graphiccoordinatesystemusingthecalibrationdataofthesensor,the

measureddataofpositionandaltitudeandtheground control points. 

Therefore, geometric correction usuallyincludes the selection of 

a map projection system and the co-

registrationofsatelliteimagedatawithotherdatathatareusedas the 

calibration reference. The outcome of geometric correc-tion 

should obtain an error within plus or minus one pixel of 

itstrueposition,whichallowsforaccuratespatial  assessmentsand 

measurements of the data generated from the satellite im-

agery.Thefirst-

ordertransformationandthenearestneighborresampling of the 

uncorrected imagery are among those pop-

ularlyadoptedmethodsingeometriccorrection.The  first-order 

transformation, also known as the linear transformation,applies 

the standard linear equation (y = mx + b) to the X and 

Ycoordinates of the ground control points. The nearest 

neighborresampling method uses the value of the closest pixel to 

assignto the output pixel value and thus transfers original data 

valueswithout averaging them. Therefore, the extremes and 

subtle-tiesofthedatavaluesarenotlost(ERDAS1999). 

Sometimes the images will be more distinguishable for in-

terpretation if image enhancement is performed, which 

isaimed to emphasize and sharpen particular image 

features(i.e. particular species of vegetation) for visualization 

purpose.Thetraditionalimageenhancementincludegrayscaleco

nversion, histogram conversion, color composition, 

colorconversionbetweenred-green-blue (RGB) andhue–

saturation–

intensitytransform(HSI),etc.,whichareusuallyappliedtotheimag

eoutputforimageinterpretation.ShyuandLeou(1998)explained 

the limitations of traditional image 

enhancementmethodsandproposedageneticalgorithmapproacht

hatwasprovedmoreeffectivethanthetraditionalones. 

Inmappingvegetationcoverusingremotesensingimages,espe

cially mapping over large regions, cloud imposes a bignoise 

for identifying vegetation and thus has to be removedor 

masked. Jang et al. (2006) proposed a neural network to de-tect 

cloud in SPOT VEGETATION images. Walton and 

Morgan(1998) used cloud-free space shuttle photograph to 

detect 

andremove(mask)unwantedcloudcoversinLandsatTMscenes. 

Imageclassification 

Image classification, in a broad sense, is defined as the 

processof extracting differentiated classes or themes (e.g. land 

use cat-egories, vegetation species) from raw remotely sensed 

satellitedata. Obviously this definition includes the 

preprocessing 

ofimages.Weheresimplyrefertotheprocessfollowingtheim-

agepreprocessingasimageclassification.Techniquesforextracti

ng vegetation from preprocessed images are 

groupedintotwotypes:traditionalandimprovedmethods. 
 

Traditionalmethods 

Thetraditionalmethodsemploytheclassicalimageclassifica-tion 

algorithms, e.g. K-mean and ISODATA for 

unsupervisedclassification or the maximum likelihood 

classification (MLC)for supervised classification. 

Unsupervised approach is oftenused in thematic mapping 
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(including vegetation cover map-

ping)fromimagery.Itiseasytoapplyandwidelyavailablein 

image processing and statistical software packages 

(Langleyetal.2001).TwomostfrequentlyusedmethodsaretheK

-

meanandtheISODATAclusteringalgorithms.Bothofthesealgo

rithms involve iterative procedures. In general, both 

ofthemassignanarbitraryinitialclustervectorfirst.Thesecondst

ep classifies each pixel to the closest cluster. In the third 

step,the new cluster mean vectors are calculated based on all 

thepixelsinonecluster.Thesecondandthirdstepsarerepeatedunt

ilthegapbetweentheiterationissmallenough(orsmaller 

thanapresetthreshold).Unsupervisedclassificationmethodsare 

purely relying on spectrally pixel-based statistics and incor-

porate no priori knowledge of the characteristics of the 

themesbeingstudied.Thebenefitofapplyingunsupervisedclassifi

ca-

tionmethodsistoautomaticallyconvertrawimagedataintouseful 

information so long as higher classification accuracy 

isachieved(TsoandOlsen2005).Alternatively,ratherthanpurely

spectral,TsoandOlsen(2005)incorporatedbothspec-tral and 

contextual information to build a fundamental frame-

workforunsupervisedclassification,HiddenMarkovModels,whi

ch showed improvements in both classification 

accuracyandvisualqualities.Algorithmsofunsupervisedclassifi

cationwereinvestigatedandcomparedwithregardtotheirabilities

to reproduce ground data in a complex area by Duda 

andCanty (2002). Despite its easy application, one 

disadvantageof the unsupervised classification is that the 

classificationprocess has to be repeated again if new data 

(samples) areadded. 

By contrast, a supervised classification method is 

learningan established classification from a training dataset, 

whichcontains the predictor variables measured in each 

samplingunit and assigns prior classes to the sampling units 

(Lenkaand Milan 2005). The supervised classification is to 

assignnew sampling  units to the priori classes. Thus, the 

additionofnewdatahas  no  impact  on  the  established  

standardsofclassificationoncetheclassifierhasbeensetup.MLCc

lassifierisusuallyregardedasaclassicandmostwidelyusedsuperv

ised classification for satellite images resting on 

thestatisticaldistributionpattern(Sohnand Rebello 

2002;Xuetal.2005).However,MLCshowslesssatisfactorysucce

sses since the MLC assumption that the data followGaussian 

distribution may not always be held in complexareas. 

Improvedclassifiers 

Itisverycommonthatthesamevegetationtypeongroundmay have 

different spectral features in remote sensed images.Also, 

different vegetation types may possess similar spectra,which 

makes very hard to obtain accurate classification resultseither 

using the traditional unsupervised classification or su-

pervisedclassification.Searchingforimprovedclassificationmetho

dsisalwaysahotresearchtopic.However,strictlyspeaking, all 

classification methods are derived from the tradi-

tionalmethodsasaforementioned,whichprovidethebasicprinciples

andtechniquesforimageclassification.Thus,im-

provedmethodsusuallyfocusonandexpandonspecifictechniquesor

spectralfeatures,whichcanleadtobetterclassification results and 

thus deserve special attention. Greatprogress has been made in 

developing more powerful classi-fiers to extract vegetation covers 

from remote sensing images.For example, Stuart et al. (2006) 

developed continuous classi-

ficationsusingLandsatdatatodistinguishvariationswithinNeotropic

al savannas and to characterize the boundaries be-tween savanna 

areas, the associated gallery forests, 

seasonallydryforestsandwetlandcommunities.Theyprovedthat 

continuousclassificationswerebetterthanMLCclassificationesp

eciallyincomplexlandcoverareas. 

Extensive field knowledge and auxiliary data may help im-

prove classification accuracy. Studies have shown that classi-

fication accuracy can be greatly improved after applying 

expertknowledge (empirical rules) and ancillary data to extract 

the-matic features (e.g. vegetation groups) (Gad and Kusky 

2006;Shrestha and Zinck 2001). In a regional scale vegetation 

clas-

sificationconductedintheAmanosMountainsregionofsoutherncent

ral  Turkey  using  Landsat  images,  Domaxc 

andSüzen(2006)incorporatedvegetation-

relatedenvironmentalvariablesandconsiderablyimprovedclassific

ationaccuracywhencomparedwiththetraditional  MLC  method.  

Undermanycircumstances,  however,  gathering  specific  

knowledgeis an enormous task and obtaining ancillary data is 

very costly.Therefore, the knowledge-based classifications are 

not univer-sallyapplicable. 

Sohn and Rebello (2002) developed supervised and unsu-

pervised spectral angle classifiers (SAC), which take 

accountofthefactthatthespectraofthesametypeofsurfaceobjects

are approximately linearly scaled variations of one 

anotherdue to the atmospheric and topographic effects. Those 

SAChelped identify the distances between pairs of signatures 

forclassification and were successfully applied in biotic 

commu-nity and land cover classification (Sohn and Qi 

2005). Theadoption of VI including the most widely used 

NDVI and 

itsrefinedform,EVI,isanothermethodtomapvegetationusingopt

icalremotesensingdevices(deFriesetal.1995).Theprin-ciple of 

applying NDVI in vegetation mapping is that vegeta-

tionishighlyreflectiveinthenearinfraredandhighlyabsorptive in 

the visible red. The contrast between these chan-nels can be 

used as an indicator of the status of the 

vegetation.Inotherword,NDVIisabiophysicalparameterthatcorr

elateswithphotosyntheticactivityofvegetation.Inadditiontopro-

viding an indication of the ‘greenness’ of the vegetation 

(WangandTenhunen2004),NDVIisalsoabletooffervaluableinf

or-

mationofthedynamicchangesofspecificvegetationspeciesgiven 

that multiple-time images are analyzed. Therefore, NDVIis a 

good indicator to reflect periodically dynamic changes 

ofvegetationgroups(Geerkenetal.2005).Particularvegetationgr

oups can be identified through their unique phenology, 

ordynamic signals of NDVI (Lenney et al. 1996), which is 

alsoknown as ‘Multitemporal Image Classification’. Another 

ap-proach to identify specific vegetation groups is to study 

timeseries VI. For example, Bagan et al. (2005) applied the 

com-binedEVImulti-datasetgeneratedfrom16-

dayintervalMODIS data during the growing season of plants 

as inputparameters to match the features of vegetation groups 

andto classify the images. The classification results were 

comparedwiththoseofthetraditionalMLCmethodandtheaccurac
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yoftheformerexceededthatofthelatter. 

Artificialneuralnetwork(ANN)andfuzzylogicapproaches 

are also seen in literature for vegetation classifications. 

ANNis appropriate for the analysis of nearly any kind of 

data irre-

spectiveoftheirstatisticalproperties.ANNisveryusefulin 

extracting vegetation-type information in complex 

vegetationmappingproblems(FilippiandJensen2006),thoughitisat

theexpense oftheinterpretabilityoftheresultssinceANNdeploys a 

black-box approach that hides the underlying pre-

dictionprocess(ČernáandChytrý2005).Berberogluetal. 

(2000) combined ANN and texture analysis on a per-field 

basisto classify land cover and found the accuracy could be 

15%greaterthantheaccuracyachievedusingastandardper-

pixelML classification. One disadvantage of ANN, however, 

is 

thatANNcanbecomputationallydemandingwhenlargedatasetsa

re dealt to train the network and sometimes no result may 

beachievedatallevenafteralong-

timecomputationduetothelocalminimum(e.g.foraback-

propagationANN). 

Afuzzyclassificationapproachisusuallyusefulinmixed-

classareas and wasinvestigatedfor the classificationof 

suburbanlandcover from remote sensing imagery (Zhang and 

Foody 1998),the study of medium-to-long term (10–50 years) 

vegetationchanges(OkekeandKarnieli2006)andthebiotic-

basedgrass-land classification (Sha et al. 2008). Fuzzy 

classification is a kindof probability-based classification rather 

than crisp classifica-tion. Unlike implementing per-pixel-based 

classifier to producecrisp or hard classification, Xu et al. (2005) 

employed a decisiontree(DT) 

derivedfromtheregressionapproachtodetermineclassproportio

nswithinapixelsoastoproduceasoftclassifi-

cation.Theoretically,probability-

basedorsoftclassificationismorereasonableforcompositeunitssi

ncethoseunitscannotbesimplyclassifiedtoonetypebuttoaprobabil

ityforthattype.While soft classification techniques are inherently 

appealing 

formappingvegetationtransition,thereisanunresolvedissueofho

wbesttopresenttheoutput.Ratherthanimposingsubjec-tive 

boundaries on the end-member communities, transitionzones 

of intermediate vegetation classes between the end-member 

communities were adopted to better represent 

thesoftenedclassificationresult(Hilletal.2007). 

DTisanotherapproachofvegetationclassificationbymatching 

the spectral features or combinations of spectralfeatures from 

images with those of possible end members 

ofvegetationtypes(communityorspecieslevel).DTiscomputatio

nally fast, makes no statistical assumptions andcan handle 

data that are represented on different measure-ment scales. A 

global land cover map deduced from 

AVHRRimagerywasproducedbyHansenetal.(2006)usingaDTt

hathas a set of 41 metrics generated from five spectral 

channelsandNDVIforinput.Theagreementsforallclassesvariedf

roman average of 65% when viewing all pixels to an average 

of82% when viewing only those 1 km pixels consisting of 

>90% one class within the high-resolution datasets. 

OtherstudiesintegratedsoftclassificationwithDTapproach(Xu

et al. 2005). Pal and Mather (2003) studied the utility of 

DTclassifiersforlandcoverclassificationusing  

multispectraland hyperspectral data and compared the 

performance 

oftheDTclassifierwiththatoftheANNandMLclassifiers,withch

anges in training data size, choice of attribute 

selectionmeasures, pruning methods and boosting. They 

found thattheuseofDTclassifierswithhigh-

dimensional(hyperspectral data) is limited while good result 

was achieved with multispec-tral data. Under some 

circumstances, DT can be very usefulwhen vegetation types are 

strictly associated with other natu-ral conditions (e.g. soil type 

or topography) (He et al. 2005). Forexample, some vegetation 

species may only grow in areas withelevation higher than a 

certain level. This can be integratedwithin DT to assist the 

classification process from imagery 

ifsuchancillarydataareavailable. 

InthestudyofmonitoringnaturalvegetationinMediterra-nean, 

Sluiter (2005) investigated a wide range of 

vegetationclassification methods for remote sensing imagery. 

Firstly,twomethodsofrandomforestsandsupportvectormachine

swere explored, which showed better performances over 

thetraditionalclassificationtechniques.Secondly,ratherthanus-

ing the per-pixel spectral information to extract vegetation fea-

tures, Sluiter applied the spatial domain, viz. both per-

pixelspectral information and the spectral information of 

neighbor-ing pixels to analyze and classify remote sensing 

imagery. Itwas found that when a contextual technique 

named SPARK(SPAtial Reclassification Kernel) was 

implemented, vegetationclasses, which were not distinguished 

at all by conventionalper-pixel-based methods, could be 

successfully detected. Thesimilar result was also noted by Im 

and Jensen (2005) whousedathree-

channelneighborhoodcorrelationimagemodelto detect 

vegetation changes through the relation of pixels andtheir 

contextual neighbors. Based on SPARK, Sluiter 

(2005)continuedintegratingspectralinformation,ancillaryinfor

ma-tion and contextual information and developed a 

spatiotempo-ral image classification model called ancillary data 

classificationmodel(ADCM).TheADCMmethodincreasedtheo

verallaccu-racy as well as individual class accuracies in 

identifying hetero-geneousvegetationclasses. 

As stated above, there are many classification methods 

oralgorithms developed for image classification applications un-

der a broad range of specific applications. Sometimes, it 

mayincreasethequalityofclassificationresultswhenmultiplemetho

ds(algorithms)arejointlyemployed.Forexample,  Loand Choi 

(2004) proposed a hybrid method that incorporatedthe 

advantages of supervised and unsupervised approaches aswell as 

hard and soft classifications for mapping the land coverin 

Atlanta Metropolitan Area using Landsat 7 ETM+ data. How-

ever, cautions should be usually exercised when applying im-

proved classifiers because these methods were often 

designedand developed under specific challenges to solve 

unique prob-lems. Moreover, discrimination of vegetation 

species from sin-

gleimageryisonlyachievablewhereacombinationofleafchemistry,

structureandmoisturecontentculminatestoforma unique spectral 

signature. Thus, imagery classification relieson successful 

extraction of pure spectral signature for each spe-cies, which is 

often dictated by the spatial resolution of the ob-

servingsensorandthetimingofobservation(AsnerandHeidebrecht 

2002; Varshney and Arora 2004). In short, searchfor improved 
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image classification algorithms is still a hot field inthe remote 

sensing applications because there are no 

superclassificationmethodsthatcouldapplyuniversally. 

Hyperspectralimageryanddatafusion 

Inrecentyears,moreadvancedmethodsreflectingthelatestre-mote 

sensing techniques used invegetationmappingare seen 

inliterature.Amongthem,theapplicationsofhyperspectralim-

ageryandmultipleimageryfusiontoextractvegetationcoverarera

pidlydevelopedandthusdeserveourspecialattention. 

Vegetationmappingfromhyperspectralimagery 

Ratherthanusingmultispectralimagery,vegetation  extrac-

tionfromhyperspectralimageryisincreasinglystudiedre-

cently.Compared with multispectral imagery that only hasa 

dozen of spectral bands, hyperspectral imagery includes hun-

dreds of spectral bands. Hyperspectral sensors are well suitedfor 

vegetation studies as reflectance/absorption spectral signa-tures 

from individual species as well as more complex mixed-pixel 

communities can be better differentiated from the muchwider 

spectral bands of hyperspectral imagery (Varshney 

andArora2004).Forexample,thehyperspectralimageryfromAVIRI

Sis commonly used in the  realm of earth remote sens-ing. 

AVIRIS is a unique optical sensor that delivers calibratedimages 

of the upwelling spectral radiance in 224 contiguousspectral 

channels (bands) with the wavelengths ranging from400 to 2500 

nm. The information within those bands can beutilized to 

identify, measure and monitor constituents of theearth’s surface 

(e.g. vegetation types) based on molecular ab-sorption and 

particle scattering signatures. One of the studiesusing AVIRIS 

imagery wasto classify  salt marshes in China andin San Pablo 

Bay of California, USA (Li et al. 2005). The 

resultsweresatisfactoryconsideringthesuccessinclassifying  

twomain marsh vegetation species, Spartina and Salicornia, 

whichcovered 93.8% of the total marsh, although further work 

wasrequired to correct the false detection of other marsh vegeta-

tion species. A similar work was also conducted by Rosso et 

al.(2005) in the study of the structure of wetlands in San Fran-

ciscoBayofCaliforniabymonitoringvegetationdynamicsaimed at 

proposing sustainable management of wetland eco-systems. 

Hyperspectral data acquired by the Hyperion instru-

mentonboardtheEarthObserving-1(EO-

1)satellitewereevaluatedforthediscriminationoffiveimportantBraz

iliansugarcanevarieties(Galvâoetal.2005).Theresultsshowedthat 

the five Brazilian sugarcane varieties were 

discriminatedusingEO-

1Hyperiondata,implyingthathyperspectralimag-ery is capable of 

separating plant species, which may be 

verydifficultbyusingmultispectralimages. 

Althoughthegeneralprocedures(preprocessingandclassi- 

fication)forhyperspectralimagesarethesameasthoserequired for 

multispectral images, the processing of hyperspec-tral data 

remains a challenge. Specialized, cost effective 

andcomputationally efficient procedures are required to 

processhundreds of bands (Varshney and Arora 2004). To 

extract veg-etation communities or species from hyperspectral 

imagery,a set of signature libraries of vegetation are usually 

required(Xavieretal.2006).Forcertainapplications,thevegetatio

nli-brariesforparticularvegetationcommunitiesorspeciesmight 

be already available. However, for most cases, the spectral sig-

naturelibraryisestablishedusinggroundtruthdatawithhyperspectr

al data or through spectrometers. As such, vegeta-

tionmappingusinghyperspectralimagerymustbewelldesigned to 

collect synchronous field data for creating imagerysignatures. 

 
Vegetationmappingthroughimagefusion 

The information provided by each individual sensor may 

beincomplete, inconsistent and imprecise for a given 

application.Image fusion of remotely sensed data with 

multiple 

spatialresolutionsisaneffectivetechniquethathasagoodpotential

forimprovingvegetationclassification.Itisimportantforaccurate 

vegetation mapping to efficiently integrate 

remotesensinginformationwithdifferenttemporal,spectralands

patialresolutionsthroughimagefusion.Therearemanystudies 

focusing on the development of new fusion 

algorithms(AmarsaikhanandDouglas2004;Zhang2004;Zhuand

Tateishi2006).Forexample,inthestudyoffusionforhigh-

resolutionpanchromaticandlow-resolutionmulti-spectral 

remote sensing images, Li et al. (2006) proposed a fre-

quencybuffermodeltoovercomethedifficultyofidentifyinghigh-

frequency components of panchromatic images and low-

frequencycomponentsofmultispectralimages.Basedonthestatis

tical fusion of multi-temporal satellite images, Zhu 

andTateishi (2006) developed a new temporal fusion 

classificationmodel to study land cover classification and 

verified its im-proved performance over the conventional 

methods. Behnia(2005) compared four frequently adopted 

image fusion algo-

rithms,namelyprinciplecomponenttransform,broveytrans-

form, smoothing filter-based intensity modulation and 

HSIandconcludedthateachofthemimprovesthespatialresolu-

tioneffectivelybutdistortstheoriginalspectralsignaturestocertai

n degrees. To solve the color distortion associated withsome 

existing techniques, Wu et al. (2005) developed an en-

hancement color normalized algorithm to merge lower 

spatialresolution multispectral images with a higher spatial 

resolu-tion panchromatic image. Rather than designing new 

fusionalgorithms, Colditz et al. (2006) tested various image 

fusionmethods to study their impacts on land cover 

classification ac-curacies ranging from common techniques 

like brovey, hue–saturation–

valuetransformandprincipalcomponentanalysisto more 

complex approaches like adaptive image fusion, multi-sensor 

multi-resolution image fusion technique and 

wavelettransformation.Inbrief,imagefusionopensanewwaytoe

x-tract high accuracy vegetation covers by integrating 

remotesensing images from different sensors. However, the 

chal-lenges of fusion strategy (including developing new 

fusionalgorithms)stillrequirefurtherstudies. 

 

Resultevaluation 
Theproductsofvegetationmappingderivedfromremotesensedimage

sshouldbeobjectivelyverifiedand 

communicatedtouserssothattheycanmakeinformeddeci-sions 

on whether and how the products can be used. 

Resultevaluation, a procedure also called accuracy assessment, is 

of-

tenemployedtodeterminethedegreeof‘correctness’oftheclassifie

d vegetation groups compared to the actual ones. Avegetation 

map derived from image classification is consideredaccurate if it 
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provides a true representation of the region it por-

trays(Foody2002;Weber2006).Foursignificantstageshavebeen 

witnessed in accuracy assessment methods (Congalton1994). 

Accuracy assessment in the first stage was done by vi-

sualinspectionofderivedmaps.Thismethodisdeemedtobehighly 

subjective and often not accurate. The second stageused a 

more objective method by which comparisons of 

theareaextentsoftheclassesinthederivedthematicmaps(e.g.thep

ercentageofaspecificvegetationgroupinarea)weremade with the 

corresponding extents on ground or in otherreference dataset. 

However, there is a major problem with thisnon-site-specific 

approach since the correct proportions of veg-etation groups do 

not necessarily mean the correct locations atwhich they locate. 

In the third stage, the accuracy metrics werebuilt on a 

comparison of the class labels in the thematic mapwith the 

ground data for the same locations. Measures such asthe 

percentages of cases correctly (and wrongly) classifiedwere 

used to evaluate the classification accuracy. The 

accuracyassessment at the fourth stage made further 

refinements onthe basis of the third stage. The obvious 

characteristic of thisstage is the wide use of the confusion or 

error matrix, 

whichdescribesthefitnessbetweenthederivedclassesandtheref-

erencedatathroughusingthemeasureslikeoverallaccuracyand 

kappa coefficient. Additionally, a variety of other meas-

uresisalsoavailableorcanbederivedfromtheerrormatrix.Forexa

mple,theaccuracyofindividualclassescanbederivediftheuserisi

nterestedinspecificvegetationgroups. 

Althoughitisagreedthataccuracyassessmentisimportant 

to qualify the result of image classification, it is probably im-

possibletospecifyasingle,all-

purposemeasureforassessingclassificationaccuracy.Forexampl

e,theconfusionmatrixandits derived measures of accuracy may 

seem reasonable and fea-sible. However, they may not be 

applicable under some cir-

cumstances,especiallyinvegetationmappingatcoarsescales(Cin

golanietal.2004).Oneoftheproblemscausedby the pixel-based 

confusion matrix evaluation is that a pixelat a coarse 

resolution may include several vegetation types. Asshown in 

Fig. 3, a pixel in imagery represents a composite 

ofthreevegetationclasses(classA,BandC).Clearly,theeclipseloc

ated in the center of the pixel may be the sampling area.Since 

it is impractical to sample the whole pixel at a large-

scalemapping, this pixel would most likely be labeled with class 

B inimage classification considering its percentage of the 

occupiedarea.Therefore,thevegetationclassbetweenthederived(cl

assB) and the referenced (class A) will not match and this 

mis-match will introduce classification errors. In this case, 

thenon-site-specific accuracy measures may be more suitable 

ifnotforthelimitationmentionedpreviously.Moreover,rathertha

nusingfieldsamplestotesttheclassificationaccuracy, 
 

 
 

Figure 3 illustration for pixel-based accuracy assessment at 

coarsescale. The envelope square represents a pixel in imagery. Here 

problemoccurs:ground‘true’vegetationclassisA,butclassifiedresultfort

hepixel, if correctly classified, would be labeled with B. This would lead 

toa mismatch between ground referenced data and classified 

result,which isvery typical in  pixel-based accuracy assessment 

especiallyatlarge-scalevegetationmapping. 

 

 
a widely accepted practice is to use finer resolution 

satellitedatatoassesscoarserresolutionproducts(Cihlaretal.200

3),althoughthehigh-

resolutiondataarethemselvessubjecttointerpretationandpossibl

eerrors(DefriesandTownshend 1999). The result evaluating 

for image classifica-

tionstillremainsahotdebatingtopictoday(Foody2002). 

 

Conclusions 

Thispapercoveredawidearrayoftopicsinvegetationclassi-

fication using remote sensing imagery. First, a range of 

remotesensing sensors and their applications in vegetation 

mappingwere introduced to facilitate the selection of right 

remote sens-

ingproductsforspecificapplications.Second,thetechniquesof 

image preprocessing and various classification methods (tra-

ditionalandimproved)werediscussedonhowtoextractveg-

etation features from remote sensing images. Particularly, 

theextractionofvegetationcoverthroughtheapplicationofhypers

pectralimageryandimagefusionwasdiscussed.Third,asectionw

asdedicatedtothediscussionofresultevaluation(accuracy 

assessment) of image classification. Although thecoverage of 

topics was not inclusive, and not all possible prob-lems were 

addressed, the basic steps, principles, 

techniquesandmethodsofmappingvegetationcoverfromremote

sens-ing imagery were discussed and the supporting 

referenceswereprovided. 

In short, remote sensing images are key data sources 

forearth monitoring programs considering the great 

advantagesthattheyhave(NordbergandEvertson2003).Forinsta

nce,itismoreeasilyobtainabletoproduceandupdatevegetationin

ventoriesoverlargeregionsifaidedbysatelliteimageryandapprop

riate imagery analysis. A growing number of studieshave 

examined a wide variety of vegetative phenomena (in-

cluding mapping vegetation cover) by using remote 

senseddata (Duchemin et al. 1999; Geerken et al. 2005; 

Nerry et 

al.1998;Xavieretal.2006).However,althoughremotesensing 
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technology has tremendous advantages over traditional meth-

odsinvegetationmapping,weshouldhaveaclearunder-

standingofitslimitations.AsstatedbyRappet  al.  (2005),three 

questions should be asked when using the results of veg-etation 

mapping from remote sensing imagery: how well thechosen 

classification system represents actual vegetation com-

munitycomposition,howeffectivelyimagesfromremotesensing 

capture the distinguishing features of each 

mappingunitwithintheclassificationandhow  well  these  

mappingunitsare delineated by photointerpreters. In other word,a 

well-fit vegetation classification system should be 

carefullydesigned according to the objective of studies in order 

to 

betterrepresentactualvegetationcommunitycompositions.Moresp

ecifically, the following points should be taken into consid-

eration when selecting a right vegetation classification systemfor 

better classification accuracy (Rapp et al. 2005): (i) refiningclass 

definitions to decrease ambiguity, (ii) adding new classesto more 

adequately describe the complexity of local 

vegetationpatternsand(iii)usingahigherlevelofclassification. 

Furthermore,becauseoftheselimitations,theto-be-

classifiedvegetationtypes,categorizedbyphysiognomicclassificati

onsystems(Dansereau1962),floristicclassificationsystems(Salova

ara et al. 2005; Thenkabail et al. 2003) or site-orientedvegetation 

classification systems (Degraaf and Chadwick 1984;Harms et al. 

2001), must produce distinct spectral signatures sothat the 

remote sensed images could be differentiated. How-

ever,thisisnotalwaystrueinmanycases,especiallywhena study area 

is covered by vegetations of complex forms or dif-ferent stages, 

which result in similar spectral responses amongdifferent 

vegetation groups or generate spectral variations 

forthesamevegetationgroup(Shaetal.2008).Difficultiesorchalleng

esareoftenencounteredtomapvegetation  undersuch 

circumstances. One solution is to adopt more 

advancedimageclassificationmethodsuchas  sub-pixel  analysis  

(Leeand Lathrop 2005). Another way is to choose higher resolu-

tions of imagery acquired by the right remote sensing sensorsso 

as to increase the distinguishable possibility in image clas-

sification (Cingolani et al. 2004). Nevertheless, higher resolu-

tionsofimagerywillmostlikelyincreasethecost. 

Although there are some standard methods for image pre-

processing, there are no super image classifiers that can be uni-

formly applicable to all applications. Thus, it is a 

challengingtask,aswellasahotresearchtopic,toapplyeffectiveclassi

fiersortodevelopnewpowerfulclassifierssuitableforspecificapplica

tions. Moreover, ancillary data, including field 

samples,topographicalfeatures,environmentalcharacteristics 

andother digital (geographic information system) data layers, 

havebeen proved very helpful to get a more satisfactory result 

orincrease classification accuracy. It is advisable to keep in 

mindthatthetechnicalimprovements(designingmoreadvancedclas

sifiersoracquiringhigh-resolutionimagery,etc.)cannotsolve all 

problems that are encountered during vegetation ex-

tractionfromremotesenseddatabutwillimprovetheresults.It is 

especially difficult to map vegetations over large areas 

suchasatcontinentalorglobalscales.Commonly,vegetationcover 

mapsatlargescalesarecompositionsofmanymapsfromdif-

ferentsourcesoveralongtime.AsstatedbyWhite(1983),forexa

mple, the UNESCO/AETFAT/UNSO vegetation of Africa 

ata continent scale is the compilation of many national or 

localmapsovera15-

yearperiod.Itisnotsurprisingthattheoverallaccuracyoftheprodu

ctisnotsatisfactoryasthosenationalorlocal maps are based on 

heterogeneous conceptions of vegeta-tion classification 

systems and produced at different periods.Therefore, it is 

very preferable to conduct vegetation classifi-cation using the 

data acquired from the same sources and atthe same period 

and applying the same processing 

methodsfortheentireregion.Thelackofsuchconsistentandidenti

caldata (mainly remote sensed data and the reference data) 

forlarge regions often limits the production of vegetation 

mapswithgoodquality. 
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