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Abstract. The convolutional networks have been hugely successful network in today’s field of deep 

learning, the deep learning is so popular right now. This paper effectively calculated the convolutional 

routing which presents the text classification with the help of capsule network. In this research work 

illuminated that capsules are most active way of classification. Thoroughly describe about the caps network 

in Machine learning. Esteemed data sets have been utilized to prove the convolutional routing. With the help 

of convolutional technique we have reduced the computational complexity of the dynamic and static routing 

of the capsules. In addition the research work also concentrate to reduce the computational complexity using 

the text classification and new framework of K-means algorithm. 
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1  Introduction 

 

CapsNet consist of millions of small particles called capsules. In which each capsule enclosed with small set of neurons 

that helps to detect a particular region in an image[1]. It used to produce the outputs in the form of vector, whose length 

will be expressed in probability that the object is present, then further the orientation encodes as the object’s pose 

parameters. If any of the transformation(e.g., shifted, rotated, resized, etc.) can be applied to that  image content also the 

capsule will produce the same length of vector image but that will slightly differ in orientation[4][5]. 

 

     The CapsNet is composed with multiple layers, much like to regular neural network architecture. The lowest layer of 

the capsule is called as primary capsule with used to receive a small region of image as input(called its receptive field), 

this layer used to detect the presence and pose of particular pattern, for example, a rectangle. The higher layer of 

capsule will be called as routing layer, which used to detect larger and more complex objects. 
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     To convert the text into groups the widely used technique is text classification. With the help of machine 

learning[5] the text classification can be make as automate process, and it will turn as efficient and in super-fast 

manner. Artificial Intelligence and Machine learning are arguably the most beneficial technologies to have gained 

momentum in now a days. They are finding to applicable everywhere. 

     An important application in converting text into groups will be Automatic text classification[14][17]. Because of 

frequent usage of large text documents now a days text classification plays vital role. In like manner, content grouping 

incorporates two immense assortment one is the subject based content arrangement and other one is content based 

characterization. Theme based content categorization[6] characterizes the reports as per their subjects. Writings can 

likewise be written in numerous classes like logical articles, news reports, motion picture surveys, and promotions. It 

very well may be characterized in transit of content was made, the manner in which it was altered, the register of 

language it utilizes, and the sort of group of spectators to whom it is tended to. 

  

   Representing the documents in a semantic path used to improve the order and casual method for recovery process. 

The best away to accomplish it will be with the assistance of Natural Language Processing (NLP) [8][11].Semantic 

analysis[3][9]. Utilizing insights sponsored innovation, these words are then contrasted with the arrangement. 

 

 

Fig. 1 Proposed Method 
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The automated text classification[15] using machine learning techniques will be includes the 

process of eliminatingthe language dependent factors, tokenization of text, removing the stop words from 

the tokens and stemming [12][16]. 

 

1.2 Proposed Method 

 

This research work implementing the concept of text classification[19][4] by dataset selection, tokenizing 

the text, stemming them into code word, vector representation for each code word, feature extraction for 

them, finally applying the machine learning technique of convolutional routing of text with capsules with 

the help of k-means algorithm. 

     In this phase, eliminating the irrelevant inflected words from the tokens.This research work have used 

the simple stemmer approach of look-up table. This approach generally produced the result in semi –

automatic method, list all the prefix and suffix words in the table and stem them by checking for the match. 

It is very much simple and fast to implement and it can be easily handled the exceptions. But the only 

drawback inflected forms must be present in the table. 

     Further, the training classifier of machine learning will be undergone for feature extraction, we have 

applied the most simple and familiar technique of bag of words, in which the vector of classifier will be 

represented. For instant, the sample dictionary of words in this work we have defined will be followed 

{Rose, is, the, not, beautiful, worst, girl}, and then the dictionary words will be vectorize, as the tag of 

“Rose is beautiful”. 
   

     Towards to next step the machine learning algorithm will be applied to the training data set, that will be 

yield. 

 

 
Figure. 2 

 
Figure. 3 

     The predicted tags can be trained with the help of machine learning algorithm of convolutional routing 

with the capsules in K-MEANS algorithms to estimate the routing between the each frames, because of this 

application the computational complexity of traditional static and dynamic routing will be calculatedly 

reduced, the convolutional routing can be applied to frmes of predicted tags to find the similarity with the 

help of following steps : 
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1. Compositional code capsule layer (CC) is embedding layer, which chooses the private code word vector in 

each text, CC capsule layer uses all code word vectors in each text to form the word embedding. Suppose the 

vocabulary size is | V |, we create M codebooks E1, E2, ..., EM, each containing K code word vectors. For 

CC embedding layer, the embedding of a word w is computed by summing up the code words corresponding 

to all the components in the code as E(Cw) = X M i=1 Ei(C i w)--------- (i)Where Ei(C i w) is the C i wth 

code word in the text Ei . Ei(j) is the jth code word in the text Ei,C ij w is the jth code for the 

codebook Ei  

2. For CC capsule layer, the embedding of word w is computed by summing up the weighted 

codewords corresponding to all the components in the code as 

E(Cw) = X M i=1 X K j=1 softmax j (C ij w )Ei(j) (ii) From the Formula (2), we can see the code 

needn’t to be integer number. 

3. In the CC capsule layer, only M need to be designated, K is determined as follows K = d Mp |V |e , 

because KM is the total number of all the combination of code word vectors, it makes sure KM ≥ |V |, 

which means each word can be assigned with an unique combination of code word vectors.  

K-means routing the Fully Connected (FC) capsule layer receives lower-level capsules, which 

represent low-level features, then the routing algorithm clusters. 

4. Given n capsules u1, . . . ,un and the metric d, k-means clustering is to find k cluster centers v1, . . . , vk to 

minimize the following loss function:L = Xn i=1 k min j=1 d(ui , vj )(iii) We have used the following 

metric: d(ui , vj ) = −  uikuik , vjkvjk ---------------------- (iv)For obtaining vj , we need to solve the 

equations ∂L/∂vj = 0, which is non-linear mostly and cannot be solved analytically. So we introduce an 

iterative process, suppose v (r) j is the result of vj after r iterations. We can simply take v (r+1) j = Xn 

i=1 c (r) ijui --------- (v) c (r) ij = softmax j h uikuik , v (r) j kv (r) j k i , it means v (r+1) j is the 

sum of those nearest us to v (r) j . 

5. Finally, to achieve a complete routing algorithm, we need to solve these problems: 

a) how to initialize the cluster centers, how to identify capsules at different position, 

b) how to guarantee the cluster centers keep the main information of input features. 

They all can be solved by inserting transformation matrix  

Wij : v (r+1) j = Xn i=1 c (r) ijWijui--------(vii) c (r) ij = softmax j h WijuikWijuik , v (r) j kv (r) j k 

I For the simplicity of this iterative process, we assign the sum of ui averagely to each cluster 

center as v (0) j . Because we want to use the length of capsule to represent the probability that a 

category’s entity exists, a squash function has been introduced: squash(vj ) = kvjk 1 + kvjk 2 vj------

(viii) after r iterations: vj (r) ∼ squash X i e ruˆi·vjZiuˆi!  Zi = X j e uˆi·vj ,uˆi = Wijui (ix) if r → +∞, we 

find the result of softmax will be either 0 or 1. In other words, each lower capsule is linked to sole upper 

capsule. 
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1.3 The probability ratio of the feature set :Rose, is, the, not, beautiful, worst, girl 

 

Probability and Ratio K=flower K=nature K=human K=fashion 

P(k/rose) 8.9 8.1 1.7 3.0 

P(k/beautiful) 7.6 8.5 0.96 3.8 

P(k/worst) 1.2 8.1 7.5 3.0 

P(k/girl) 0.96 2.0 9.6 3.8 

Table.1 

Removal of the stemmwords : {is, the, not} 

 

Chart.1 Probability Ratio 

The research work has been processed for CapsNet K-means classification test accuracy of convolutional 

routing along with the standard dynamic routing. The MNIST average and standard deviation results 

reported for 5 trails[17][18]. 

Method Routing : Convolutional Routing : Dynamic 

 Reconstruction MNIST (%) Reconstruction MNIST (%) 

CapsNet No 0.32 Yes 0.29 

CapsNet Yes 0.34 No 0.34 

CapsNet No 0.36 Yes 0.43 

CapsNet No 0.45 No 0.21 

CapsNet No 0.47 No 0.23 

Table.2 
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Chart.2 

 

 

2. Conclusion 

In this research work proposed convolutional routing of capsules networks to the text classification, K-

means routing is similar to dynamic routing in general, but it has three differences. First of all, we don’t 

apply the squash function to capsule vj in the period of iteration, we just squash it after iteration. Secondly, 

bij is replaced by new bij , however, in dynamic routing, bij is replaced by new bij plus old bij . This is the 

biggest difference between our routing algorithm and dynamic routing. Finally, the cosine similarity is 

computed between vj and Wijui instead of dot product. According to the bij update step as described in 

dynamic routing. The research work implementing to utilization of k-means routing, we compared to 

previous model with our new methodology and justified that, this work reducing the complexity of dynamic 

routing as well as improves the similarity to words matching and increased the accuracy. The final result is 

in higher classification and accuracy, less computation and complexity. 
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